模式识别试题答案
- 格式:doc
- 大小:33.50 KB
- 文档页数:2
模 式 识 别 非 学 位 课 考 试 试 题
考试科目: 模式识别 考试时间
考生姓名: 考生学号 任课教师 考试成绩
一、简答题(每题6分,12题共72分):
1、 监督学习和非监督学习有什么区别?
参考答案:当训练样本的类别信息已知时进行的分类器训练称为监督学习,或者由教师示范的学习;否则称为非监督学习或者无教师监督的学习。
2、 你如何理解特征空间?表示样本有哪些常见方法?
参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。描述样本的常见方法:矢量、矩阵、列表等。
3、 什么是分类器?有哪些常见的分类器?
参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。例如:贝叶斯分类器、神经网络等。
4、 进行模式识别在选择特征时应该注意哪些问题?
参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。
5、 聚类分析中,有哪些常见的表示样本相似性的方法?
参考答案:距离测度、相似测度和匹配测度。距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。相似测度有角度相似系数、相关系数、指数相似系数等。
6、 你怎么理解聚类准则?
参考答案:包括类内聚类准则、类间距离准则、类内类间距离准则、模式与类核的距离的准则函数等。准则函数就是衡量聚类效果的一种准则,当这种准则满足一定要求时,就可以说聚类达到了预期目的。不同的准则函数会有不同的聚类结果。
7、 一种类的定义是:集合S 中的元素x i 和x j 间的距离d ij 满足下面公式:
∑∑∈∈≤-S x S x ij i j
h d k k )1(1,d ij ≤ r ,其中k 是S 中元素的个数,称S 对于阈值h ,r 组成一类。请说明,该定义适合于解决哪一种样本分布的聚类?
参考答案:即类内所有个体之间的平均距离小于h ,单个距离最大不超过r ,显然该定义适合团簇集中分布的样本类别。
8、 贝叶斯决策理论中,参数估计和非参数估计有什么区别?
参考答案:参数估计就是已知样本分布的概型,通过训练样本确定概型中的一些参数;非参数估计就是未知样本分布概型,利用Parzen 窗等方法确定样本的概率密度分布规律。
9、 基于风险的统计贝叶斯决策理论中,计算代价[λij ]矩阵的理论依据是什么?假设这个矩阵是
M ⨯N ,M 和N 取决于哪些因素?
参考答案:依据是根据专家对于不同决策所引起的实际风险来决定,一般情况下无法根据理论来确定。
风险矩阵的行列参数M、N都等于待分类的类别数目。
10、什么是Parzen窗?简述其基本思想。
参考答案:利用一系列超立方体,根据随机样本落入其中的数量确定总体概率密度分布的一种非参数估计方法,这是一种类似于直方图的方法。
11、简要说明二层感知器是如何解决异或(XOR)问题的。
参考答案:第一层将异或问题的样本转换成两类问题,例如将(1,0)和(0,1)转变成(1,0),将(0,0)和(1,1)保持不变,这样就转变成一个线性分类问题;第二层就可以很容易进行分类了。
12、感知器训练可以利用梯度下降法,利用必要的公式简要说明梯度下降法的基本思路。
参考答案:设一个函数为y = f(x),定义域为[a, b],其中只有一个极小值。要求计算该函数段的极小值。
任给出一个初始值x0,计算此处的函数导数f’(x0),则下一个迭代值应该沿着导数的负方向,即x1=x0-c*f’(x),其中c是一个比例正参数。以后的迭代公式是:x i+1=x i-c*f’(x i)。直到满足一定的迭代次数,或者迭代的新旧数值之间误差满足预设的阈值。
二、分析题(16分)
结合你未来可能从事的科研课题或者你所了解的你所在课题组中的研究课题,具体说明模式识别理论在其中可能的应用。要求:1、要将问题描述清楚;2、该问题的应用背景和思路;3、解决该问题成熟的和可能的思路;4、具体的模式识别算法在其中如何应用。
参考答案:略。
三、设计题(12分)
爬楼犯罪是危害现在社会治安的一种重要犯罪现象。假设有合适的固定监控摄像设备,这种设备可以在白天和晚上以及其他光线不佳(例如雨雾天气等)的情况下正常工作。
如果你能够获得这种连续视频图像,试分析爬楼翻窗犯罪的特点,然后结合所学到的模式识别理论,设计一种合适的可行的算法来准确检测爬楼翻窗等犯罪行为,并给出算法的伪代码程序。注意:不要将窗户内正常居民的行走、晾晒衣被、飞鸟等行为检测为爬楼犯罪,要尽量降低误报率。
参考答案:
爬楼的基本特点,要考虑到实际情况,即:
1、绝大多数的爬楼翻窗犯罪都发生在晚上;
2、爬楼行为一定发生在楼的阳面或者阴面(简称楼面);
3、一定有移动目标,大小与距离成反比,应该与人大小相似;
4、移动目标在楼面上爬楼速度不可能很快;
5、移动目标在楼面上发生跨楼层或者跨住户单元的移动;
6、居民走动一般不发生在楼面上的跨楼层或者跨住户单元的移动;
7、飞鸟速度一般较快,大小变化剧烈等。
8、树木移动、衣服飘动等变化目标的几何和质心位置一般不变化或者变化很小;
9、一般月光光线变化缓慢;
10、房间开关灯光变化剧烈,一般是在楼面上的某个位置突然出现,不会发生跨楼层跨单元的移动。
然后设计算法实现即可。