当前位置:文档之家› 低通与带通抽样定理验证

低通与带通抽样定理验证

低通与带通抽样定理验证
低通与带通抽样定理验证

低通与带通抽样定理验证

【分析内容】按照低通抽样定理与带通抽样定理,分别对构造的低通型信号和带通型信号、两种抽样后的信号及滤波重建信号进行时域和频域观察,形象地给出低通抽样定理与带通抽样定理(带通部分选做)。

【分析目的】通过分析验证低通抽样定理与带通抽样定理。

【系统组成】抽样定理实质上研究的是随时间连续变化的模拟信号经抽样变成离散序列后,能否由此离散序列值重建原始模拟信号的问题。对于低通型和带通型模拟信号,分别对应不同的抽样定理,抽样定理是模拟信号数字化的理论基础。

对上限频率为f H 的低通型信号,低通抽样定理要求抽样频率应满足: 对下限频率为f L 、上限频率为f H 的带通型信号,带通抽样定理要求抽样频率满足:

其中, 为信号带宽,n 为正整数, 。

应该注意的是,当 时,无论带通型信号的f L 和f H 为何值,只需将抽样频率设定在2B ,理论上就不会发生抽样后的频谱重叠,而不像低通抽样定理要求的必须为上限频率的2倍以上。仿真分析系统将按照图1所示结构创建。

其中,对于恒定频谱的冲激函数,通过低通滤波产生低通型信号,再进行低通抽样;通过带通滤波产生带通型信号,再进行带通滤波产生带通抽样,最后分别滤波重建原始信号。仿真分析时,设低通滤波器的上限频率为10Hz ,带通滤波器下限频率为100Hz 、上限频率为120Hz ,低通抽样频率选为30Hz ;带通型信号上限频率f H = 6×20=120Hz (B=20Hz ,n=6),带通抽样频率至少应取40Hz ,现取60 Hz 的带通抽样频率。

【创建分析】

第1步:进入SystemView 系统视窗,

设置“时间窗”参数如下:

① 运行时间:Start Time: 0秒;Stop

Time: 0.4秒;

② 采样频率:Sample Rate= 10000Hz 。

第2步:在SystemView 系统窗下,创

建的仿真分析系统如图2所示。仿真系统中

各图符块的参数设置情况见表1。

第3步:创建完仿真系统后,单击运行

按钮,首先观察时域波形,四个“Real Time ”

图符块显示框中的波形如图3所示。两个重

H

s f f 2≥]1[2n

k B f s +?≥L H f f B -=10<≤k nB

f H =

图1 仿真分析系统结构

图2 SystemView 仿真分析系统

建信号(Token7,14)的时延是由重建滤波器时延造成的。

表1

低通信号波形

低通重建信号波形

带通信号波形

带通重建信号波形

图3 四个“Real Time”图符块显示框中的波形

第4步:观察低通信号抽样前后信号(Token5,6)和重建信号(Token7)的功率谱,如图4所示。观察带通信号抽样前后信号(Token12,13)和重建信号(Token14)的功率谱,如图5所示。

低通信号功率谱

低通抽样信号功率谱

低通重建信号功率

图4 低通抽样前后、重建信号功率谱

带通信号功率谱

带通抽样信号功率谱

带通重建信号功率图5 带通抽样前后、重建信号功率谱

低通采样

西安邮电大学 《通信原理》软件仿真实验报告 实验名称:低通型采样定理 院系:通信与信息工程学院 专业班级:通工 学生姓名: 学号: (班内序号) 指导教师:张明远 报告日期:2013年10月8日

●实验目的: 1、掌握低通型采样定理; 2、掌握理想采样、自然采样和瞬时采样的特点; 3*、掌握混叠失真和孔径失真。 ●知识要点: 1、低通型采样定理; 2、理想采样及其特点; 3、自然采样及其特点; 4、瞬时采样及其特点; 5*、混叠失真及孔径失真。 ●仿真要求: 建议时间参数:No. of Samples =4096;Sample Rate = 20000Hz 1、记录理想采样时信源、样值序列和恢复信号的波形和频谱; 信源为截止频率200Hz的低通型信号; 系统框图: δ,偏移量为0.05); 其中图符8为信号源(单位冲激信号即()t 图符9为截止频率250Hz,极点个数为6的模拟低通滤波器; 图符0为采样器,采样频率2000Hz; 图符1为保持电路,Hold Value = Zero,Gain = 1; 图符2为截止频率250Hz,极点个数为6的模拟低通滤波器; 频谱选择|FFT|; ●仿真波形及实验分析: 1.理想采样 信源的波形和频谱

样值序列的波形和频谱 恢复信号的波形和频谱 分析:从图可知:理想采样原始信号和恢复信号波形相同,在样值序列中各次谐波与原始信号频谱相同。 2、记录平顶采样时的波形和频谱,并分析不同占空比时其特点: 系统框图

信源波形和频谱 样值序列 恢复序列的波形和频谱:

从图可以看出理想采样时输出波形信号和原始信号相同,而样值序列个次谐波出现衰落。 (2)50%占空比平顶采样 图符31为保持电路,Hold Value = Last Sample; 图符42为截止频率200Hz,极点个数为6的模拟低通滤波器; 图符17为截止频率250Hz,极点个数为6的模拟低通滤波器; 图符18为频率为2000Hz,Pulse Width =1/2000*50%=0.00025的信号;样值序列波形和频谱: 恢复信号波形和频谱:

抽样定理

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理

三、实验原理 抽样定理原理:一个频带限制在(0,H f)内的时间连续信号() m t,如 果以T≤H f21 秒的间隔对它进行等间隔抽样,则() m t将被所得到的抽样值完 全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 被抽样信号 抽样脉冲 抽样恢复信号 图1抽样定理实验原理框图 被抽样信号抽样恢复信号 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如错误!未找到引用源。所示:

被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨错误!未找到引用源。中抽样恢复后信号的失真吗因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示: 图1被抽样信号波形及频谱示意图 对抽样脉冲信号的考虑 大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显

带通抽样定理

《信号与系统A(2)》课程自学报告 实施报告 题目:带通采样定理与软件无线电

带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为H f ,下截止频率为L f ,这时并不需要抽样频率高于两倍上截止频率H f ,可按照带通抽样定理确定抽样频率。 [定理] 带通抽样定理:一个频带限制在),(H L f f 内的时间连续信号)(t x ,信号带宽L H f f B -=,令N B f M H -=/,这里N 为不大于B f H /的最大正整数。如果抽样频率f ,10-≤≤N m (3.1-9) )(t x 。 对信号)(t x 以频率s f 抽样后,得到的采样信号)(s nT x 的频谱是)(t x 的频谱经过周期延拓而成,延拓周期为s f ,如图3-3所示。为了能够由抽样序列无失真的重建原始信号)(t x ,必须选择合适的延拓周期(也就是选择采样频率),使得位于),(H L f f 和),(L H f f --的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑),(H L f f 的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在),(H L f f 频带的两边,有着两个延拓频谱分量:),(s L s H mf f mf f +-+-和))1(,)1((s L s H f m f f m f ++-++-。为了避免混叠,延 ) 3.1-11) 综合式( 3.1-12) 这里m m 取零,则上述条件化为 H s f f 2≥(3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 m 取得越大,则符合式(3.1-12)的采样频率会越低。但是m 有一个上限,因为m f f L s 2≤ ,而为了避免混叠,延拓周期要大于两倍的信号带宽,即B f s 2≥。 因此

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t) 2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df;

抽样定理

第一章信源编码技术 实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-

1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

抽样定理

实验一 抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理 三、实验原理 抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤ H f 21 秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路

输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 抽样/ 保持 被抽样信号 抽样脉冲 低通滤波器抽样恢复信号 图1抽样定理实验原理框图 抽样/保持 被抽样信号 抽样脉冲 低通滤波器抽样恢复信号低通滤波器 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示: 被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨图中抽样恢复后信号的失真吗? 因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示:

实验一:低通采样定理和内插与抽取实现a

实验一:低通采样定理和内插与抽取实现 一.实验目的 1. 连续信号和系统的表示方法,以及坊真方法。 2.用MATLAB实现连续信号采用与重构的方法, 3. 采样信号的插值和抽取等重采样实现方法。 4. 用时域采样信号重构连续时域信号的原理和方法。 5. 用MATLAB绘图函数表示信号的基本方法,实验数据的可视化表示。二.原理 1 、时域抽样定理 令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为: 故可以推得p(t)的傅里叶变换为: 其中: 根据卷积定理可知: 得到抽样信号x(t)的傅里叶变换为: 其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn 加权。因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。

假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。 2、信号的重建 从频域看,设信号最高频率不超过折叠频率: Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2 Xa(jΩ)=0 |Ω|>Ωs/2 则理想取样后的频谱就不会产生混叠,故有: 让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器: H(jΩ)=T |Ω|<Ωs/2 H(jΩ)=0 |Ω|>Ωs/2 滤波器只允许通过基带频谱,即原信号频谱,故: Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ) 因此在滤波器的输出得到了恢复的原模拟信号: y(t)=xa(t) 从时域上看,上述理想的低通滤波器的脉冲响应为: 根据卷积公式可求得理想低通滤波器的输出为: 由上式显然可得:

带通采样定理

3.1.3 带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为,下截止频率为,这时并不需要抽样频率高于两倍上截止频率,可按照带通抽样定理确定抽样频率。 [定理3-2] 带通抽样定理:一个频带限制在内的时间连续信号,信号带宽,令,这里为不大于的最大正整数。如果抽样频率满足条件 , (3.1-9) 则可以由抽样序列无失真的重建原始信号。 对信号以频率抽样后,得到的采样信号的频谱是的频谱经过周期延拓而成,延拓周期为,如图3-3所示。为了能够由抽样序列无失真的重建原始信号,必须选择合适的延拓周期(也就是选择采样频率),使得位于和的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在频带的两边,有着两个延拓频谱分量:和。为了避免混叠,延拓后的频带分量应满足 (3.1-10) (3.1-11) 综合式(3.1-10)和式(3.1-11)并整理得到 (3.1-12) 这里是大于等于零的一个正数。如果取零,则上述条件化为 (3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 取得越大,则符合式(3.1-12)的采样频率会越低。但是有一个上限,因为,而为了避免混叠,延拓周期要大于两倍的信号带宽,即。 因此 (3.1-14) 由于为不大于的最大正整数,因此不大于的最大正整数为,故有 综上所述,要无失真的恢复原始信号,采样频率应满足 , (3.1-15)H f L f H f ),(H L f f )(t x L H f f B -=N B f M H -=/N B f H /s f m f f m f L s H 212≤≤+10-≤≤N m )(t x )(t x s f )(s nT x )(t x s f )(t x ),(H L f f ),(L H f f --),(H L f f ),(H L f f ),(s L s H mf f mf f +-+-))1(,)1((s L s H f m f f m f ++-++-L s L f mf f ≤+-H s H f f m f ≥++-)1(m f f m f L s H 212≤≤+m m H s f f 2≥m m m f f L s 2≤B f s 2≥B f B f f f m L L s L =≤≤222N B f H /B f L /1-N 10-≤≤N m )(t x s f m f f m f L s H 212≤≤+10-≤≤N m

带通采样定理证明

带通信号的采样与重建 一、带通采样定理的理论基础 基带采样定理只讨论了其频谱分布在(0,H f )的基带信号的采样问题。作为接收机的模数转换来说:接收信号大多为已调制的射频信号。射频信号相应的频率上限远高于基带信号的频率上限。这时如果想采用基带采样就需要非常高的采样速率!这是现实中的A/D 难以实现的。这时,低通采样定理已经不能满足实际中的使用要求。 带通采样定理是适用于这样的带通信号的采样理论基础,下面给出定理。 带通采样定理:设一个频率带限信号()x t 其频带限制在(,)L H f f 内,如果其采样速率s f 满足式: s f = 2()21L H f f n ++ (2-1) 式中, n 取能满足2()s H L f f f ≥-的最大整数(0,1,2…),则用s f 进行等间隔采样所得到的信号采样值()s x nT 能准确的确定原信号()x t 。 带通采样定理使用的前提条件是:只允许在其中一个频带上存在信号,而不允许在不同的频带同时存在信号,否则将会引起信号混叠[1]。如图所示,为满足这一条件的一种方案,采用跟踪滤波器的办法来解决,即在采样前先进行滤波[1] ,也就是当需要对位于某一个中心频率的带通信号进行采样时,就先把跟踪滤波器调到与之对应的中心频率0n f 上,滤出所感兴趣的带通信号()n x t ,然后再进行采样,以防止信号混叠。这样的跟踪滤波器称之为抗混叠滤波器。 图 带通信号采样

式(2-1)用带通信号的中心频率0f 和频带宽度B 也可用式(2-2)表示: 0214s n f f += (2-2) 式中,()0L H f f f =+,n 取能满足2s f B ≥(B 为频带宽度)的最大正 整数。 当频带宽带B 一定时,为了能用最低采样速率即两倍频带宽度的采样速率(2s f B =),带通信号的中心频率必须满足0212 n f B +=。也即信号的最高或最低频率是信号的整数倍。 带通采样理论的应用大大降低了所需的射频采样频率,为后面的实时处理奠定了基础。但是从软件无线电的要求来看,带通采样的带宽应是越宽越好,这样对不同基带带宽的信号会有更好的适应性,在相同的工作频率范围内所需要的“盲区”采样频率数量减少,有利于简化系统设计。另外,当对于一个频率很高的射频信号采样时,如果采样频率设的太低,对提高采样量化的信噪比是不利的。所以在可能的情况下,带通采样频率应该尽可能选的高一些,使瞬时采样带宽尽可能宽。但是随着采样速率的提高带来的一个问题是采样后的数据流速率很高。因此一个实际的无线电通信带宽一般为几千赫兹到几百赫兹。实际对单信号采样时采样率是不高的。所以对这种窄带信号的采样数据流降速是完全可能的。多速率信号处理技术为这种降速处理实现提供了理论依据。 二、带通采样过程 待采样信号为中频是100MHz ,带宽为2MHz 的带通信号: fc0=100e6; //中频频率 fc1=99e6; //信号一的频率

低通抽样定理验证实验

实验二低通抽样定理验证实验 一、实验目的 1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。 2、通过实验进一步掌握低通抽样定理的原理。 二、实验内容 } 用System View建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理。 三、电路构成 图1 低通抽样定理验证实验原理图 参数设置:Token3:产生模拟信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率50HZ,相位0度) 《 Token4:Multiplier Token5:产生抽样信号(参数设置:Source——Periodic——Pulse Train,幅度1V,频率100Hz,脉冲宽度,偏移0V,相位0度,抽样速率可调) Token6:产生一个模拟低通滤波器,滤除高频信号,保留低频信号(参数设置:Operator——Filters/Systems——Linear Sys Filters,选择:Analog——Lowpass——Butterworth,Lowcuttoff=50Hz,No of Poles=3,截止频率=模拟信号最高频率) 四、实验结果 (1)原始的输入信号波形图 )

图2 原始的输入信号波形图(2)原始的输入信号的频谱图 图3 原始的输入信号频谱图 。 (3)被抽样以后的图形 图4 被抽样以后的图形 > (4)被抽样以后的频谱图

图5 被抽样以后的频谱图 分析:由于原始输入波形的离散化,使得输出频谱周期化。输出频谱如图5所示。 \ (5)经过低通滤波器后,还原出波形如图6 】 图6 还原出的波形 (6)经过低通滤波器后,还原后的频谱图 !

抽样定理

抽样定理 定义:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以1/2 f h的 时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一 个连续信号f(t)的频谱中最高频率不超过f h,当抽样频率f S≥2 f h时,抽样后 的信号就包含原连续的全部信息。抽样定理在实际应用中应注意在抽样前后模拟信号 进行滤波,把高于二分之一抽样频率的频率滤掉。这是抽样中必不可少的步骤。 07年的抽样定理:设时间连续信号f(t),其最高截止频率为f m ,如果用时 间间隔为T<=1/2f m 的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。 什么是A/D转换和D/A转换? 什么是A/D转换和D/A转换? 一。什么是a/d.d/a转换: 随着数字技术,特别是信息技术的飞速发展与普及,在现代控制。通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度。压力。位移。图像等),要使计算机或数字仪表能识别。处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析。处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路-模数和数模转换器。 将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br>为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的a/d和d/a转换器,它们具有愈来愈先进的技术指标。 二。d/a和a/d转换器的相关性能参数: d/a转换器是把数字量转换成模拟量的线性电路器件,已做成集成芯片。由于实现这种转换的原理和电路结构及工艺技术有所不同,因而出现各种各样的d/a转换器。目前,国外市场已有上百种产品出售,他们在转换速度。转换精度。分辨率以及使用价值上都各具特色。 d/a转换器的主要参数: 衡量一个d/a转换器的性能的主要参数有:

时间抽样定理实验

实验4 时间抽样定理 1、实验内容 给定连续时间信号 1. 以足够小的时间间隔,在足够长的时间内画出信号时域图形。 2. 用公式计算信号的频谱 。以足够小的频率间隔,在足够大的频率范围内,画出其频谱图,估计信号的带宽。 3. 以抽样频率3000Hz 对x(t)抽样,得到离散时间信号x(n),画出其图形,标明坐标轴。 1) 用DTFT 计算x(n)的频谱 ,画出频谱图形,标明坐标轴。 2) 由 1)得到原信号x(t)的频谱的估计 ,在模拟频域上考察对原信号频谱的逼近程度,计算均方误差。 3) x(n)理想内插后得到原信号的估计,从连续时间域上考察信号的恢复程度,计算均方误差。 4. 抽样频率为800 samples/second ,重做3。 5. 对比和分析,验证时域抽样定理。 2、编程原理、思路和公式 对x (t )进行等间隔采样,得到x (n ),T=1/fs 。采样信号的频谱函数是原模拟信号频谱的周期延拓,延拓周期是2*pi*fs 。对频带限于fc 的模拟信号,只有当fs>2fc 时,采样后频谱才不会发生频谱混叠失真。 Matlab 中无法计算连续函数。但是可以让fs 足够大,频谱混叠可以忽略不计,从而可以对采样序列进行傅里叶变换,这里使用之前编好的子程序dtft 。 程序分别设定了3种采样频谱,10000Hz 、3000Hz 、800Hz 分别对应题目1、3、4。采样时间区间均为0.1s 。同时,画的是幅度归一化的频谱图,便于比较。 在网上查到一种内插函数的算法:理想内插运用内插公式xa (t )=x (n )g (t-nT )求和。其中g (t )=sinc (Fs*t ),编程时,设定一个ti 值求xa (ti ),一个行向量x (n )和一个等长的由n ’构1000()t x t e -=()X j Ω()j X e ω?() X j Ω

试验八抽样定理

实验八抽样定理 一实验目的 1 了解电信号的采样方法与过程以及信号恢复的方法。 2 验证抽样定理。 二原理说明 1 离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。即: f S(t)= f(t)×s(t) 如图8-1所示。T S为抽样周期,其倒数f S =1/T S称为抽样频率。 图8-1 对连续时间信号进行的抽样 对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。平移后的频率等于抽样频率f S及其各次谐波频率2 f S、3f S、4f S、5f S ……。 当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。 2 正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。 (a)连续信号的频谱 (b)高抽样频率时的抽样信号及频谱(不混叠) (c)低抽样频率时的抽样信号及频谱(混叠) 图8-2冲激抽样信号的频谱图 3 信号得以恢复的条件是f S>2B,其中f S为抽样频率,B为原信号占有的频带宽度。而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。当f S <2B时,抽样信号的频谱会了生混叠,从发生混迭后的频谱中,我们无法用低通滤波器获胜者得原信号频谱的全部内容。在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S=2B,恢复后的信号失真还是难免的。图8-2画出了当抽样频率f S>2B(不混迭时)及f S<2B(混迭时)两种情况下冲激抽样信号的频谱图。 实验中选用f S <2B、f S =2B、f S >2B三种情况抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f S必须大于信号频率中最高频率的两倍即f S >2 f max。 4 为了实现对连续信号的抽样和抽样信号的复原,可用实验原理框图8-3的方案。除

低通与带通抽样定理验证

低通与带通抽样定理验证 【分析内容】按照低通抽样定理与带通抽样定理,分别对构造的低通型信号和带通型信号、两种抽样后的信号及滤波重建信号进行时域和频域观察,形象地给出低通抽样定理与带通抽样定理(带通部分选做)。 【分析目的】通过分析验证低通抽样定理与带通抽样定理。 【系统组成】抽样定理实质上研究的是随时间连续变化的模拟信号经抽样变成离散序列后,能否由此离散序列值重建原始模拟信号的问题。对于低通型和带通型模拟信号,分别对应不同的抽样定理,抽样定理是模拟信号数字化的理论基础。 对上限频率为f H 的低通型信号,低通抽样定理要求抽样频率应满足: 对下限频率为f L 、上限频率为f H 的带通型信号,带通抽样定理要求抽样频率满足: 其中, 为信号带宽,n 为正整数, 。 应该注意的是,当 时,无论带通型信号的f L 和f H 为何值,只需将抽样频率设定在2B ,理论上就不会发生抽样后的频谱重叠,而不像低通抽样定理要求的必须为上限频率的2倍以上。仿真分析系统将按照图1所示结构创建。 其中,对于恒定频谱的冲激函数,通过低通滤波产生低通型信号,再进行低通抽样;通过带通滤波产生带通型信号,再进行带通滤波产生带通抽样,最后分别滤波重建原始信号。仿真分析时,设低通滤波器的上限频率为10Hz ,带通滤波器下限频率为100Hz 、上限频率为120Hz ,低通抽样频率选为30Hz ;带通型信号上限频率f H = 6×20=120Hz (B=20Hz ,n=6),带通抽样频率至少应取40Hz ,现取60 Hz 的带通抽样频率。 【创建分析】 第1步:进入SystemView 系统视窗, 设置“时间窗”参数如下: ① 运行时间:Start Time: 0秒;Stop Time: 0.4秒; ② 采样频率:Sample Rate= 10000Hz 。 第2步:在SystemView 系统窗下,创 建的仿真分析系统如图2所示。仿真系统中 各图符块的参数设置情况见表1。 第3步:创建完仿真系统后,单击运行 按钮,首先观察时域波形,四个“Real Time ” 图符块显示框中的波形如图3所示。两个重 H s f f 2≥]1[2n k B f s +?≥L H f f B -=10<≤k nB f H = 图1 仿真分析系统结构 图2 SystemView 仿真分析系统

低通采样定理

●实验目的: 1、掌握低通型采样定理; 2、掌握理想采样、自然采样和瞬时采样的特点; 3*、掌握混叠失真和孔径失真。 ●仿真设计电路及系统参数设置: 时间参数:No. of Samples = 4096,Sample Rate = 20000Hz; δ,偏移量为0.05); 其中图符0为信号源(单位冲激信号即()t 图符1为截止频率200Hz,极点个数为6的模拟低通滤波器; 图符2为采样器,采样频率2000Hz; 图符3为保持电路,Hold Value = Zero,Gain = 1; 图符4为截止频率250Hz,极点个数为5的模拟低通滤波器; 在自然采样中,用于采样的矩形脉冲序列幅度1V,频率为2000Hz;占空比50%; 瞬时采样中,保持电路Hold Value =Last Sample,Gain = 1; ●仿真波形及实验分析: 1、理想采样: 信源的波形与频谱:

样值序列的波形与频谱: 恢复信号的波形与频谱:

2、自然采样: 样值序列的波形与频谱: 恢复信号的波形与频谱: 调整占空比后(70%)的样值序列的波形与频谱:

调整占空比后(70%)的恢复信号的波形与频谱: 3、瞬时采样: 样值序列的波形与频谱:

恢复信号的波形与频谱: 调整占空比后(70%)的样值序列的波形与频谱: 调整占空比后(70%)的恢复信号的波形与频谱:

结果分析: 1、理想采样时的波形与原波形一样,频谱也与原波形的频谱一样; 2、自然采样时的波形是与矩形脉冲相乘,但还是呈原波形的形状,只是中间有了间隔; 而频谱形状出现某段的频谱衰减或消失; 3、占空比越大,自然采样出来波形中间的间隔就越小,频谱波形逐级衰减; 4、瞬时采样的波形与自然采样波形比较像,但与自然采样不同的是波形的顶部不是与原 波形相同,而是水平直线;频谱的顶部形状也会有变化,也会出现衰减和消失的现象

实验四抽样定理

实验四:抽样定理
一、实验目的
1、理解信号的抽样及抽样定理以及抽样信号的频谱分析。 2、掌握和理解信号抽样以及信号重建的原理。
二、实验原理
1、信号的抽样及抽样定理
抽样(Sampling),就是从连续时间信号中抽取一系列的信号样本,从而,得到一个离 散时间序列(Discrete-time sequence),这个离散序列经量化(Quantize)后,就成为所谓的 数字信号(Digital Signal)。今天,很多信号在传输与处理时,都是采用数字系统(Digital system)进行的,但是,数字系统只能处理数字信号,不能直接处理连续时间信号或模拟信 号(Analog signal)。为了能够处理模拟信号,必须先将模拟信号进行抽样,使之成为数字 信号,然后才能使用数字系统进行传输与处理。所以,抽样是将连续时间信号转换成离散时 间信号必要过程。模拟信号经抽样、量化、传输和处理之后,其结果仍然是一个数字信号, 为了恢复原始连续时间信号,还需要将数字信号经过所谓的重建(Reconstruction)和平滑 滤波(Smoothing)。图 4.1 展示了信号抽样与信号重建的整个过程。
Antialiasing
xa (t) filter
Sampler/ Holder
p(t)
A/D convertor
Digital Processor
图 4.1 模拟信号的数字处理过程
图 4.2 给出了信号理想抽样的原理图:
x(t)
×
xs (t)
D/A convertor
X( jω)
Antialiasing
filter y(t)
p(t)
ω
?ωm ωm
(a)
(b)
图 4.2 (a) 抽样原理图,(b) 带限信号的频谱
上图中,假设连续时间信号是一个带限信号(Bandlimited Signal),其频率范围为
? ωm ~ ωm ,抽样脉冲为理想单位冲激串(Unit Impulse Train),其数学表达式为:

p(t) = ∑δ (t ? nTs )
4.1
?∞
由图可见,模拟信号 x(t)经抽样后,得到已抽样信号(Sampled Signal)xs(t),且:
xs (t) = x(t) p(t)
4.2

采样定理简介

关于采样定理的介绍 一、采样定理简介 采样定理,又称香农采样定律、奈奎斯特采样定律,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker(1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样得到的离散信号经保持器后,得到的是阶梯信号,即具有零阶保持器的特性。如果信号是带限的,并且采样频率高于信号最高频率的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是非常有限的。采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。 采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。 时域采样定理频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt), f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM 时,f(t)的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率 f≥2fM。时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。 频域采样定理对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值来表示,只要这些采样点的频率间隔ω≦π / tm 。 二、采样简介

香浓采样定理

香农采样定理,又称奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论。1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式:理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度) 1.定义 为了不失真地恢复模拟信号,采样频率应该不小于模拟信号频谱中最高频率的2倍。 f s≥2f max 2概念 采样定理,又称香农采样定律、奈奎斯特采样定律,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker (1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。 采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。 采样得到的离散信号经保持器后,得到的是阶梯信号,即具有零阶保持器的特性。 如果信号是带限的,并且采样频率高于信号最高频率的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。 带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是非常有限的。采样定理是指,

如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。 采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。 时域采样定理 频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。 采样定理 时域采样定理的另一种表述方式是:当时间信号函数f(t)的最

低通信号的抽样定理

实验一抽样定理 一.概述 抽样的分类: (1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理。 (2) 根据用来抽样的脉冲序列是等间隔的还是非等同隔的,又分均匀抽样定理和非均匀抽样。 (3) 根据抽样的脉冲序列是冲击序列还是非冲击序列,又可分理想抽样和实际抽样。 二.实验原理及其框图 抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。 低通型连续信号的抽样定理 一个频带限制在内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。 原理框图 图1 抽样 说明:抽样过程中满足抽样定理时,PCM系统应无失真。这一点与量化过程有本质区别。量化是有失真的,只不过失真的大小可以控制。

三.实验步骤 1、根据抽样原理,用Systemview 软件建立一个仿真电路,如下图所示: 图2 仿真电路 元件参数配制 Token 0: 被采样的模拟信号—正弦波(频率=100Hz,电平=1V,相位=0)Token 2: 乘法器 Token 5 抽样脉冲——窄脉宽矩形脉冲(脉宽=1us ) Token1,3: 模拟低通滤波器(截止频率=100 Hz ) Token 4,6,7: 观察点—分析窗(6频率=100Hz 电压=-1V) 2、运行时间设置 运行时间=0.3 秒采样频率=10,00 赫兹 3、运行系统 在Systemview 系统窗内运行该系统后,转到分析窗观察Token 5,6,8三个点的波形。 4、功率谱 在分析窗绘出该系统调制后的功率谱。 四、实验报告 1)观察实验波形:Token 0-被采样的模拟信号波形;Token 2-采样后波形;Token 3-恢复信号的波形。 2)整理波形,存入文档。

抽样定理

抽样定理: 抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分。 简介: 采样定理,又称香农采样定律、奈奎斯特采样定律,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker (1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样得到的离散信号经保持器后,得到的是阶梯信号,即具有零阶保持器的特性。如果信号是带限的,并且采样频率高于信号最高频率的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是非常有限的。采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。 采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来

的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。

相关主题
文本预览
相关文档 最新文档