图解低通抽样定理
- 格式:ppt
- 大小:149.00 KB
- 文档页数:4
北京邮电大学通原软件实验实验一:抽样定理的验证专业:信息工程学生姓名:×××指导教师:××完成时间:×××××一、实验目的1、熟悉SystemView软件的操作。
2、通过分析验证低通抽样定理。
二、实验原理抽样定理实质上研究的是随时间连续变化的模拟信号经抽样变成离散序列后,能否由此离散序列值重建原始模拟信号的问题。
对上限频率为f H的低通型信号,低通抽样定理要求抽样频率应满足:f S≥2f H 三、实验内容按照低通抽样定理,对构造的低通型信号,抽样后的信号及滤波重建信号进行时域和频域观察,形象地给出低通抽样定理。
四、实验结果1、电路框图图1:电路框图2、元件参数编号属性类型参数设置0 Source Sinusoid Amplitude=1V,Frequency=10Hz1 Source Sinusoid Amplitude=1V,Frequency=12Hz2 Source Sinusoid Amplitude=1V,Frequency=14Hz3 Adder ————4 Sink Analysis 显示波形5 Sink Analysis 显示波形6 Sink Analysis 显示波形7 Sink Analysis 显示波形8 Multiplier ————9 Source Pulse Train 产生抽样脉冲,Frequence=50Hz,Amplitude=1V,Pluse Width=0.0001s10 Sink Analysis 显示波形11 Operator Linear Sys Butterworth, 10 Poles, Low Fc = 25Hz,12 Sink Analysis 显示波形图2:元件参数列表3、仿真波形①正常情况图3:三个输入正弦波的时域波形图4:合成波形、抽样波形、恢复波形图5:源正弦波、合成正弦波、采样后信后、恢复信号分别对应的频域波形②抽样不足图6:抽样频率为10Hz时各信号频域波形③截止错误图7:巴特沃夫低通滤波器截止频率为40Hz时各信号频域波形五、实验分析1、延时即使在正常的采样频率和截止频率的情况之下,恢复后的信后相对于原信号还是有一定的延时,这是由滤波器自身的延时特性所决定的,不能够消除。
第一章信源编码技术实验一抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性。
2、掌握自然抽样及平顶抽样的实现方法。
3、理解低通采样定理的原理。
4、理解实际的抽样系统。
5、理解低通滤波器的幅频特性对抽样信号恢复的影响。
6、理解低通滤波器的相频特性对抽样信号恢复的影响。
7、理解带通采样定理的原理。
二、实验器材1、主控&信号源、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。
平顶抽样和自然抽样信号是通过开关S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。
反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
要注意,这里的数字滤波器是借用的信源编译码部分的端口。
在做本实验时与信源编译码的内容没有联系。
四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
调节主控模块的W1使A-out输出峰峰值为3V。
3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。
抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。
4、实验操作及波形观测。
(1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。
带通采样定理和低通采样定理模拟信号经过采样转换成数字信号,时域分析为模拟信号与采样的周期冲击串相乘,根据傅里叶变换的时频对应关系可知,频域以采样周期为周期的频谱搬移过程,低通采样定理要求采样频率大于信号最高上限频率的2倍,频谱搬移的过程不会导致频谱混叠,带通采样频率小于这一条件,当满足一定的条件后频谱也不会混叠,但是此时频带发生传动,信号的重构和低通信号有很大差别。
一、低通采样周期性频谱搬移低通采样的原理分析见数字信号处理(西电版)。
首先,低通采样实现的原理是进行周期性的频谱搬移,实际FFT 变换的结果只有(O:fs或者-fs/2:fs/2),周期频谱搬移就是每个周期的信号频谱相同,只是索引值不同带来的结果不同,可以保持一个周期频谱不变,改变对应的真实频率范围获得搬移的效果。
@——fftshift()函数对应的真实频谱范围:fs*(-N/2:N/2-1)/N @------fft()函数对应的真实频谱范围:fs*(0:N-1)/N庚宙IB茸障站霆号的魚谒E 64 2 Q 24€B .:1.■U的耳 IS r/电 £写抽Mil保持原始信号的频谱不变,转换频谱搬移周期,刚好达到两倍采 样频率,谱结构如下:结论:(1) 低通采样定理的周期性频谱搬移以采样频率为周期,采样频率 必须大于信号最高上限的二倍,否则就会导致频谱混叠。
(2) 低通采样后的信号重构只需要经过低通滤波器即可。
二、带通采样定理原理和重构分析 1、带通采样定理原理带通采样定理:一个频带限制在f L ,f H 内的连续时间信号X t ,信号带宽B f H f L ,令N 为不大于f H B 的最大正整数,当采样频率f s 满足一 下条件-]I -1 ir■ qr n 11I 1 : !i i…-一.....r1i ii ii :1 11 1iiJLJi L i*L1JiL ] JL€则可以由采样后的序列无失真的重构原始信号 x t 原理分析:X(f)Xs(f)采样后的信号在频域变现为周期性的频谱搬移,为了能够重构原 始信号,选择合适的采样频率,使f H ,f L 和f L ,f H 的频带分量不会 和延拓分量出现混叠,这样通过升采样后经过带通滤波器即可恢复原 始信号,分析正频率附近无混叠的条件:保证延拓的频谱分量f H mf s , f L mf s 和 f H (m 1)f s , h (m 1)f s 与无拓展频率分量不会混叠,即满足以下关系:整理可得,2f Hf 2fL m 1 s m当m 0时,f s 2f H ,此时为低通采样定理(奈奎斯特采样定理) 延拓周期还要保证f s 2B ,f s2f LfHfL 01)fsf H m 1 f s f H2f L f Lf s B带通采样定理由此而来2、重构分析低通采样后的信号经过低通滤波器后即可恢复原始信号,低通信号的抽样和恢复比起带通信号来要简单。
实验一抽样定理一.概述抽样的分类:(1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理。
(2) 根据用来抽样的脉冲序列是等间隔的还是非等同隔的,又分均匀抽样定理和非均匀抽样。
(3) 根据抽样的脉冲序列是冲击序列还是非冲击序列,又可分理想抽样和实际抽样。
二.实验原理及其框图抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。
低通型连续信号的抽样定理一个频带限制在内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。
原理框图图1 抽样说明:抽样过程中满足抽样定理时,PCM系统应无失真。
这一点与量化过程有本质区别。
量化是有失真的,只不过失真的大小可以控制。
三.实验步骤1、根据抽样原理,用Systemview 软件建立一个仿真电路,如下图所示:图2 仿真电路元件参数配制Token 0: 被采样的模拟信号—正弦波(频率=100Hz,电平=1V,相位=0)Token 2: 乘法器Token 5 抽样脉冲——窄脉宽矩形脉冲(脉宽=1us )Token1,3: 模拟低通滤波器(截止频率=100 Hz )Token 4,6,7: 观察点—分析窗(6频率=100Hz 电压=-1V)2、运行时间设置运行时间=0.3 秒采样频率=10,00 赫兹3、运行系统在Systemview 系统窗内运行该系统后,转到分析窗观察Token 5,6,8三个点的波形。
4、功率谱在分析窗绘出该系统调制后的功率谱。
四、实验报告1)观察实验波形:Token 0-被采样的模拟信号波形;Token 2-采样后波形;Token 3-恢复信号的波形。
2)整理波形,存入文档。
3)观察采样前后各信号的功率谱,结果存入文档,进行比较。
4)分析说明实验结果与理论值之间的差别。
5)改变参数配置,将所得不同结果存档后,与实验结果进行比较,说明参数改变对结果的影响。
带通采样定理和低通采样定理模拟信号经过采样转换成数字信号,时域分析为模拟信号与采样的周期冲击串相乘,根据傅里叶变换的时频对应关系可知,频域以采样周期为周期的频谱搬移过程,低通采样定理要求采样频率大于信号最高上限频率的2倍,频谱搬移的过程不会导致频谱混叠,带通采样频率小于这一条件,当满足一定的条件后频谱也不会混叠,但是此时频带发生传动,信号的重构和低通信号有很大差别。
一、低通采样周期性频谱搬移低通采样的原理分析见数字信号处理(西电版)。
首先,低通采样实现的原理是进行周期性的频谱搬移,实际FFT 变换的结果只有(O:fs或者-fs/2:fs/2),周期频谱搬移就是每个周期的信号频谱相同,只是索引值不同带来的结果不同,可以保持一个周期频谱不变,改变对应的真实频率范围获得搬移的效果。
@——fftshift()函数对应的真实频谱范围:fs*(-N/2:N/2-1)/N @------fft()函数对应的真实频谱范围:fs*(0:N-1)/N庚宙IB茸障站霆号的魚谒E 64 2 Q 24€B .:1.■U的耳 IS r/电 £写抽Mil保持原始信号的频谱不变,转换频谱搬移周期,刚好达到两倍采 样频率,谱结构如下:结论:(1) 低通采样定理的周期性频谱搬移以采样频率为周期,采样频率 必须大于信号最高上限的二倍,否则就会导致频谱混叠。
(2) 低通采样后的信号重构只需要经过低通滤波器即可。
二、带通采样定理原理和重构分析 1、带通采样定理原理带通采样定理:一个频带限制在f L ,f H 内的连续时间信号X t ,信号带宽B f H f L ,令N 为不大于f H B 的最大正整数,当采样频率f s 满足一 下条件-]I -1 ir■ qr n 11I 1 : !i i…-一.....r1i ii ii :1 11 1iiJLJi L i*L1JiL ] JL€则可以由采样后的序列无失真的重构原始信号 x t 原理分析:X(f)Xs(f)采样后的信号在频域变现为周期性的频谱搬移,为了能够重构原 始信号,选择合适的采样频率,使f H ,f L 和f L ,f H 的频带分量不会 和延拓分量出现混叠,这样通过升采样后经过带通滤波器即可恢复原 始信号,分析正频率附近无混叠的条件:保证延拓的频谱分量f H mf s , f L mf s 和 f H (m 1)f s , h (m 1)f s 与无拓展频率分量不会混叠,即满足以下关系:整理可得,2f Hf 2fL m 1 s m当m 0时,f s 2f H ,此时为低通采样定理(奈奎斯特采样定理) 延拓周期还要保证f s 2B ,f s2f LfHfL 01)fsf H m 1 f s f H2f L f Lf s B带通采样定理由此而来2、重构分析低通采样后的信号经过低通滤波器后即可恢复原始信号,低通信号的抽样和恢复比起带通信号来要简单。