当前位置:文档之家› 第八章多元函数积分法

第八章多元函数积分法

第八章多元函数积分法
第八章多元函数积分法

第八章 多元函数积分法(复习)

一、二重积分

(一)二重积分的概念

(

,)D

f x y d σ??0

1

l i m (,)n

i i i i f λξησ→==?

∑ 二重积分和定积分一样,都来自非均匀分布量求和的

需要,它们的差异在于:定积分研究的是非均匀分布在区间上的量,而二重积分是研究非均匀分布在平面区域上的量.从解决问题的方法来看,二重积分和定积分是一样的,概括地讲,就是:分割、近似、求和、取极限.即首先对区域进行分割,在每个微小的区域上把非均匀看作均匀求得近似值,然后累加起来得到总量的近似值,再通过取极限使这个近似值转化为精确值.这就是重积分(定积分)定义的原始模型,也是解决有关重积分(定积分)实际问题的方法和步骤.

当0),(≥y x f 时,??D

dxdy y x f ),(的几何意义为以曲

面(,)z f x y =(即被积函数)为顶、区域D 为底、母线平行于z 轴的曲顶柱体的体积. (二)二重积分的性质 1.运算性质:

????=D

D

d y x f k d y x kf σσ),(),(

??????±=±D

D

D

d y x f d y x f d y x f

y x f σσσ),(),()],(),([212

1

2.对积分区域的可加性

??????+=1

2

),(),(),(D D D

d y x f d y x f d y x f σσσ ( 21

D D

D +=)

3.积分中值定理

()(),,D

f x y d f σξησ=??,

D ∈),(ηξ

(三)二重积分的计算

1、直角坐标系中的计算法

(1)当积分区域D 为X 型区域:)()(,21x y y x y b x a ≤≤≤≤(图8.2)时,有

21()()

(,)(,)b

y x a

y x D

f x y dxdy dx f x y dy =???

?

(先y 后x )

(2)若积分区域D 为Y 型区域:)()(,21y x x y x d y c ≤≤≤≤(图8.4),有公式

21()()

(,)(,)d

x y c

x y D

f x y dxdy dy f x y dx =???

?

(先x 后y )

以上两种区域称为简单区域,其边界与平行于y 轴(x 轴)的直线最多交于两点或者平行于坐标轴(这样在对某一变量积分时,可使每一部分边界曲线方程以这一变量作为因变量表出时,都是单值函数)。而对于由光滑曲线围成的一般区域总可分割成这两种区域的并。

D

?σi

Z=f (x,y )

y

z (ξi ,ηi )

图8.1

o x

关键:恰当选择积分次序及正确确定积分限.

注意:两层积分的上限都不可小于下限;外层积分的上下限总是常数,而内层积分的上下

限一般应为外层积分变量的函数,除非边界为平行于坐标轴的直线. 2、极坐标系中的计算法 (1)设积分区域)()(,:21θθβθαr r r D ≤≤≤≤(图8.6),此时极坐标下的面积元素为

d rdrd σθ= 再由公式θθsin ,cos r y r x ==,得

(,)D

f x y dxdy ??

21()()

(cos ,sin )r r d f r r rdr βθαθθθθ=??

(2)若D 包含极点在内(图8.7),则积分限应为

2()

(,)(cos ,sin )r D

f x y xdxdy d f r r rdr π

θθθθ=???

?

(3)若极点在D 的边界曲线)(θr r =上(图8.8),则积分限应为

()

(,)(cos ,sin )r D

f x y dxdy d f r r rdr βθαθθθ=????

关键:根据积分区域的情况选用合适的公式;先对r 积分后对θ积分;记住极坐标中的面积元素的表达式;注意曲线方程化为极坐标方程(利用公式θθsin ,cos r y r x ==),以及

θ的变化范围。

对于积分区域是圆或被积函数具有)(22y x f +形式的情形,可利用极坐标简化计算. (四)二重积分的应用 1.面积

要求平面区域D 的面积σ,可以考虑在D 上的二元函数1),(≡y x f 在该区域的二重积分,由二重积分的定义知,区域D 的面积是

D

dxdy σ=??

2.体积

)

8.4

8.2

o

图8.6

图8.7

图8.8

空间立体总可以分成几个曲顶柱体,因而求空间立体的体积归结为求曲顶柱体的体积问题,而曲顶柱体的体积可用二重积分来表达。设在平面区域D 上定义的函数),(y x f z =连续,则以(,)0z f x y =≥为顶D 为底的曲顶柱体的体积为

(,)D

V f x y d σ=??

3. 空间曲面的面积与对面积的曲面积分*

设曲面S 的方程为(,)z z x y =,xy D 为曲面(S )在xoy 平面上的投影区域,函数(,)z x y 在D 上具有连续偏导数,则曲面S 的面积为

xy

s

D S ds σ==????

其中,面积元素是

dS σ=

注:当),(y x f x '和),(y x f y

'连续时,曲面),(y x f z =是可求面积的。一般说来,光滑曲面或按片光滑曲面都是可求面积的。

*对面积的曲面积分

(,,)(,,(,s

D

f x y z ds f x y z x y σ=??

??

4. 平面薄板的质量

如果平面薄板上任一点处的面密度为),(y x f ,当),(y x f 连续,则其质量为

(,)D

M f x y d σ=??

*5. 静力矩

若一平面薄板D ,其密度为),(y x μ,则整个平面薄板D 对轴x 的静力矩为

??∑===→D

n

i i i i i x dxdy y x y y x y M i ),(),(lim

1

0μσ?μσ?

对y 轴的静力矩为 ??=D

y dxdy y x x M ),(μ

*6. 重心

设),(y x 为平面薄板D 的重心坐标,有

????????=

=

D

D

D

D

dxdy

y x dxdy

y x y y dxdy

y x dxdy

y x x x ),(),(,),(),(μμμμ

对于质量均匀的平面薄片,其重心坐标为

????????=

=

D

D

D

D

dxdy

ydxdy

y dxdy

xdxdy

x ,。

*7. 转动惯量

位于平面域D 上的一块密度为),(y x μ的平面薄板对x 轴的转动惯量是

??=D

x dxdy y x y I ),(2μ

对y 轴的转动惯量是 ??=D

y dxdy y x x I ),(2μ

对坐标原点的转动惯量是 y x D

o I I dxdy y x y x I +=+=??),()(22μ

(五)积分区域的对称性和被积函数的奇偶性

1)设D 对称于Y 轴,D 1是D 的左半部分,

如(,)(,)f x y f x y -=-,则(,)0D

f x y dxdy =??;

如(,)(,)f x y f x y -=,则

1

(,)2(,)D

D f x y dxdy f x y dxdy =????;

2)设D 对称于X 轴,D 1是D 的上半部分, 如(,)(,)f x y f x y -=-,则(,)0D

f x y dxdy =??;

如(,)(,)f x y f x y -=,则

1

(,)2(,)D

D f x y dxdy f x y dxdy =????;

3)设D 对称于原点,将D 分为对称于原点的两部分D 1和D 2, 如(,)(,)f x y f x y --=-,则(,)0D

f x y dxdy =??;

如(,)(,)f x y f x y --=,则

1

(,)2(,)D

D f x y dxdy f x y dxdy =????。

二、曲线积分

(一)对弧长的曲线积分

1、定义

如果积分域Ω取作平面或空间曲线L ,则有第一类曲线积分(即对弧长的曲线积分):

∑?

=→=n

i i i L

s P f ds P f 1

0)(lim )(?λ

称L 为积分路径,ds 称为弧长元素(即曲线L 上各小弧段的长度i s ?)。

说明:(a )当L 是平面曲线时,)(P f 一般为二元函数),(y x f ;L 是空间曲线时,)(P f 一般为三元函数),,(z y x f 。由于点P 始终被限制在曲线L 上,y x 、或z y x 、、并不彼此独立而是受曲线L 的方程的约束,实际上是一维的,因此,线积分用一个“?”表示。

(b )由于i s ?是每一小弧段的长度,所以规定它是正的。

(c)物理意义:设L 为质量非均匀的平面或空间曲线段,其线密度为

(),(,)P P x y L μρ=∈,则曲线段L 的质量为

()L

m P ds ρ=?

而曲线L 的弧长为L

m ds =?

(d )几何意义:设已给柱面,它的准线是xoy 平面上的曲线L ,它的母线垂直于xy 平面,1L 为柱面上某一曲线(假定曲线在xoy 平面的上方),显然,曲线L 1上点M 的竖坐标是曲线L 上点P 的函数,即()(,)z f P f x y ==.故曲线L 与1L 之间的那一部分柱面面积就是

()L

Q f P ds =

?.

当曲面在某坐标面上的投影为一条曲线时,通常用对弧长的曲线积分计算曲面面积。 (e )如果L 是闭曲线,则函数)(P f 在闭曲线L 上对弧长的曲线积分记为?L

ds P f )(。

2、性质

1) 与积分路径的方向无关,即

()()AB

BA

f P ds f P ds =

?

?

2) ???±=±L

L

L

ds P f ds P f ds P f P f )()()]()([2121

3) ??=L

L

ds P f k ds P kf )()(

4) 若CB AC AB L L L +=,则

???+=CB

AC

AB

ds P f ds P f ds P f )()()(

3、 计算方法?化为参变量的定积分

1)平面曲线L :)( )(),(βα≤≤==t t y y t x x

ds =

(,)((),(L

f x y ds f x t y t β

α

=?

?

方法:只要把y x 、用L 上的点))(),((t y t x 代入,并把ds 换成L 的弧微分,即可化为上式

右边的定积分.

2)平面曲线L :)()(b x a x y y ≤≤=表示,则

ds =

(,)(,(b

a

L

f x y ds f x y x =?

?

方法:只要应用曲线L 的方程,从y x 、中消去一个变量,就可以将对弧长的曲线积分

化成定积分进行计算。

3)空间曲线L :)(

z(t)z , )(),(βα≤≤===t t y y t x x

(,,)((),(),(L

f x y z ds f x t y t z t β

α

=?

?

注:上、下限分别是L 的两个端点所对应的参数值。由于定义中规定i s ?总是正的,所以s

是随着t 的增大而增大的,化为定积分后下限必须小于上限。

(二)对坐标的曲线积分

1、 定义

∑?=→+=+n

i i i i i i i L

y Q x P dy y x Q dx y x P 1

0]),(),([lim ),(),(?ηξ?ηξλ

说明:(a )与第一类曲线积分一样,这里的y x 、也因为受到曲线L 的限制而是相互有关的。

(b )推广到空间曲线L :

∑?=→++=++n

i i i i i i i i i i i i i L

z R y Q x P dz

z y x R dy z y x Q dx z y x P 1

0]

),,(),,(),,([lim ),,(),,(),,(?ζηξ?ζηξ?ζηξλ

其中i i i z y x ???,,分别为i i M M 1-在z y x ,,轴上的投影,),,(i i i ζηξ为i i M M 1-上的任意一点。 2、 性质

1) 如果把积分路径反过来,积分值就要改变正负号,即有

L

L

-=-?

?

B A A

B

L

L

=-?

?

注:事实上,把积分路径的方向改变时,小弧段的方向要改变,从而它在坐标轴上的投影就

要改变正负号,因此,和数的极限也要改变正负号。但第一类曲线积分中,由于和数中的i s ?是各小弧段的长度,被规定为正,因此第一类曲线积分与路径无关。

2)如果积分路径AB L :是由AK L :1和KB L :2组成,那么

?

?

?

+

=

2

1

L L L

???+=2

1

L B

K L K A L

B A

注:闭合的曲线的方向:如果在某一方向沿闭合曲线L 前进时,L 所围的区域始终居左,那么这一方向称为L 的正向,否则便是负向。只要方向不变,积分值与起点的位置无关.

3)如果由闭合曲线L 所围成的平面区域被划分为两个区域1σ和2σ,而这两个区域的边界分别记作1L 和2L ,那么沿闭合曲线L 的线积分等于按同一方向沿闭合曲线1L 和2L 的线积分之和。

3、 计算方法?化为参变量的定积分

1)平面曲线L :)(

)(),(βα≤≤==t t y y t x x (βα,分别对应L 的起点和终点)

(,)(,){[(),()]()[(),()]()}L

P x y dx Q x y dy P x t y t x t Q x t y t y t dt β

α

''+=+??

2)空间曲线L :(),(),() ()x x t y y t z z t t αβ===≤≤(βα,分别对应L 的起点和终点)

(,,)(,,)(,,){[(),(),()]()[(),(),()]()[(),(),()]()}L

P x y z dx Q x y z dy R x y z dz

P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt

β

α

++'''=++??

注:1)第二类线积分跟L 的方向有关,定积分的上下限必须分别对应于L 的终点与起点;

2)两个第二类线积分即使被积函数和积分路径的起点、终点坐标相同,但若积分路径不同,积分值可以不同(也可能相同)。

3)计算公式对积分路径是按段光滑曲线也成立。

*(三)两类曲线积分的关系

(cos cos cos )L

L

Pdx Qdy Rdz P Q R ds αβγ++=++??

??+=+L

L

ds Q P Qdy Pdx )cos cos (βα

三、格林公式

定理 设D 是以光滑曲线L 为边界的平面单连通区域,函数),(),(y x 、Q y x P 在D 及

L 上连续并具有连续偏导数,则

(

)L

D

Q P Pdx Qdy dxdy x y

??+=-???

?? 说明:1)通过格林公式,我们可以把区域D 上的二重积分与其边界L 上的线积分互相转化。

2)在公式中,令(,),(,)P x y y Q x y x =-=,可推得

1

2D

L

dxdy xdy ydx =

-??? 故可借助区域边界的曲线的积分求区域面积。

四、曲线积分与路径无关的条件

定理2 若函数),(),(y x 、Q y x P 在区域D 上有连续的偏导数,D 是单连通区域,那么以下四条件相互等价:

(1) 对任一全部含在D 内的闭路L ,

0=+?L

Qdy Pdx

(2) 对任一全部含在D 内的曲线l ,曲线积分

?+L

Qdy Pdx

与路径无关(只依赖曲线的端点)。

(3) 微分式Qdy Pdx +在D 内是某一个函数),(y x U 的全微分,即

Qdy Pdx dU +=

(4)

x

Q

y P ??=

??在D 内处处成立。 说明:

1)条件(4)给出了判断积分与路径无关的条件:

x

Q

y P ??=

??; 2)条件(4)也给出了判断Qdy Pdx +是全微分的充要条件:x

Q

y P ??=

??; 3)给出了利用曲线积分求解二元函数的全微分方程的方法:

如令点),(00y x 固定而点),(y x 为区域D 内任意一点,那么由积分所定义的函数

?

+=)

,()

,(00),(y x y x Qdy Pdx y x U

在D 内连续并且单值.这个函数),(y x U 称为Qdy Pdx +的原函数。由于积分路径是从区域

D 中某定点),(00y x 到),(y x 的任何适当的路径,若选取两种特殊的折线路径:

),(),(),(000y x y x y x →→或),(),(),(000y x y x y x →→ ,就有公式

0(,)(,)(,)x y

x y U x y P x y dx Q x y dy =+??

或 0

0(,)(,)(,)x y

x y U x y P x y dx Q x y dy =

+?

?.

4)利用被积式的原函数计算与路径无关的线积分:

11110000(,)

(,)(,)

(,)

(,)

x y x y x y x y Pdx Qdy F x y +=?

这里,(,)F x y 是被积式的一个原函数,即有(,)dF x y Pdx Qdy =+。

(完整版)第7章多元函数微积分测试题讲义

第7章 多元函数微积分 测试题 一、单项选择题。 1.设23)12(++=y x z ,则 =??y z ( D )。 A .13)12)(23(+++y x y B .13)12)(23(2+++y x y C .)12ln()12(23+++x x y D .)12ln()12(323+++x x y 2.设)ln(y x z +=,则=) 0,1(d z ( B ) 。 A .y x d d +- B .y x d d + C .y x d d - D .y x d d -- 3.下列说法正确的是( A )。 A .可微函数),(y x f 在),(00y x 处达到极值,则必有),(00y x f x 0),(00==y x f y ; B .函数),(y x f 在),(00y x 处达到极值,则必有),(00y x f x 0),(00==y x f y ; C .若),(00y x f x 0),(00==y x f y ,则函数),(y x f 在点),(00y x 处达到极值。 D .若),(00y x f x 或),(00y x f y 有一个不存在,则函数),(y x f 在点),(00y x 处一定没有极值。 4.设uv z =,v u x +=,v u y -=,若把z 看作y x ,的函数,则 =??x z ( A ) 。 A .x 21 B .)(21 y x - C .x 2 D .x 5.下列各点中( B )不是函数x y x y x z 9332233-++-=的驻点。 A .)0,1( B .)1,0( C .)2,1( D .)0,3(- 6.二元函数?????=≠+=)0,0(),( 0)0,0(),( ),(2 2y x y x y x xy y x f 在点)0,0(处( C )。 A .连续,偏导数存在 B .连续,偏导数不存在 C .不连续,偏导数存在 D .不连续,偏导数不存在 7.函数xy y x z ++=22的极值点为( A )。 A .)0,0( B .)1,0( C .)0,1( D .不存在

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

多元函数积分的计算方法技巧

第10章 多元函数积分的计算方法与技巧 一、二重积分的计算法 1、利用直角坐标计算二重积分 假定积分区域可用不等式 表示, 其中, 在上连续. 这个先对, 后对的二次积分也常记作 如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2) D a x b x y x ≤≤≤≤??12()()?1()x ?2()x [,]a b y x f x y d dx f x y dy D a b x x (,)(,)() ()σ??????=12D c y d y x y ≤≤≤≤,()()φφ12φ1()y φ2()y [,]c d f x y (,)D f x y d f x y dx dy dy f x y dx D y y c d c d y y (,)(,)(,)()()()()σφφφφ??????=????? ? ??=1212

显然,(2)式是先对,后对的二次积分. 积分限的确定 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交点与, 这里的、 就是将,看作常数而对积分时的下限和上限;又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为. 例1计算, 其中是由抛物线及直线所围成的区域. x y D ],[b a x x y D D ))(,(1x x ?))(,(2x x ?)(1x ?)(2x ?x y x [,]a b x x a b xyd D ??σD y x 2=y x =- 2

2.利用极坐标计算二重积分 1、就是极坐标中的面积元素. 2、极坐标系中的二重积分, 可以化归为二次积分来计算. 其中函数, 在上连续. 则 注:本题不能利用直角坐标下二重积分计算法来求其精确值. D y y x y :,-≤≤≤≤+1222xyd dy xydx x y dy D y y y y σ?????==???? ??-+-+12 2 212 2 2 212[] =+-=-?12 245 8 2512y y y dy ()rdrd θr →cos θ r →sin θrdrd →θ f x y dxdy D (,)??f r r rdrd D (cos ,sin )θθθ??αθβ?θ?θ≤≤≤≤12()()r ?θ1()?θ2()[,]αβf r r rdrd d f r r rdr D (cos ,sin )(cos ,sin )() () θθθθθθα β ?θ?θ????=12

第八章多元函数微分学自测题答案

《高等数学》单元自测题答案 第八章 多元函数微分学 一. 填空题 1.3ln 3xy y ; 2.503-; 3.y x z y ++-; 4.x x e e cos ; 5.dy dx 3 131 +; 二. 选择题 2.D ; 4.D ; 三.解答题 1.解 2 2 222222222211 )221(1y x y x y x x y x x y x x y x x x z +=+++++=++++=??, 22222222221y x x y x y y x y y x x y z +++= +++=??. 2. 解 22222)(11y x y x y x y x z +-=-+=??, 2 22 2111y x x x x y y z +=+=??, 22222222)(2)(2y x xy y x x y x z +=+?--=??, 22222222)(2)(2y x xy y x y x y z +-=+?-=??, 2 22 2 22222222) ()(2)(y x x y y x y y y x x y z y x z +-=+?++-=???=???. 3. 解 设z z y x z y x F 4),,(222-++=,有 2422''-- =--=-=??z x z x F F x z z x . 5. 解 '22'1f x y yf x z -=??, )1(1)1(''22' '212'22''12''11'12f x xf x y f x f x xf y f y x z +--++=???

=''223 ' '11'22'11f x y xyf f x f -+- . 6. 解 令?????=+-==-+=,063, 09632 '2 'y y f x x f y x 得驻点 (1,0), (1,2), (-3,0), (-3,2) 又 66' '+=x f xx , 0''=xy f , 66''+-=y f yy , 在点(1,0)处,0722>=-B AC ,012>=A ,所以5)0,1(-=f 为极小值; 在点(1,2)处,0722<-=-B AC , ,所以)2,1(f 不是极值; 在点(-3,0)处,0722<-=-B AC , 所以)0,3(-f 不是极值; 在点(-3,2)处,0722>=-B AC ,012<-=A ,所以31)2,3(=-f 为极大值. 8. 解 设长,宽,高为 z y x ,,,由题设 xy V z = ,水箱的表面积 )11(2)(2),(y x V xy z y x xy y x S S ++=++==, 问题成为求 ),(y x S 在区域 0,0:>>y x D 的最小值问题.令 ??? ????=-==-=,02,022' 2' y V x S x V y S y x 得D 内唯一驻点3002V y x ==,由问题实际意义知 ),(y x S 在D 内的最小值一定存在,因此可断定),(00y x S 就是最小值,此时 3 33 04 22V V V V z =?=.

《高等数学一》第六章多元函数微分学历年试题模拟试题课后习题大汇总(含答案解析)

第六章多元函数微分学 [单选题] 1、 设积分域在 D由直线x+y二0所围成,则 | dxdy 如图: [单选题] 2、 A 9 B、4 C 3

【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】 [单选题] 3、 设H 二才,则y=() A V 皿2-1) B 、xQnx-1) D 【从题库收藏夹删除】 【正确答案】C 【您的答案】您未答题 【答案解析】 首先设出-,J ' 二一;,然后求出 最后结果中把二】用’’次方代换一下就可以得到结果. [单选题] 4、 Ft F'y,尸空二 dx F f y

[% I 设Z = 则去九£ |() km ,(心+& J D )L 『(也几) AK^*° A'X ?■ 【从题库收藏夹删除】 【正确答案】D 【您的答案】您未答题 【答案解析】本题直接根据偏导数定义得到 [单选题] 5、 设z=ln (x+弄),示=() A 1 B 、 X+旷" C 1-2妒 盂+沙 D X + 帘 一" 【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】 B 、 lim U m /侃+山+ 3) — / (险用) Ay 了0+山』0)—/(兀 几) Ar lim /(x+Ax.y)-/^) 4y

|"S 1 I 对x求导,将y看做常数,小门?八 [单选题] 6、 设U 了:,;_丁;:£=() 【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】<■■-?■■■■■:川[单选题] 7、 设f(x r x+y) = ^ + x2t则£0,卩)+ £(尽刃二() A丨; B、… C : D ', 【从题库收藏夹删除】 【正确答案】B 【您的答案】您未答题 【答案解析】 f(x,兀+y)=砂+ F二疏》+兀) /fcy) = ^y X '(^y)=y 二兀 £(2)+另(“)=曲 [单选题] 8

第7章 多元函数微分学

§7.1 空间解析几何基本知识 教学内容提要 1. 空间直角坐标系; 2. 空间两点间的距离公式与两点连线的中点坐标公式; 3. 简单的曲面方程。 教学目的与要求 1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式; 2. 了解常用二次曲面的方程及其图形。 教学重点与难点 常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程: 一、空间直角坐标系 1.空间直角坐标系的建立 过空间定点0,作三条互相垂直的数轴,他们都以0为原点 且一般具有相同的长度单位。这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。通常把x 轴和y 轴配置在水平面上,z 轴 z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式 空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-= 特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++= 。 例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。 二、曲面及其方程的概念 1.曲面方程 在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。 例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。 三、几种常见的曲面及其方程 1、平面的一般方程 任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面. 例3 求通过x 轴和点(4, -3, -1)的平面的方程. 解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为

(整理)多元函数积分学37931.

第八章.多元函数积分学 在不同的问题当中,可以对多元函数的积分进行不同的定义,因此,我们需要在不同的问题背景当中来定义不同的积分概念。 二重积分。 二重积分实际上就是对二元函数求定积分,在实际问题当中,需要对二元函数进行求和计算,或者直观地说,涉及到体积的计算与具有在二维区域上的分布的物理量的计算,就需要运用二重积分的概念来进行。 因此我们对二重积分的定义,与对单变量函数的定积分的定义是完全类似的,只是这里的积分区域不是一维的,而是二维平面上的区域。这样通过把积分区域任意划分成只有公共边界的子区域,然后在每一个子区域当中任意取一点,取这点的函数值与该子区域的面积之积,再把所有的这样的乘积加起来,得到一个和式,接下来,就是我们已经很熟悉的极限过程,即使得所有子区域当中面积最大者的面积趋向于0,也就是使得子区域的数目趋向于无穷大,看和式是否存在极限,以及可能的话,这个极限是多少。这就是关于二重积分的可积性问题与二重积分的计算问题。 关于可积性的问题有下面一个简单的定理: 如果函数在一个有界闭区域上有定义并且连续,则这个函数必定在这个区域上可积。 从上面的二重积分概念的说明,可以得到与单变量函数的定积分相类似的几何说明,即被积函数所描述的曲面与其在自变量平面上的积分区域上的投影之间所夹的空间的体积。基于这样的理解,可以很容易得到如下的二重积分的性质。 (1)??+??=??+D D D gdx j fdx i dx jg if )(, 其中i ,j 为任意常数。这是二重积分的线性性质; (2),??+??=??D D fdx fdx fdx D 21 其中D D D =?21。 (3)如果在区域D 上有 ),(),(y x g y x f ≤, 则有 ??≤??D D gdx fdx ; 而对于D 上的可积函数f ,存在任意上界M 和任意下界m ,则有 MD fdx mD D ≤??≤ 其中D 为区域D 的面积。 (4)设函数f 为有界连通闭区域D 上的连续函数,则一定在这个区域上存在一点(a ,b ),使得 D b a f fdx D ),(=??; 这个性质还可以推广到比较一般的形式: 设函数g 为D 上的非负值连续函数,f 在D 上可积,则存在一个介于f 在D 上的上界

多元函数微分学总结

`第八章多元函数微分学 8.1基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 8.2基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。

(1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于 这一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24 (,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++,

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

多元函数微积分复习题

多元函数微积分复习题 一、单项选择题 1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ). (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( ). C A. 若0 lim x x y y A →→=, 则必有0lim (,)x x f x y A →=且有0 lim (,)y y f x y A →=; B. 若在00(,)x y 处 z x ??和z y ??都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处 z x ??和z y ??存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ??和22z y ??都存在, 则. 22z x ??=22 z y ??. 5.二元函数(,)z f x y =在点00(,)x y 处满足关系( ). C A. 可微(指全微分存在)?可导(指偏导数存在)?连续; B. 可微?可导?连续; C. 可微?可导, 或可微?连续, 但可导不一定连续; D. 可导?连续, 但可导不一定可微. 6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 2

(整理)多元函数积分.

多元函数积分 1. 利用积分区域的对称性化简多元函数的积分 1.1 利用积分区域的对称性化简多元函数的重积分 题型一 计算积分区域具有对称性,被积函数具有奇偶性的重积分 类型(一) 计算积分区域具有对称性、被积函数具有奇偶性的二重积分 常用下述命题简化计算二重积分. 命题1 若f(x,y)在积分区域D 上连续,且D 关于y 轴(或x 轴)对称,则 (1)f(x,y)是D 上关于x (或y )的奇函数时,有??=D dxdy y x f 0),(; (2)f(x,y)是D 上关于x (或y )的偶函数时,有????=D D dxdy y x f dxdy y x f 1 ),(2),(;其 中D 1是D 落在y 轴(或x 轴)一侧的那一部分区域. 命题2 若D 关于x 轴、y 轴对称,D 1为D 中对应于x ≥0,y ≥0(或x ≤0,y ≤0)的部分,则 ?????? ???-=--=-=-=D D y x f y x f y x f y x f y x f y x f dxdy y x f dxdy y x f ).,(),(),(,0),,(),(),(,),(4),(1或 命题3 设积分区域D 对称于原点,对称于原点的两部分记为D 1和D 2. (1);),(2),(),,(),(1 ????==--D D d y x f d y x f y x f y x f σσ则若 (2).0),(),,(),(??=-=--D d y x f y x f y x f σ则若 命题4 积分区域D 关于y x ,具有轮换对称性,则 ??????+==D D D d x y f y x f d x y f d y x f σσσ)],(),([21),(),( 记D 位于直线y=x 上半部分区域为D 1,则 ?????????-===D D y x f x y f y x f x y f dxdy y x f dxdy y x f ),,(),( ,0),,(),( ,),(2),(1

第八章多元函数微分法及其应用

第八章多元函数微分法及其应用 第一节多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、区域 1.邻域 设P o(x°,y。)是xoy平面上的一个点,是某一正数。与点P o(X o,y°)距离小于:的 点p(x,y)的全体,称为点p的「?邻域,记为U(P0,、),即 U(P°,、)= {P PPo < }, 也就是 U (P o,、)= {(X, y)丨..(X -X。)2(y - y o)2、}。 在几何上,U(P o「J就是xoy平面上以点p o(x o,y。)为中心、:-0为半径的圆内部 的点P(x,y)的全体。 2.区域 设E是平面上的一个点集,P是平面上的一个点。如果存在点P的某一邻域U(P) E, 则称P为E的内点。显然,E的内点属于E。 如果E的点都是内点,则称E为开集。例如,集合E, ={(x, y)1 vx2+ y2£4}中每个点都是E,的内点,因此E,为开集。 如果点P的任一邻域内既有属于E的点,也有不属于E的点(点P本身可以属于E,也可以不属于E ),则称P为E的边界点。E的边界点的全体称为E的边界。例如上例中,E ,的边界是圆周x2 y2 = 1和x2 y2=4o

设D是点集。如果对于D内任何两点,都可用折线连结起来,且该折线上的点都属于 D,则称点集D是连通的。 连通的开集称为区域或开区域。例如,{(x, y) x + y a 0}及{( x, y)d 0}及{(x, y) | 1< x y <4} 都是闭区域。 对于平面点集E ,如果存在某一正数r,使得 E U(0,r), 其中0是原点坐标,则称E为有界点集,否则称为无界点集。例如,{(x,y) | K x2 y2< 4}是有界闭区域,{(x, y) | x y>0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1圆柱体的体积V和它的底半径r、高h之间具有关系 V =二r2h 。 这里,当r、h在集合{(r,h) r 0,h 0}内取定一对值(r,h)时,V的对应值就随之确定。 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系 RT P =— V 其中R为常数。这里,当V、T在集合{(V,T) V >0,T >T0}内取定一对值(V,T)时,p的 对应值就随之确定。 定义1设D是平面上的一个点集。称映射 f : D》R为定义在D上的二元函数,通 常记为 z 二f(x, y) , (x, y) D (或z 二f(P) , P D )。 其中点集D称为该函数的定义域,x、y称为自变量,z称为因变量。数集

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

《微积分(下)》第7章 多元函数微积分学--练习题

第七章 多元函数微积分学 第一部分:多元函数微分学 一、二元函数的极限专题练习: 1.求下列二元函数的极限: (1) ()2 1 1(,)2,2lim 2;y xy x y xy +? ? →- ? ? ?+ (2) () ()2222 (,),3 lim sin ;x y x y x y →∞∞++ (3) ()(,)0,1sin lim ;x y xy x → (4) ( (,)0,0lim x y → 2.证明:当()(,)0,0x y →时,() 44 3 4 4(,)x y f x y x y =+的极限不存在。 二、填空题 3. 若22),(y x y y x f -=+,则=),(y x f ; 4. 函数22(,)ln(1)f x y x y =+-的定义域是D = ; 5. 已知2 (,)x y f x y e = ,则 '(,)x f x y = ; 6. 当23(,)5f x y x y =,则 '(0,1)x f = ; 7. 若2yx e z xy +=,则=??y z ; 8. 设)2ln(),(x y x y x f + =,则'(1,0)y f =; 9. 二元函数xy xe z =的全微分=dz ;

10.arctan()Z xy =设,则dz= . 三、选择题 11.设函数 ln()Z xy =,则 Z x ?=? ( ) A 1y B x y C 1x D y x 12.设2sin(),Z xy = 则 Z x ?=? ( ) A 2cos()xy xy B 2cos()xy xy - C 22cos()y xy - D 22cos()y xy 13.设 3xy Z =,则 Z x ?=? ( ) A 3xy y B 3ln 3xy C 13xy xy - D 3ln 3xy y

多元函数积分的计算方法与技巧

.多元函数积分 二重积分的计算方法与应用。 (一)在作二次积分时,首先是把一个自变量看成是一个参数,而不是看成变量,这样第一步是作单变量函数的定积分,然后得到一个包含第二个变量的表达式,再对第二个变量求定积分,这样就得到了二重积分的值。这里对于选择进行积分运算的自变量的顺序是完全任意的,也就是说,假设函数的积分区间,是由曲线 和,x=a ,x=b 所围成的区域,那么f 在这个区域上的二重积分为 (二)另外一种常常更为简单的计算二重积分的方法,是在极坐标下,通过把二重积分转变为二次积分来得到结果。 一般公式就是 三重积分及其应用与计算。 在这两种坐标里计算多重积分,首先是给出分别在这些坐标系里的体积微元的表达式: 在圆柱坐标系里是; 在球面坐标系里是。 因此可以分别得到在这两个坐标系里的三重积分的计算公式: 在圆柱坐标系里是; 在 球 面坐标系 里是 )(1x y y =) (2x y y ==??=??)()(21),(),(x x b a D y y dy y x f dx dxdy y x f ??)()(21),(x x b a y y dx y x f dy ??=??) ()(21 )sin ,cos (),(θθβ αθθθσr r rdr r r f d d y x f D dz rdrd dv θ=αθαd drd r dv sin 2 =???=???Ω Ω dz rdrd z r r f dv z y x f θθθ),sin ,cos (),,(???=???Ω Ω α θααθαθαd drd r rcoa r r f dv z y x f sin ),sin sin ,cos sin (),,(2

高等数学第八章多元函数微分法及其应用教案

第八章 多元函数微分法及其应用 第一节 多元函数的基本概念 1、()y x,f z =,定义域为平面上某一个平面域 几何上()y x,f z =为空间一张曲面。 2、二元函数极限 P186 例1、讨论函数 ()()()0,00 y x 0y x 0x y y 4x y x,f 222222 44 2在=+≠+?????+=极限是否存在。 解:()()()01K x x 4K lim x x K x K 4x lim x y y 4x lim 24222022444 42022442y x 0 2=+=+?=+→→=→x x x 而 ()4y y y 4y lim 244442y x 0 x =+?=→ ∴ () y x f 在(0,0)极限不存在. 3、连续 P187 第二节 偏导数 定义:()()00y ,x y x,f z 在点=处对x 的偏导数, 记作:()0010y y 0x x x 0y y 0x x 0y y 0x x y ,x f ,z ,x f , x z ''????====== 即: ()()()x y ,x f y x,x f lim y ,x f 00000x 00x ?-?+='→? 同理:()()()y y ,x f y y ,x f lim y ,x f 00000y 00y ?-?+='→? ()00y x y ,x f ,f 在''存在,称()()00y ,x y x,f z 在=可导。 例1、y z ,x z ,x z y ????=求 解:lnx x y z ,yx x z y 1y =??=??- 例2、P188,例5,6

第八章多元函数微分法及其应用

第八章 多元函数微分法及其应用 第一节 多元函数的基本概念 1、 平面点集、n 维空间、多元函数的概念,这些你如果不知道就看看。我下面的资料是从P7开始 的。 2、 在数轴上(一维空间),当0x x →时,只有两种趋近方式:一是x 从左边趋近于0x ,即0x x - →; 二是x 从右边趋近于0x ,即0x x + →。在平面直角坐标系中(二维空间),点(,)x y 趋近于点 00(,)x y 时,即00(,)(,)x y x y →的方式有无穷多种,例如,当(,)(0,0)x y →时,点(,)x y 既可 以沿x 正半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (,0)x f x + →,也可以沿x 负半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (,0)x f x - →;点(,)x y 既可以沿y 正半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (0,)y f y + →,也可以沿y 负半轴趋于点(0,0)——这时 (,)(0,0) lim (,)x y f x y →便可写成0 lim (0,)y f y - →;同时点(,)x y 也可以沿直线3y x =趋于点(0,0)——这时 (,)(0,0) lim (,)x y f x y →便可以写成0 lim (,3)x f x x →;也可以沿正弦函数图象sin y x =趋于点 (0,0)——这时 (,)(0,0) lim (,)x y f x y →便可以写成0 lim (,sin )x f x x →。我们应该意识到,点(,)x y 还可以 沿着一些不规则的路径趋于点(0,0)。这里说了这么多,就是要让你明白P7第二段中的“这里 0P P →表示点P 以任何方式趋于点0P ”这句话的涵义。 3、 对于多元函数的极限,特别是二元函数的极限,只需要了解它的定义,并且会求简单的二元函 数的极限,如本节例5、7、8这些题型。考研中,二元函数的极限的计算应该不会考到,重点是一元函数的极限的计算题。但是要会判断 (,)(0,0) lim (,)x y f x y A →≠这类题型,就是通过找一条特 殊路径求出它的极限不等于A 。如P8页给出的那个例题: 22 22 22,00,0 (,){ xy x y x y x y f x y +≠++== 4、 了解多元函数(二元函数)连续性的定义,后面的间断点、最大值最小值定理、介值定理看看 就行了。 5、 习题8——1第 6、7题,结合答案看看就行了。

第六章多元函数微分法及其应用试题答案

第六章 多元函数微分学 答案及评分标准 一、1、B 解:原式6)11(3lim )11(3lim 0 000=++=++=→→→→xy xy xy xy y x y x . 2、A 解:2R D =,当022≠+y x 时,),(y x f 连续;当022=+y x 时 22222221)(210),(y x y x y x y x f +=++≤-.即)0,0(0),(lim 0 0f y x f y x ==→→. 3、B 4、D 解:)0,0()0(111222?>≥?≥++≥z z y x z 是最小值点,由于)0,0(为定义域内点,所以)0,0(也是极小值点. 5.C 解:由方向导数的定义可得. 二、1、 2ln 2、xy xyz xyz yz -- 3、21f z f '+',2212 2f xz f x f ''+''+' 解:21211f z f z f f x u '+'=?'+?'=??, 故22122222122f xz f x f x f z f x f z x u ''+''+'=?''+'+?''=???. 4、{2x -4,4y -6,6z -8} 解:grad f ={2x -4,4y -6,6z -8};grad f |(2,1,2)={0,-2,4}, |grad f |(2,1,2)=,即f 在点(2,1,2)处方向导数 的最大值为. 5、 dy dx +2ln 2 三、解:1cos sin ?+?=????+????=??v e y v e x v v z x u u z x z u u )]cos()[sin(y x y y x e xy ++?+= ……………5分 1cos sin ?+?=????+????=??v e x v e y v v z y u u z y z u u )]cos()[sin(y x x y x e xy ++?+= ……………10分 四、解:xy x z 2=?? y x y z cos 2+=?? (4分) x y x z 22=??? (7分) y y z sin 22-=?? (10分)

相关主题
文本预览
相关文档 最新文档