MAG、MIG焊药芯焊丝气保焊
- 格式:doc
- 大小:39.55 KB
- 文档页数:6
第一节二氧化碳气体保护焊(CO2焊)二氧化碳气体保护焊是用CO2作为保护气体依靠,焊丝与焊件之间产生电弧溶化金属的气体保护焊方法简称CO2焊(MAG)。
一、二氧化碳气体保护焊发展动态二氧化碳气体保护焊是50年代发展起来的一种新的焊接技术。
半个世纪来,它已发展成为一种重要的熔焊方法。
广泛应用于汽车工业,工程机械制造业,造船业,机车制造业,电梯制造业,锅炉压力容器制造业,各种金属结构和金属加工机械的生产。
MIG气体保护焊焊接质量好,成本低,操作简便,取代大部分手工电弧焊和埋弧焊,已成定局。
二氧化碳气体保护焊装在机器手或机器人上很容易实现数控焊接,将成为二十一世纪初的主要焊接方法。
目前二氧化碳气体保护焊,使用的保护气体,分CO2和CO2+Ar两种。
使用的焊丝主要是锰硅合金焊丝,超低碳合金焊丝及药芯焊丝。
焊丝主要规格有:0.5mm、0.8 mm、0.9 mm、1.0 mm、1.2 mm、1.6 mm、2.0 mm、2.5 mm、3.0 mm、4.0mm等。
二、二氧化碳气体保护焊特点(一)MAG焊具有下列优点:1、焊接成本低:其成本只有埋弧焊和手工电弧焊的40~50%。
2、生产效率高:其生产率是手工电弧焊的1~4倍。
3、操作简便:明弧,对工件厚度不限,可进行全位置焊接而且可以向下焊接。
4、焊缝抗裂性能高:焊缝低氢且含氮量也较少。
5、焊后变形较小:角变形为千分之五,不平度只有千分之三。
6、焊接飞溅小:当采用超低碳合金焊丝或药芯焊丝,或在CO2中加入Ar,都可以降低焊接飞溅。
(二)MAG焊的缺点:1、对焊接设备的技术焊接要求高。
2、设备造价相对较贵。
3、气体保护效果易受外来气流的影响。
4、焊接参数之间的匹配关系较严格。
三、气体保护焊的设备C02气体保护焊的主要设备包括焊接电源、送丝机、焊枪、供气系统、焊丝盘和指示仪表等组成。
四、气体保护焊的工艺参数(焊接范围)主要包括气体保护焊的工艺参数主要包括以下几点:1、焊丝直径、焊接电流、电弧电压。
焊丝分类实芯焊丝及药芯焊丝特性2..3.1 焊丝分类按制造方法可分为实芯焊丝和药芯焊丝两大类,其中药芯焊丝又可分为气保护和自保护两种。
按焊接工艺方法可分为埋弧焊焊丝、气保焊焊丝、电渣焊丝、堆焊焊丝和气焊焊丝等。
按被焊材料的性质又可分为碳钢焊丝、低合金钢焊丝、不锈钢焊丝、铸铁焊丝和有色金属焊丝等。
焊丝实芯焊丝药芯焊丝埋弧焊、电渣焊气体保护焊自保护焊惰性气体保护焊(TIG,MIG)活性气体保护焊(MAG)埋弧焊气体保护焊(CO2焊,Ar+CO2焊)自保护焊2.3.2 实芯焊丝实芯焊丝是热轧线材经拉拔加工而成的。
产量大而合金元素含量少的碳钢及低合金钢线材,常采用转炉冶炼;产量小而合金元素含量多的线材多采用电炉冶炼,分别经开坯、轧制而成。
为了防止焊丝生锈,除不锈钢焊丝外都要进行表面处理。
目前主要是镀铜处理,包括电镀、浸铜及化学镀铜等方法。
不同的焊接方法应采用不同直径的焊丝。
埋弧焊时电流大,要采用粗焊丝,焊丝直径在 2.4~6.4mm;气保焊时,为了得到良好的保护效果,要采用细焊丝,直径多为0.8~1.6mm。
1.埋弧焊用焊丝埋弧焊接时,焊缝成分和性能主要是由焊丝和焊剂共同决定的。
另外,埋弧焊接时焊接电流大,熔深大,母材熔合比高,母材成分的影响也大,所以焊接规范变化时,也会给焊缝成分和性能带来较大影响。
埋弧焊焊丝的选择既要考虑焊剂成分的影响,又要考虑母材的影响。
为了得到不同的焊缝成分,可以采用一种焊剂(主要是熔炼焊剂)与几种焊丝配合F也可以采用一种焊丝与几种焊剂(主要是烧结焊剂)配合。
对于给定的焊接结构,应根据钢种成分、对焊缝性能的要求指标及焊接规范大小的变化等进行综合分析之后,再决定所采用的焊丝和焊剂。
低碳钢用焊丝由于焊缝中合金成分不多,故可采用焊丝渗合金,也可采用焊剂渗合金。
通过焊剂向焊缝中过渡时,有利于改善焊缝的抗热裂纹能力和抗气孔性能;通过焊丝向焊缝中过渡时,有利于提高焊缝的低温韧性。
焊接低碳钢时多采用低碳焊丝(H08A等),当母材含碳量较高或强度要求较高、而对焊缝韧性要求不高时,也可采用含碳量较高的焊丝,如H15A或H15Mn等。
各种焊接方法及其数字代号如下:1 电弧焊11 无气体保护的电弧焊111 手弧焊(涂料焊条熔化极电弧焊)112 重力焊(涂料焊条重力电弧焊)113 光焊丝电弧焊114 药芯焊丝电弧焊115 涂层焊丝电弧焊116 熔化极电弧点焊118 躺焊12 埋弧焊121 丝极埋弧焊122 带极埋弧焊13 熔化极气体保护电弧焊131 MIG焊:熔化极惰性气体保护焊(含熔化极氩弧焊)135 MAG焊:熔化极非惰性气体保护焊(含二氧化碳气体保护焊) 136 非惰性气体保护药芯焊丝电弧焊137 非惰性气体保护熔化极电弧点焊14 非熔化极气体保护电弧焊141 TIG焊:钨极惰性气体保护焊(含钨极氩弧焊)142 TIG点焊149 原子氢焊15 等离子弧焊151 大电流等离子弧焊152 微束等离子弧焊153 等离子粉末堆焊(喷焊)154 等离子填丝堆焊(冷、热丝)155 等离子MIG焊156 等离子弧点焊18 其它电弧焊方法 181 碳弧焊182 旋弧焊2 电阻焊21 点焊22 缝焊221 搭接缝焊225 加带缝焊23 凸焊24 闪光焊25 电阻对焊29 其它电阻焊方法291 高频电阻焊3 气焊31 氧-燃气焊311 氧-乙炔焊312 氧-丙烷焊313 氢-氧焊32 空气-燃气焊321 空气-乙炔焊322 空气-丙烷焊33 氧-乙炔喷焊(堆焊)4 压焊41 超声波焊42 摩擦焊43 锻焊44 高机械能焊441 爆炸焊45 扩散焊47 气压焊48 冷压焊7 其它焊接方法71 铝热焊72 电渣焊73 气电立焊74 感应焊75 光束焊751 激光焊752 弧光光束焊753 红外线焊76 电子束焊77 储能焊78 螺柱焊781 螺柱电弧焊782 螺柱电阻焊9 硬钎焊、软钎焊、钎接焊 91 硬钎焊911 红外线硬钎焊912 火焰硬钎焊913 炉中硬钎焊914 浸沾硬钎焊915 盐浴硬钎焊916 感应硬钎焊917 超声波硬钎焊918 电阻硬钎焊919 扩散硬钎焊923 摩擦硬钎焊924 真空硬钎焊93 其它硬钎焊方法94 软钎焊941 红外线软钎焊 942 火焰软钎焊943 炉中软钎焊944 浸沾软钎焊945 盐浴软钎焊946 感应软钎焊947 超声波软钎焊 948 电阻软钎焊949 扩散软钎焊951 波峰浇注软钎焊 952 烙铁软钎焊953 摩擦软钎焊954 真空软钎焊96 其它软钎焊方法97 钎接焊971 气体钎接焊972 电弧钎接焊。
药芯焊丝的特点生产效率与手工焊条相比,由于药芯焊丝采用了连续焊接方式,因此生产效率高;与实心焊丝相比,由于药芯焊丝焊接飞溅少、焊缝成形好,所以减少了清除飞溅与修磨焊缝表面的时间。
对钢材的适应性与实心焊丝相比,由于药芯焊丝一般是通过药芯过渡合金元素,因此可以像手工焊条那样方便地从配方中调整合金成分,以适应被焊钢材的要求.而实芯焊丝每调整一次合金成分,就要重新冶炼,其工序多,难控制,因此难以满足用量少而品种多的要求。
而且有的合金钢实芯焊丝拉拔性能差,很难拉拔成所需的焊丝。
此时药芯焊丝更显其独特之优点。
工人操作要求药芯焊丝对工人的操作水平要求低:与手工焊条比,省去了向下运条的操作;与实芯焊丝比,其电流、电压适应范围宽。
使用成本与手工焊条及实芯焊丝相比,药芯焊丝本身的价格很高。
但对于大型企业来讲,使用药芯焊丝后,生产周期缩短且焊缝质量容易保证,所以带来的综合效益是很高的。
抗潮性普通的药芯捍丝由于其制造形式的约束,在其钢皮的侧边有一条连续的缝隙。
所以药芯焊丝在打开包装之后的搁置时间不能太长,以防吸潮过多而影响焊接质量。
1.焊丝选用的要点焊丝的选择要根据被焊钢材种类、焊接部件的质量要求、焊接施工条件(板厚、坡口形状、焊接位置、焊接条件、焊后热处理及焊接操作等)、成本等综合考虑。
焊丝选用要考虑的顺序如下.①根据被焊结构的钢种选择焊丝对于碳钢及低合金金高强钢,主要是按“等强匹配”的原则,选择满足力学性能要求的焊丝。
对于耐热钢和耐候钢,主要是侧重考虑焊缝金属与母材化学成分的一致或相似,以满足对耐热性和耐腐蚀性等方面的要求。
②根据被焊部件的质量要求(特别是冲击韧性)选择焊丝与焊接条件、坡口形状、保护气体混合比等工艺条件有关,要在确保焊接接头性能的前提下,选择达到最大焊接效率及降低焊接成本的焊接材料。
③根据现场焊接位置对应于被焊工件的板厚选择所使用的焊丝直径,确定所使用的电流值,参考各生产厂的产品介绍资料及使用经验,选择适合于焊接位置及使用电流的焊丝牌号。
尾部符号标于箭头线的尾部,并且以90°开口对称于基准线;一般都表示焊接方法或相同焊缝的数量; 代号和焊接方法1 电弧焊11 无气体保护电弧焊111 手弧焊112 重力焊113 光焊丝电弧焊114 药芯焊丝电弧焊115 涂层焊丝电弧焊116 熔化极电弧点焊118 躺焊12 埋弧焊121 丝极埋弧焊122 带极埋弧焊13 熔化极气体保护电弧焊131 MIG 焊:熔化极惰性气体保护焊含熔化极Ar 弧焊135 MAG 焊:熔化极非惰性气体保护焊含CO2 保护焊136 非惰性气体保护药芯焊丝电弧焊注:FCAW137 非惰性气体保护熔化极电弧点焊14 非熔化极气体保护电弧焊141 TIG 焊:钨极惰性气体保护焊含钨极Ar弧焊142 TIG 点焊149 原子氢焊15 等离子弧焊151 大电流等离子弧焊152 微束等离子弧焊153 等离子弧粉末堆焊喷焊154 等离子弧填丝堆焊冷、热丝155 等离子弧MIG 焊156 等离子弧点焊18 其它电弧焊方法181 碳弧焊185 旋弧焊2 电阻焊21 点焊22 缝焊221 搭接缝焊223 加带缝焊23 凸焊24 闪光焊25 电阻对焊29 其它电阻焊方法291 高频电阻焊3 气焊31 氧-燃气焊311 氧-乙炔焊312 氧-丙烷焊313 氢-氧焊32 空气-燃气焊321 空气-乙炔焊322 空气-丙烷焊33 氧-乙炔喷焊堆焊4 压焊41 超声波焊42 摩擦焊43 锻焊44 高机械能焊441 爆炸焊45 扩散焊47 气压焊48 冷压焊7 其它焊接方法71 铝热焊72 电渣焊73 气电立焊74 感应焊75 光束焊751 激光焊752 弧光光束焊753 红外线焊76 电子束焊77 储能焊78 螺柱焊781 螺柱电弧焊782 螺柱电阻焊9 硬钎焊、软钎焊、钎接焊91 硬钎焊911 红外线硬钎焊912 火焰硬钎焊913 炉中硬钎焊914 浸沾硬钎焊915 盐浴硬钎焊916 感应硬钎焊917 超声波硬钎焊918 电阻硬钎焊919 扩散硬钎焊923 摩擦硬钎焊924 真空硬钎焊93 其它硬钎焊方法94 软钎焊941 红外线软钎焊942 火焰软钎焊943 炉中软钎焊944 浸沾软钎焊945 盐浴软钎焊946 感应软钎焊947 超声波软钎焊948 电阻软钎焊949 扩散软钎焊951 波峰浇注软钎焊952 烙铁软钎焊953 摩擦软钎焊954 真空软钎焊96 其它软钎焊方法97 钎接焊971 气体钎接焊972 电弧钎接焊。
一、熔化极气体保护电弧焊的概念及分类使用熔化电极,以外加气体作为电弧介质,并保护金属熔滴,焊接熔池和焊接区高温金属的电弧焊方法,称为熔化极气体保护电弧焊。
根据焊丝材料和保护气体的不同,可将其分为以下几种方法,如图1所示。
图1按焊丝分类可分为实芯焊丝焊接和药芯焊丝焊接。
用实芯焊丝的惰性气体(Ar或He)保护电弧焊法称为熔化极惰性气体保护焊,简称MIG焊(Metal Inert Gas Arc Welding);用实芯焊丝的富氩混合气体保护电弧焊,简称MAG焊(Metal Active Gas Arc Welding)。
用实芯焊丝的CO2气体保护焊,简称CO2焊。
用药芯焊丝时,可以用CO2或CO2+Ar混合气体作为保护气体的电弧焊称为药芯焊丝气体保护焊。
还可以不加保护气体,这种方法称为自保护电弧焊。
二、普通MIG/MAG焊和CO2焊的区别CO2焊的的特点是:成本便宜、生产效率高。
但是存在飞溅量大、成型差的缺点,因而有些焊接工艺采用普通MIG/MAG焊。
普通MIG/MAG焊是以惰性气体保护或以富氩气体保护的弧焊方法,而CO2焊却具有强烈的氧化性,这就决定了二者的区别和特点。
与CO2焊相比MIG/MAG焊的主要优点如下:1) 飞溅量减少50%以上。
在氩或富氩气体保护下的焊接电弧稳定,不但射滴过渡与射流过渡时电弧稳定,而且在小电流MAG焊的短路过渡情况下,电弧对熔滴的排斥作用较小,从而保证了MIG/MAG焊短路过渡的飞溅量减少50%以上。
2) 焊缝成形均匀、美观。
由于MIG/MAG焊熔滴过渡均匀、细微、稳定,所以焊缝成形均匀、美观。
3) 可以焊接许多活泼金属及其合金。
电弧气氛的氧化性很弱,甚至无氧化性,MIG/MAG焊不但可以焊接碳钢、高合金钢,而且还可以焊接许多活泼金属及其合金,如:铝及铝合金、不锈钢及其合金、镁及镁合金等。
4) 大大地提高了焊接工艺性、焊接质量和生产效率。
三、脉冲MIG/MAG焊和普通MIG/MAG焊的区别普通MIG/MAG焊的主要熔滴过渡形式是大电流时的射流过渡和小电流时的短路过渡,因而小电流仍存在飞溅量大、成型差的缺点,尤其是有些活泼金属在小电流下无法焊接如铝及合金、不锈钢等。
CO2气体保护焊1.焊接的分类名词解释熔化焊接:将被连接金属局部熔化,然后冷却结晶使分子或原子彼此达到晶格距离并形成结合力,这种焊接方法叫熔化焊接。
熔化焊接需要一个能量集中,热量足够的热源。
电弧焊:以气体导电时产生的电弧热为热源。
熔化极:焊丝或焊条既是电极又是填充金属。
铝热焊:利用金属氧化物和金属铝之间的放热反应所产生的过热熔融金属来加热金属而实现结合的方法。
压力焊接:焊接过程中必须对焊件施加压力,加热或不加热的焊接方法。
钎焊:利用某些熔点低于被连接金属熔点的熔化金属(钎料)在连接界面上起流散浸润作用,然后冷却形成结合力。
2.熔化焊接的主要特征焊接部位必须采取有效的隔离空气保护,使焊接部位不能和空气接触,以免造成焊道的成分和性能不良,保护方式有三种:气相、渣相、真空。
熔化焊接的保护方式保护类型材料及设施适用范围气相保护气体CO2、TIG、MIG、MAG焊渣相保护焊剂手工焊条、埋弧焊剂、药芯焊丝...真空保护真空设备及设施航空航天或稀有金属3.气体保护焊的定义用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气体保护焊。
常用的保护气体:二氧化碳气(CO2)、氩气(Ar)、氦气(He)及它们的混合气体: CO2+Ar、CO2+Ar+He、……。
4.二氧化碳气体保护焊的简单介绍气体保护焊的定义:用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气体保护焊。
常用的保护气体:二氧化碳气( CO2)、氩气( A r )、氦气(He)及它们的混合气体: CO2+Ar、CO2+Ar+He、……。
CO2气体保护焊,全称是熔化极二氧化碳气体保护电弧焊接,是焊接方法中的一种,是以CO2气为保护气体,进行焊接的方法。
在应用方面操作简单,适合自动焊和全方位焊接。
在焊接时不能有风,适合室内作业。
但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。
由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。
药芯焊丝气体保护焊使用药芯焊丝作为填充金属的各种电弧焊方法称为药芯焊丝电弧焊。
分类:1、药芯焊丝气体保护焊的原理及特点 (1).药芯焊丝气体保护焊的原理采用可熔化的药芯焊丝作电极及填充材料,在外加气体如CO2的保护下进行焊接的电弧焊方法。
这种焊接方法是一种气渣联合保护的方法。
(2)药芯焊丝气体保护焊的特点综合了焊条电弧焊和普通熔化极气体保护焊的优点。
①气渣联合保护,保护效果好,抗气孔能力强,成形美观,电弧稳定,飞溅少且颗粒细小。
①药芯焊丝气体保护电弧焊药芯焊丝CO 2气体保护电弧焊药芯焊丝熔化极惰性气体保护焊药芯焊丝混合气体保护焊②药芯焊丝埋弧焊 ③药芯焊丝自保护焊应用最多的是:药芯焊丝CO 2气体保护电弧焊②焊丝的熔敷速度快,明显高于焊条,略高于实芯焊丝,熔敷效率和生产率都较高,生产率比焊条电弧焊高3~4倍,经济效益显著。
③焊接各种钢材的适应性强。
④药粉改变了电弧特性,对焊接电源无特殊要求,交、直流,平缓外特性均可。
⑤缺点:焊丝制造过程复杂;送丝困难。
焊丝外表易锈蚀,药粉易受潮。
故焊前应对焊丝表面进行清理,并进行250~300℃的烘烤。
2、药芯焊丝及焊接工艺 (1)药芯焊丝的组成组成:由金属外皮(如08A )和芯部药粉组成。
截面形状有:E 形、O 形、梅花形、中间填丝形、T 形等。
药粉的成分与焊条的药皮类似,目前国产CO2气保焊药芯焊丝多为钛型药粉焊丝。
规格有2.0、2.4、2.8、3.2等几种。
(2)药芯焊丝的型号根据GB/T10045-2002《碳钢药芯焊丝》标准规定,碳钢药芯焊丝型号是根据熔敷金属力学性能、焊接位置及焊丝类别特点(如保护类型、电源类型及渣系特点等)进行划分的。
例如:E 50 1 T -1 M L表示保护气体为氩气含量为75%~80%的Ar 气+CO2混合气体表示焊丝类别特点:外加保护气,直流电源,焊丝接正极,用于单道焊和多道焊。
表示药芯焊丝表示焊丝熔敷金属V 形缺口冲击功在-40℃时不小于27J(3)药芯焊丝的牌号(字母及数字含义见(表4—13、14)字母钢类别字母钢类别L 结构钢用G 铬不锈钢R 低合金耐热钢A 奥氏体不锈钢D堆焊例如:编号 焊接时保护类型编号 焊接时保护类型 YJXX —1气体保护YJXX —3 气体保护、自保护两用YJXX —2 自保护 YJXX —4 其他保护形式 表4—13药芯焊丝类别表4—14药芯焊丝的保护类型表示保护形式。
MAG、MIG焊药芯焊丝气保焊
一、熔化极氩弧焊(MAG焊)的原理及特点
1.熔化极氩弧焊的原理及特点
(1)熔化极氩弧焊的原理.(见右图)
熔化极氩弧焊按操作方式分为:
熔化极半自动氩弧焊;
熔化极自动氩弧焊。
(2)熔化极氩弧焊的特点(与CO2焊、钨极氩弧焊相比)
①焊缝质量高:采用惰性气体保护,气体不溶解于金属也不与金属反应,合金元素不会烧损,保护效果好,飞溅极少,能获得较为纯净及高质量的焊缝。
②焊接范围广:几乎所有金属都能进行焊接,特别适宜焊接化学性质活泼的金属和合金。
近年来,碳钢和低合金钢等黑色金属,多采用熔化极活性混合气体保护焊,因此,熔化极氩弧焊主要用于铝、镁、钛、铜及其合金和不锈钢、耐热钢的焊接。
有时也用于打底焊。
能焊薄板也能焊厚板,特别适用于中等和大厚度焊件的焊接。
③焊接效率高:以焊丝为电极,克服了钨极氩弧焊钨极熔化和烧损的限制,焊接电流大大增加,熔深大,熔敷速度高。
④主要缺点:无脱氧去氢作用,对油、锈敏感,易产生气孔等缺陷,要求对焊丝和母材表面严格清理。
氩气和氦气价高,
焊接成本高。
2. 熔化极氩弧焊的熔滴过渡形式
采用短路过渡或颗粒过渡焊接时,飞溅严重,电弧复燃困难,焊件熔化不良容易产生焊缝缺陷。
所以熔化极氩弧焊多采用喷射过渡的熔滴过渡形式。
熔滴过渡:焊丝(条)端头的金属在电弧热作用下被加热熔化形成熔滴,并在各种力的作用下脱离焊丝(条)进入熔池,称之为熔滴过渡。
影响熔滴过渡状态的因素:熔滴过渡状态是指焊条熔化后滴入熔池的状态。
对熔滴过渡产生影响的因素包括保护气体的种类和成分,焊接电流和电压,焊丝(条)的成分和直径等。
临界电流:由大滴过渡向喷射过渡转变的最小电流称为喷射过渡临界电流。
短路过渡
小电流、低电压。
熔滴
长大受到空间限制而
与母材短路,在表面张
力及小桥爆破力作用
下脱离焊丝。
熔滴过渡的形式
大颗粒过渡电弧长度较长,熔滴可自由长大,直至下落力大于表面张力时,脱离焊丝落入熔池。
细颗粒过渡CO2焊时,电流超过一定值,过渡颗粒变小,飞溅小焊缝成型好。
喷射过渡MIG焊、MAG焊时,焊丝端部液态金属成铅笔尖状,细小熔滴从焊丝尖端一个接一个成轴线状向熔池过渡。
焊接无飞溅。
二、熔化极惰性气体保护焊的设备及工艺
1.熔化极惰性气体保护焊的设备
熔化极惰性气体半自动保护焊设备与CO2焊设备基本相同,由焊接电源、供气系统、送丝机构、控制系统、半自动焊枪、冷却系统等组成。
熔化极惰性气体自动保护焊设备比熔化极惰性气体半自动保护焊设备多一套行走机构。
焊枪与送丝机构安装在焊接小车或专用机头上。
熔化极半自动氩弧焊机多用于细焊丝焊接,采用等速送
丝式系统配用平外特性电源。
熔化极自动氩弧焊机的自动调节原理与埋弧焊基本相同;
细焊丝(<1.6mm)焊接时,采用等速送丝系统,配用缓降外特性的电源;
粗焊丝(>2.0mm)焊接时,采用变速送丝系统,配用陡降外特性的电源。
熔化极自动氩弧焊大多采用粗焊丝焊接。
由于采用惰性气体,供气系统中不需要预热器;惰性气体不含水分也不需要干燥器。
熔化极半自动氩弧焊机国产定型产品有NBA系列,
如:NBA1—500型等。
熔化极自动氩弧焊机国产定型产品有NZA系列,
如:NZA—1000型等
2.熔化极氩弧焊的焊接工艺
熔化极氩弧焊的主要焊接工艺参数有:焊丝直径、焊接电流、电弧电压、焊接速度、喷嘴直径、氩气流量等。
焊接电流和电弧电压是获得喷射过渡形式的关键,只有焊接电流大于临界电流值,才能获得喷射过渡,见(表4—10)。
焊接电流也不能过大,否则将产生不稳定的非轴向喷射过渡,飞溅增加,破坏熔滴过度的稳定性。
要获得稳定的喷射过渡,在选定焊接电流后,还要匹配合适的电弧电压。
对于一定的临界电流都有一个最低的电弧电压与之匹配,若电弧电压低于这个值,即使电流比临界电流大得多,也不能获得稳定的喷射过渡。
但电弧电压也不能太高,否则影响保护效果,使焊缝成形恶化。
材料焊丝直径(mm)保护气
体
最低临界电流
(A)
铝0.80
1.20
1.60
Ar
95
135
180
脱氧铜0.90
1.20
1.60
Ar
180
210
310
钛0.80
1.60
2.40
Ar
120
225
320
不锈钢
0.80
1.20
Ar
160
210 表4—10 MIG焊的临界电流值
1.60
2.00
2.50
3.00 240 280 300 350
氩气流量和喷嘴直径:
熔化极氩弧焊对熔池和焊接区的保护要求较高,电弧功率及熔池体积比钨极氩弧焊大,所以氩气流量和喷嘴直径相应增大,喷嘴孔径为20mm左右,氩气流量约在30~65L/min 范围内。
电源极性采用直流反接,易于实现喷射过渡,飞溅少,并有“阴极破碎”作用。
阴极破碎:直流反接时,氩正离子流向焊件,撞击熔池表面,将铝、镁、钛等活泼金属表面的致密难熔氧化膜击碎,使焊接容易进行。
厚度/mm 焊丝直径喷嘴直径焊接电流电弧电压氩气流量8~12 1.6~2.5 20 180~310 20~30 50~55 14~22 2.5~3.0 20 300~470 30~42 55~65 表4—11 熔化极不半自动氩弧焊焊接工艺参数。