当前位置:文档之家› 信息光学基础1-9二维抽样定理

信息光学基础1-9二维抽样定理

低通采样

西安邮电大学 《通信原理》软件仿真实验报告 实验名称:低通型采样定理 院系:通信与信息工程学院 专业班级:通工 学生姓名: 学号: (班内序号) 指导教师:张明远 报告日期:2013年10月8日

●实验目的: 1、掌握低通型采样定理; 2、掌握理想采样、自然采样和瞬时采样的特点; 3*、掌握混叠失真和孔径失真。 ●知识要点: 1、低通型采样定理; 2、理想采样及其特点; 3、自然采样及其特点; 4、瞬时采样及其特点; 5*、混叠失真及孔径失真。 ●仿真要求: 建议时间参数:No. of Samples =4096;Sample Rate = 20000Hz 1、记录理想采样时信源、样值序列和恢复信号的波形和频谱; 信源为截止频率200Hz的低通型信号; 系统框图: δ,偏移量为0.05); 其中图符8为信号源(单位冲激信号即()t 图符9为截止频率250Hz,极点个数为6的模拟低通滤波器; 图符0为采样器,采样频率2000Hz; 图符1为保持电路,Hold Value = Zero,Gain = 1; 图符2为截止频率250Hz,极点个数为6的模拟低通滤波器; 频谱选择|FFT|; ●仿真波形及实验分析: 1.理想采样 信源的波形和频谱

样值序列的波形和频谱 恢复信号的波形和频谱 分析:从图可知:理想采样原始信号和恢复信号波形相同,在样值序列中各次谐波与原始信号频谱相同。 2、记录平顶采样时的波形和频谱,并分析不同占空比时其特点: 系统框图

信源波形和频谱 样值序列 恢复序列的波形和频谱:

从图可以看出理想采样时输出波形信号和原始信号相同,而样值序列个次谐波出现衰落。 (2)50%占空比平顶采样 图符31为保持电路,Hold Value = Last Sample; 图符42为截止频率200Hz,极点个数为6的模拟低通滤波器; 图符17为截止频率250Hz,极点个数为6的模拟低通滤波器; 图符18为频率为2000Hz,Pulse Width =1/2000*50%=0.00025的信号;样值序列波形和频谱: 恢复信号波形和频谱:

二维码的设计原理及生成规格

二维码的生成细节和原理 二维码又称QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar Code条形码能存更多的信息,也能表示更多的数据类型:比如:字符,数字,日文,中文等等。这两天学习了一下二维码图片生成的相关细节,觉得这个玩意就是一个密码算法,在此写一这篇文章,揭露一下。供好学的人一同学习之。基础知识 首先,我们先说一下二维码一共有40个尺寸。官方叫版本Version。Version1是21x 21的矩阵,Version2是25x25的矩阵,Version3是29的尺寸,每增加一个version,就会增加4的尺寸,公式是:(V-1)*4+21(V是版本号)最高Version40,(40-1)*4+21 =177,所以最高是177x177的正方形。 下面我们看看一个二维码的样例: 定位图案 Position Detection Pattern是定位图案,用于标记二维码的矩形大小。这三个定位图案有白边叫Separators for Postion Detection Patterns。之所以三个而不是四个意思就是三个就可以标识一个矩形了。

?Timing Patterns也是用于定位的。原因是二维码有40种尺寸,尺寸过大了后需要有根标准线,不然扫描的时候可能会扫歪了。 ?Alignment Patterns只有Version2以上(包括Version2)的二维码需要这个东东,同样是为了定位用的。 功能性数据 ?Format Information存在于所有的尺寸中,用于存放一些格式化数据的。 ?Version Information在>=Version7以上,需要预留两块3x6的区域存放一些版本信息。 数据码和纠错码 ?除了上述的那些地方,剩下的地方存放Data Code数据码和Error Correction Code 纠错码。 数据编码 我们先来说说数据编码。QR码支持如下的编码: Numeric mode数字编码,从0到9。如果需要编码的数字的个数不是3的倍数,那么,最后剩下的1或2位数会被转成4或7bits,则其它的每3位数字会被编成10,12,14bits,编成多长还要看二维码的尺寸(下面有一个表Table3说明了这点) Alphanumeric mode字符编码。包括0-9,大写的A到Z(没有小写),以及符号$% *+–./:包括空格。这些字符会映射成一个字符索引表。如下所示:(其中的SP是空格,Char是字符,Value是其索引值)编码的过程是把字符两两分组,然后转成下表的45进制,然后转成11bits的二进制,如果最后有一个落单的,那就转成6bits的二进制。而编码模式和字符的个数需要根据不同的Version尺寸编成9,11或13个二进制(如下表中Table3) Byte mode,字节编码,可以是0-255的ISO-8859-1字符。有些二维码的扫描器可以自动检测是否是UTF-8的编码。

抽样定理

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理

三、实验原理 抽样定理原理:一个频带限制在(0,H f)内的时间连续信号() m t,如 果以T≤H f21 秒的间隔对它进行等间隔抽样,则() m t将被所得到的抽样值完 全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 被抽样信号 抽样脉冲 抽样恢复信号 图1抽样定理实验原理框图 被抽样信号抽样恢复信号 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如错误!未找到引用源。所示:

被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨错误!未找到引用源。中抽样恢复后信号的失真吗因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示: 图1被抽样信号波形及频谱示意图 对抽样脉冲信号的考虑 大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显

二维码编辑原理,简单易懂

一、什么是二维码: 二维码(2-dimensional bar code),是用某种特定的几何图形按一定规律在平面(二维方向上) 分布的黑白相间的图形记录数据符号信息的。 在许多种类的二维条码中,常用的码制有:Data Matrix, Maxi Code, Aztec, QR Code, Vericode, PDF417, Ultracode, Code 49, Code 16K等。 1.堆叠式/行排式二维条码,如,Code 16K、Code 49、PDF417(如下图)等 2.矩阵式二维码,最流行莫过于QR CODE 二维码的名称是相对与一维码来说的,比如以前的条形码就是一个“一维码”, 它的优点有:二维码存储的数据量更大;可以包含数字、字符,及中文文本等混合内容;有一定的容错性(在部分损坏以后可以正常读取);空间利用率高等。 二、QR CODE 介绍 QR(Q uick-R esponse) code是被广泛使用的一种二维码,解码速度快。 它可以存储多用类型

如上图时一个qrcode的基本结构,其中: 位置探测图形、位置探测图形分隔符、定位图形:用于对二维码的定位,对每个QR码来说,位置都是固定存在的,只是大小规格会有所差异; 校正图形:规格确定,校正图形的数量和位置也就确定了; 格式信息:表示改二维码的纠错级别,分为L、M、Q、H; 版本信息:即二维码的规格,QR码符号共有40种规格的矩阵(一般为黑白色),从21x21(版本1),到177x177(版本40),每一版本符号比前一版本每边增加4个模块。 数据和纠错码字:实际保存的二维码信息,和纠错码字(用于修正二维码损坏带来的错误)。 简要的编码过程: 1. 数据分析:确定编码的字符类型,按相应的字符集转换成符号字符;选择纠错等级,在规格一定的条件下,纠错等级越高其真实数据的容量越小。 2. 数据编码:将数据字符转换为位流,每8位一个码字,整体构成一个数据的码字序列。其实知道这个数据码字序列就知道了二维码的数据内容。

信息光学参考答案

名词解释 单色平面波 波函数E 取余弦或正弦形式,对应的光波等相面为平面,且等相面上个点的扰动大小时刻相等的光波称为单色平面波。 光学全息 利用光的干涉原理将物体发出的特定光波以干涉条纹形式记录下来,使物光波前的全部信息都贮存在记录介质中形成全息图,当用适当光波照射全息图时,由于光的衍射原理能重现原始物光波,从而形成与原物相同的三维像的过程称为光学全息。 色模糊 由于波长不同而产生的像的扩展的现象叫做像的色模糊。 范西泰特—策尼克定理 指研究一种由准单色(空间)非相干光源照明而产生的光场的互强度,特别指研究干涉条纹可冗度。 11222(,) exp()2(,;,)(,)exp ()()j J x y x y I j x y d d z z ψπαβαβαβλλ+∞-∞?? = -?+??????? 其中 22 2222221121[()()]()x y x y z z ππψρρλλ= +--=- 12ρρ分别是点11(,)x y 和点22(,)x y 离光轴的距离 基元全息图 指单一物点发出的光波与参考光波干涉所形成的全息图。 彩虹全息 只利用纪录时在光路的适当位置加一个夹缝,使再现的同时再现狭缝像,观察再现像将受到狭缝再现像的调制,当用白光照明再现时,对不同颜色的光波,狭缝和物体的再现像位于不同颜色的像,犹如彩虹一样的全息图。 判断 1.衍射受限系统是一个低通滤波器。 2.物 000(,)x y μ通过衍射受限系统后的像分布(,)i i i x y μ是000(,)x y μ的理想像和点扩散 (,)i i h x y 的卷积。 3.我们把(,)H ξη称为衍射受限系统的想干传递函数。 4.定义:()()f x h x 为一维函数,则无穷积分 ()()()()() g x f h x d f x h x ααα+∞ -∞ =-=*? 5.二维卷积 (,) (,)(,)(,)(,)(,) g x y f h x y d d f x y h x y αβαβαβ+∞-∞= --=*?? 6.1,()()() ,x x x x x a rect rect a a a a a o ?-≤?*==Λ???其他 7.透镜作用 成像;傅里叶变换;相位因子。

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t) 2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df;

网络二维码图片的生成算法研究

第26卷 第2期 2009年4月 黑龙江大学自然科学学报 JOURNAL OF NAT URAL SC I E NCE OF HE I L ONGJ I A NG UN I V ERSI TY Vol 126No 12 Ap ril,2009 网络二维码图片的生成算法研究 康春颖 (黑龙江大学信息科学与技术学院,哈尔滨150080) 摘 要:二维码作为一种新兴的条码,在网络中被越来越多的使用。通过从多种图片格式中 筛选出能显示出同等信息的最小存储量的图片格式,即单色BMP 位图格式,然后通过分析BMP 文件格式,提出一种支持在线生成的网络图片生成算法,结合通用二维码组件生成的数据,可以在线生成网络二维码图片。采用本算法生成的二维码图片,可以最小化图片文件体积,极大地提高了网络中二维码图片的显示速度。 关键词:二维码;生成算法;研究 中图分类号:T N919.81文献标志码:A 文章编号:1001-7011(2009)02-0216-04 收稿日期:2008-01-16 基金项目:黑龙江大学青年科学基金项目(QL200627) 1 前 言 二维码是条码的一种。条码是由一组按一定编码规则排列的条、空符号,用以表示一定的字符、数字及符号组成的信息。一维条形码简称一维码,它是根据一组水平方向的条的宽度不同,从而将其编成由“0”、“1”组成的一系列字符,该二进制字符按照一定的系统约定进行编码。在水平和垂直方向的二维空间存储信息的条形码,称为二维条形码(2-di m ensi onal bar code ),简称二维码。从它的编码原理而言,通常可分为以下两种类型:行排式二维条码和矩阵式二维码。行排式二维条码具有代表性的矩阵式二维条码有Code 16K 、Code 49、P DF417等。矩阵式二维码具有代表性的矩阵式二维条码有:Code One 、Maxi Code 、QR Code 、Data Matrix 等。 在本文中采用的是QR Code 码。QR Code 码(Quick Res ponse Code )是日本Dens o 公司在1994年9月研制的一种矩阵二维条码,它除了具有一维条码及其他二维条码所具有的信息容量大、可靠性高以外,还具有超高速识度、全方位识读、可表示汉字,并且有很强的保密防伪性等优点。 2 研究背景介绍 二维码的应用随着网络技术的发展也越来越广泛了,二维码可以和现在流行B /S 结构结合起来,让二维码在网络中起到一定的作用。如电子票务系统的开发,可以采用二维码。具体开发过程如下:通过现在流行的网络技术,将客户与服务商有效的联系在一个平台上,同时在票务流程中添加一个二维码的生成接口,这样可以将大量的票务信息生成二维码图片,由于二维码的存储信息容量非常大,可以为以后添加大的信息量提供了技术保障。通过平台上生成二维码的算法,生成相应信息的二维码,同时再通过手机的W ap 技术,将平台上生成的二维码发送到手机中,从而完成了生成“电影票”的过程,这样用户就可带着自己的手机到电影院,在电影院一端可持小型高速二维码识读器,将手机中的条码识读出来,即可看到所订的电影票的信息。这样,在整个售票的流程中不用打印任何票据,从而实现了真正意义上的电子票务。 在这个设计中生成二维码的部分是核心,如何在网络中生成二维码图片,并能使生成的二维码图片占用存储空间尽量小是最重要。因为如果二维码图片体积过大则不利于保存,同时大的图片格式下载起来速度会相应的下降,不利于业务系统的客户端显示,因此设计一种适合网络传输与显示的网络二维码图片生成算

信息光学简介

信息光学是现代光学前沿阵地的一个重要组成部分。 信息光学采用信息学的研究方法来处理光学问题,采用信息传递的观点来研究光学系统,这之所以成为可能,是由于下述两方面的原因。 首先,物理上可以把一幅光学图象理解为一幅光学信息图。一幅光学图象,是一个两维的光场分布,它可以被看作是两维空间分布序列,信息寓于其中。而信息学处理的电信号可以看作是一个携带着信息的一维时间序列,因此,有可能采用信息学的观点和方法来处理光学系统。 然而,仅仅由于上述原因就把信息学的方法引入光学还是远远不够的。在光学中可以引入信息学方法的另一个重要原因是光学信号通过光学系统的行为及其数学描述与电信号通过信息网络的行为及其数学描述有着极高的相似性。在信息学中,给网络输入一个正弦信号,所得到的输出信号仍是一个正弦波,其频率与输入信号相同,只不过输出波形的幅度和位相(相对于输入信号而言)发生了变化,这个变化与、且仅与输入信号的性质以及网络特点有关。在光学中,一个非相干的光强按正弦分布的物场通过线性光学系统时,所得到的像的光强仍是同一频率的正弦分布,只不过相对于物光而言,像的可见度降低且位相发生了变化,而且这种变化亦由、且仅由物光的特性和光学系统的特点来决定。很显然,光学系统和网络系统有着极强的相似性,其数学描述亦有共同点。正因为如此,信息学的观点和方法才有可能被借鉴到光学中来。 信息学的方法被引入光学以后,在光学领域引起了一场革命,诞生了一些崭新的光学信息的处理方法,如模糊图象的改善,特征的识别,信息的抽取、编码、存贮及含有加、减、乘、除、微分等数学运算作用的数据处理,光学信息的全息记录和重现,用频谱改变的观点来处理相干成像系统中的光信息的评价像的质量等。这些方法给沉寂一时的光学注入了新的活力。 信息光学和网络系统理论的相似是以正弦信息为基础的,而实际的物光分布不一定是正弦分布,因此,在信息光学中自然必须引入傅里叶分析方法。用傅里叶分析法可以把一般光学信息分解成正弦信息,或者把一些正弦信息进行傅里叶叠加。把傅里叶分析法引入光学乃是信息光学的一大特征。在此基础上引入了空间频谱思想来分析光信息,构成了信息光学的基本特色。 信息光学的基本规律仍然没有超出经典波动理论的范围,它仍然以波动光学原理为基础。信息光学主要是在方法上有了进一步的发展,用新的方法来处理原来的光学问题,加深对光学的理解。当然如果这些发展只具有理论的意义,它就不会像现在这样受到人们的重视,它除了可以使人们从更新的高度来分析和综合光现象并获得新的概念之外,还由此产生了许多应用。例如,引入光学传递函数来进行像质评价,全息术的应用等。

抽样定理

第一章信源编码技术 实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-

1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

实验一:低通采样定理和内插与抽取实现a

实验一:低通采样定理和内插与抽取实现 一.实验目的 1. 连续信号和系统的表示方法,以及坊真方法。 2.用MATLAB实现连续信号采用与重构的方法, 3. 采样信号的插值和抽取等重采样实现方法。 4. 用时域采样信号重构连续时域信号的原理和方法。 5. 用MATLAB绘图函数表示信号的基本方法,实验数据的可视化表示。二.原理 1 、时域抽样定理 令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为: 故可以推得p(t)的傅里叶变换为: 其中: 根据卷积定理可知: 得到抽样信号x(t)的傅里叶变换为: 其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn 加权。因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。

假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。 2、信号的重建 从频域看,设信号最高频率不超过折叠频率: Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2 Xa(jΩ)=0 |Ω|>Ωs/2 则理想取样后的频谱就不会产生混叠,故有: 让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器: H(jΩ)=T |Ω|<Ωs/2 H(jΩ)=0 |Ω|>Ωs/2 滤波器只允许通过基带频谱,即原信号频谱,故: Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ) 因此在滤波器的输出得到了恢复的原模拟信号: y(t)=xa(t) 从时域上看,上述理想的低通滤波器的脉冲响应为: 根据卷积公式可求得理想低通滤波器的输出为: 由上式显然可得:

二维码调研报告

二维码调研报告 目录 一:二维码介绍 (2) 1.二维码基本原理 (2) 2.二维码种类 (2) 3.二维码应用 (4) 4.二维码特点 (5) 5. 最流行QR code的生成细节和原理 (6) 二.荷兰公司RONMAS网站 (6)

一:二维码介绍 1.二维码基本原理 二维码是一个用计算机软件编码技术形成的平面几何图形,在几何图形中可以通过编码技术来存储数字、汉字或图片,它是一个不含电子芯片的存储器,而且这个图形可以通过在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理,二维条码/二维码能够在横向和纵向两个方位同时表达信息,因此能在很小的面积内表达大量信息。 2.二维码种类 二维码分为矩阵式二维码和行列式二维码。 ★堆叠式/行排式二维条码 堆叠式/行排式二维条码又称堆积式二维条码或层排式二维条码,其编码原理是建立在一维条码基础之上,按需要堆积成二行或多行。它在编码设计、校验原理、识读方式等方面继承了一维条码的一些特点,识读设备与条码印刷与一维条码技术兼容。但由于行数的增加,需要对行进行判定,其译码算法与软件也不完全相同于一维条码。有代表性的行排式二维条码有:Code 16K、Code 49、PDF417等。 ★矩阵式二维码

短阵式二维条码(又称棋盘式二维条码)它是在一个矩形空间通过黑、白像素在矩阵中的不同分布进行编码。在矩阵相应元素位置上,用点(方点、圆点或其他形状)的出现表示二进制“1”,点的不出现表示二进制的“0”,点的排列组合确定了矩阵式二维条码所代表的意义。矩阵式二维条码是建立在计算机图像处理技术、组合编码原理等基础上的一种新型图形符号自动识读处理码制。具有代表性的矩阵式二维条码有:Code One、Maxi Code、QR Code、Data Ma trix等。 在几十种二维条码中,常用的码制有:PDF417二维条码,Datam atrix二维条码,Maxicode二维条码,QR Code,Code 49,Code 1 6K,Code one等,除了这些常见的二维条码之外,还有Vericode 条码、CP条码、Codablock F条码、田字码、Ultracode条码,A ztec条码。 下面是几种二维码的形状。 几种二维码的对比:

抽样定理

实验一 抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理 三、实验原理 抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤ H f 21 秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路

输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 抽样/ 保持 被抽样信号 抽样脉冲 低通滤波器抽样恢复信号 图1抽样定理实验原理框图 抽样/保持 被抽样信号 抽样脉冲 低通滤波器抽样恢复信号低通滤波器 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示: 被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨图中抽样恢复后信号的失真吗? 因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示:

带通采样定理

3.1.3 带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为,下截止频率为,这时并不需要抽样频率高于两倍上截止频率,可按照带通抽样定理确定抽样频率。 [定理3-2] 带通抽样定理:一个频带限制在内的时间连续信号,信号带宽,令,这里为不大于的最大正整数。如果抽样频率满足条件 , (3.1-9) 则可以由抽样序列无失真的重建原始信号。 对信号以频率抽样后,得到的采样信号的频谱是的频谱经过周期延拓而成,延拓周期为,如图3-3所示。为了能够由抽样序列无失真的重建原始信号,必须选择合适的延拓周期(也就是选择采样频率),使得位于和的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在频带的两边,有着两个延拓频谱分量:和。为了避免混叠,延拓后的频带分量应满足 (3.1-10) (3.1-11) 综合式(3.1-10)和式(3.1-11)并整理得到 (3.1-12) 这里是大于等于零的一个正数。如果取零,则上述条件化为 (3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 取得越大,则符合式(3.1-12)的采样频率会越低。但是有一个上限,因为,而为了避免混叠,延拓周期要大于两倍的信号带宽,即。 因此 (3.1-14) 由于为不大于的最大正整数,因此不大于的最大正整数为,故有 综上所述,要无失真的恢复原始信号,采样频率应满足 , (3.1-15)H f L f H f ),(H L f f )(t x L H f f B -=N B f M H -=/N B f H /s f m f f m f L s H 212≤≤+10-≤≤N m )(t x )(t x s f )(s nT x )(t x s f )(t x ),(H L f f ),(L H f f --),(H L f f ),(H L f f ),(s L s H mf f mf f +-+-))1(,)1((s L s H f m f f m f ++-++-L s L f mf f ≤+-H s H f f m f ≥++-)1(m f f m f L s H 212≤≤+m m H s f f 2≥m m m f f L s 2≤B f s 2≥B f B f f f m L L s L =≤≤222N B f H /B f L /1-N 10-≤≤N m )(t x s f m f f m f L s H 212≤≤+10-≤≤N m

二维码的基础原理

二维码的基础原理是什么? Posted on2014-12-24 二维条码是指在一维条码的基础上扩展出另一维具有可读性的条码,使用黑白矩形图案表示二进制数据,被设备扫描后可获取其中所包含的信息。一维条码的宽度记载着数据,而其长度没有记载数据。二维条码的长度、宽度均记载着数据。二维条码有一维条码没有的“定位点”和“容错机制”。容错机制在即使没有辨识到全部的条码、或是说条码有污损时,也可以正确地还原条码上的信息。二维条码的种类很多,不同的机构开发出的二维条码具有不同的结构以及编写、读取方法。 堆叠式/行排式二维条码,如,Code 16K、Code 49、PDF417(如 右图)等。 矩阵式二维码,最流行莫过于QR CODE,二维码的名称是相对与一维码来说的,比如以前的条形码就是一个“一维码”。它的优点有:二维码存储的数据量更大;可以包含数字、字符,及中文文本等混合内容;有一定的容错性(在部分损坏以后可以正常读取);空间利用率高等。 二维码编码过程

1、数据分析:确定编码的字符类型,按相应的字符集转换成符号字符;选择纠错等级,在规格一定的条件下,纠错等级越高其真实数据的容量越小。 2、数据编码:将数据字符转换为位流,每8位一个码字,整体构成一个数据的码字序列。其实知道这个数据码字序列就知道了二维码的数据内容。 下面小草就用一个案例带你了解二维码的编码过程,以对数据0123 4567编码为例 1)分组:012 345 67 2)转成二进制:012→0000001100 345→010******* 6 7 →1000011

3)转成序列:0000001100 010******* 1000011 4)字符数转成二进制:8→0000001000 5)加入模式指示符(上图数字)0001:0001 0000001000 0000 001100 010******* 1000011 对于字母、中文、日文等只是分组的方式、模式等内容有所区别,基本方法是一致的。二维码虽然比起一维条码具有更强大的信息记载能力,但也是有容量限制,通过下面这个表格小草带你了解二维码的容量到底有多大。 3、纠错编码:按需要将上面的码字序列分块,并根据纠错等级和分块的码字,产生纠错码字,并把纠错码字加入到数据码字序列后面,成为一个新的序列。在二维码规格和纠错等级确定的情况下,其实它所能容纳的码字总数和纠错码字数也就确定了,比如:版本10,纠错等级时H时,总共能容纳346个码字,其中224个纠错码字。就

低通抽样定理验证实验

实验二低通抽样定理验证实验 一、实验目的 1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。 2、通过实验进一步掌握低通抽样定理的原理。 二、实验内容 } 用System View建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理。 三、电路构成 图1 低通抽样定理验证实验原理图 参数设置:Token3:产生模拟信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率50HZ,相位0度) 《 Token4:Multiplier Token5:产生抽样信号(参数设置:Source——Periodic——Pulse Train,幅度1V,频率100Hz,脉冲宽度,偏移0V,相位0度,抽样速率可调) Token6:产生一个模拟低通滤波器,滤除高频信号,保留低频信号(参数设置:Operator——Filters/Systems——Linear Sys Filters,选择:Analog——Lowpass——Butterworth,Lowcuttoff=50Hz,No of Poles=3,截止频率=模拟信号最高频率) 四、实验结果 (1)原始的输入信号波形图 )

图2 原始的输入信号波形图(2)原始的输入信号的频谱图 图3 原始的输入信号频谱图 。 (3)被抽样以后的图形 图4 被抽样以后的图形 > (4)被抽样以后的频谱图

图5 被抽样以后的频谱图 分析:由于原始输入波形的离散化,使得输出频谱周期化。输出频谱如图5所示。 \ (5)经过低通滤波器后,还原出波形如图6 】 图6 还原出的波形 (6)经过低通滤波器后,还原后的频谱图 !

二维码生成与识别原理_修订版

QR二维码的生成与识别原理 一、简介 二维码(2-dimensional bar code),是用某种特定的几何图形按一定规律在平面(二维方向上)分布的黑白相间的图形记录数据符号信息的。二维码的种类包括:QR Code ,Data Matrix, Maxi Code, Aztec , Vericode, PDF417, Ultracode, Code 49, Code 16K等。 其中QR Code是被广泛使用的二维码,QR全称Quick Response,与其他编码方式相比,QR二维码具有存储容量大、编码速度快的特点,并且它也能表示更多的数据类型:比如:字符,数字,日文,中文等等。随着近几年智能手机的迅猛发展,QR二维码得到了广泛的应用。 关于QR二维码的标准,可参见标准文档(QR Code Spec): https://www.doczj.com/doc/ce17400730.html,/files/datasheets/misc/qr_code.pdf 二、应用现状 随着智能机的普及和手机摄像头成像能力的提升,为了提高向机器内输入信息的速度,QR二维码得到迅猛发展,在许多行业中得到应用。 在一维码时代,“扫码”主要应用在超市或图书馆等场所,以获取商品价格或图书分类等有限的特定信息。二维码可以存储大容量数据,给人们的生活带来巨大方便。 从开始的扫描二维码提取文字或网址,到后来“扫一扫”添加好友、关注个人或公司微信或微博,再到扫码支付,二维码的应用已经非常普遍。 三、基础知识 QR码可分为不同的尺寸,或者叫版本Version。Version 1是21 x 21的矩阵,Version 2是25 x 25的矩阵,Version 3是29的尺寸,每增加一个version,就会增加4的尺寸,公式是:(V-1)*4 + 21(V是版本号)最高Version 40,(40-1)*4+21 = 177,所以最高是177 x 177 的正方形。 样例如下:

信息光学复习提纲--重点

信息光学复习提纲 信息光学的特点 Ch1. 线性系统分析 1.矩形函数:①定义②图像③作用④傅里叶变换谱函数 2.sinc函数:①定义②图像③作用④傅里叶变换谱函数 3.三角函数:①定义②图像③作用④傅里叶变换谱函数 4.符号函数:①定义②图像③作用④傅里叶变换谱函数 5.阶跃函数:①定义②图像③作用④傅里叶变换谱函数 6.余弦函数:①定义②图像③作用④傅里叶变换谱函数 7. 函数:①三种定义②四大性质③作用 8.; ②图像③作用④傅里叶变换谱函数 9.梳状函数:①定义 10.高斯函数:①定义②图像③作用④傅里叶变换谱函数 11.傅里叶变换(常用傅里叶变换对) 12.卷积:四大步骤,两大效应 13.互相关、自相关的定义、物理意义 14.傅里叶变换的基本性质和有关定理 15.线性系统理论 16.线性不变系统的输入输出关系,脉冲响应函数,传递函数 17.抽样定理求抽样间隔 ~

Ch2. 标量衍射理论 1. 标量衍射理论成立的两大条件 2.平面波及球面波表达式: exp[(cos cos cos )]A ik x y z αβγ++ (求平面波的空间频率) )](2exp[]exp[22y x z ik ikz z A + 3.惠更斯——菲涅耳原理: ()?? ∑ =ds r ikr K P U c Q U )exp()()(0θ ? 4.基尔霍夫衍射理论: ?? ∑ -= ds r ikr r n r n r ikr a j Q U ) exp(]2),cos(2),cos([)exp(1 )(0000 λ 令()()θλK r ikr j Q P h ) exp(1,= 所以()??∑ = ds Q P h P U Q U ,)()(0 当光源足够远,且入射光在孔径平面上各点的入射角都不大时, (),1,cos 0≈r n (),1,cos ≈r n ().1≈∴θK 故()z ikr j Q P h ) exp(1,λ=,]})()[(211{20020z y y z x x z r -+-+≈ 5. 菲涅耳衍射——近场衍射: 0000202000022)](2exp[)](2exp[ ),()](2exp[)exp(),(dy dx yy xx z j y x z jk y x U y x z jk z j jkz y x U +-++= ?? ∞ ∞ -λπ λ6. 夫琅禾费衍射——远场衍射:(根据屏函数求衍射光强分布)

(完整版)二维码导航工作原理

总体设计: 该系统由以陀螺仪导航系统、视觉系统、AGV子系统、电源管理系统、传感器系统和装置机械结构五部分组成。导航采用陀螺仪导航为主,视觉导航为辅,最大化融合和利用各导航的优势,提高系统的可靠性和导航精度。 其运行原理如下:AGV在接收到工作中心的指令后,由导航系统将其指引至货物装载处,装载完毕后,按照预设指令,其分析起点-终点路径后,规划出最佳行走路径,行走至指定位置。该过程中不断利用导航系统识别周围特征标志信息,以实时利用AGV子系统计算分析其所处位置,之后利用无线通信方式发送至工作中心电脑,以管理和规划工业现场的总体物流运行进度,避免相互干涉,提高运输效率。 项目技术归纳为以下几点: (1)陀螺仪导航与视觉联合导航:本系统采用陀螺仪导航系统专用模块,主要实现技术为差分定位,并结合工业现场的地图,利用车载控制系统实时分析系统地图坐标数据,之后与地图信息对比以获取定位信息。项目采用图QR码扫描自适应阈值算法的视觉技术识别运动过程中的关键标志物,辅以航位推算系统以达到路径自动辨识和规划,从而最终达到对AGV导航的目的。通过视觉定位QR码技术导航的图像获取、摄像机标定、特征提取和深度恢复等过程,以达到对物体的位置精确定位。 QR码(二维码) (2)路径规划:AGV运行路径规划分为全局规划和局部规划。全局规划中采用切线图法,即将路径中关键点作为特征点,将该特征点的切线表示弧,这样可以获取AGV起始点和目标点的最短路径,提高AGV路径进行规划的速度;局部规划中采用人工势场法,其设计思想是将AGV在工业现场作业视为一种抽象人造受力场中的运动,通过建立人工势场的负梯度方向指向系统的运动控制方向,目标点对AGV产生引力,障碍物对AGV产生斥力,其驱动结果使其在势场合力作用下控制AGV运动方向并计算AGV位置,为防止工业现场AGV在到达目标位置前陷入局部小点而无法达到预设位置,系统利用模拟退火算法使势函数跳出局部极小点,以使AGV顺利到达目标位置。 (3)多任务分解及协调:为解决多个AGV间任务分配、路径规划和相互协调,系统采用模糊动态数学模型的方法,该方法基于专家辨识系统的设计思路,将任务分配分解为“最重要、重要、一般、次要”四个等级,并将路径规划为“最近、较近、合理、备选”四个等级,之后利用模糊动态数学模型进行建模和分析,输出最佳的任务分解和路径规划。具体应用中,利用工业现场工作中心对多个AGV提前预置任务和目标路径,提供给系统的初始输入和输出,由系统自动完成对任务和路径的分析,并将指令传送至各AGV车载控制系统,以达到AGV间的任务协调和路径选取。需要指出的是,为了解决实际应用过程中由于任务的不断更

第五章 信息光学基础

第五章 光学信息处理基础 光学信息处理是在全息术、光学传递函数和激光的基础上,将数学中的傅里叶变换和通信中的线性系统理论引入到光学,用光学的方法实现傅立叶变换,在频域中描述和处理光学信息。傅立叶分析的方法早在十九世纪末、二十世纪初成功地应用于光学领域,具有代表性的是阿贝关于显微镜的两次成像理论和阿贝-波特实验。上个世纪三十年代泽尼克发明的相衬显微镜是光学信息处理的早期卓越成就。激光器的出现为人们提供了相干性非常好的光源,光学信息处理得到迅速发展,例如用光学的方法实现相关运算、特征识别微分运算等。本章主要内容:1波前变换;2阿贝成像原理和相衬显微镜;3傅里叶变换;4傅立叶变换光学及光学信息处理;5光学全息照相; §1 波前变换(Wave front transformation) 1.1 对衍射的再认识 前面我们把光经过障碍物后偏离传播的现象称为衍射。应用惠更斯-菲涅耳原理讨论了光的衍射问题后,我们意识到光的衍射是光在传播的过程中波面受到某种限制,即自由传播波面被破坏,这便是衍射。 按照惠更斯-菲涅耳原理,只要将波前()0 U Q 上每一面元看成次波中心,把它们对空间某一点的贡献相干叠加,就能求衍射场的分布()U P ,并且波前()U P 由()0 U Q )唯一的确定。上述意味着,在Σ上有障碍物存在,使得Σ上波前函数 ()0U Q )发生了与自由传播有所不同的变化,光波场就会产生重新分布,这就是衍射的实质。 1.2 衍射系统的屏函数(screen function) 按照前面我们对光的衍射认识,凡能改变波前上的复振幅的物体称为衍射屏(diffraction function )。衍射屏可以是透射物体,也可以示反射物体,有各种形状。光波经过衍射屏是光的传播问题,要用菲涅耳-基尔霍夫积分公式计算,把这种衍射看作是一种变换,衍射屏能 将输入波前()in U x,y %转化为波前()out U x,y %,衍射屏可用以下一个函数表征。 ()()(),,,out in U x y T x y U x y = 屏函数包括振幅和相位两部分,通常有以下三种 ① 相位型 ② 振幅型 ③ 振幅相位型 任何形状的孔或遮光屏是最简单的振幅型透射衍射屏,他们的函数具有如下形式

相关主题
文本预览
相关文档 最新文档