药芯焊丝电弧焊工艺方法
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
研究药芯焊丝焊接操作技术要点20世纪50年代末、60年代初美国已开始使用药芯焊丝,并被广泛地用于重型机械、建筑机械、桥梁、石油、化工、核电站设备、大型发电设备及采油平台等制造业中,并取得了很好的效果。
近年来,随着社会经济的不断发展,我国生产药芯焊丝的技术和质量得到了不断提高,应用范围也不断地扩大,以船舶制造和海洋结构行业使用药芯焊丝量为最大。
药芯焊丝是继焊条电弧焊和实芯焊丝CO2气体保护焊的又一个被广泛应用的焊接方法。
药芯焊丝的单面焊双面成形操作技术,近年来被世界技能大赛、国内各类技能大赛列为竞赛的考核项目之一,它是电弧焊难度较大的一种操作技术。
尽快地掌握单面焊双面成形技术的操作要领和技巧,这也是每个参加技能考试、技能竞赛的指导教师及学生十分关心的问题。
2.药芯焊丝电弧焊的特点及应用药芯焊丝也称为管状焊丝,是利用薄钢板卷成圆形钢管或异形钢管,或用无缝钢管,在管中填满一定成分的药粉,经拉制而成的焊丝。
可通过调整药芯添加物的种类和比例,很方便地设计各种不同用途的焊接材料,因为它的合金成分可灵活方便的调整,所以药芯焊丝的许多品种是实芯焊丝无法冶炼和轧制的。
2.1特点药芯焊丝电弧焊与气体保护焊非常相似,差别在药芯焊丝采用的是管状焊丝,其中装有粒状的焊剂。
药芯焊丝是很有发展前途的新型焊接材料,与实芯焊丝相比药芯焊丝有如下优缺点。
2.1.1优点:⑴采用气渣联合保护,焊缝成形美观,电弧稳定性好,飞溅少易脱渣、焊道成形美观。
⑵焊丝熔敷速度快,熔敷效率(大约为85%~90%)和生产效率都较高(比焊条电弧焊高3~5倍)。
⑶焊接各种钢材的适应性强,通过调整焊剂的成分与比例可提供要求的焊缝金属化学成分。
2.1.2缺点:⑴焊丝制造过程复杂。
⑵烟雾大,焊接时烟雾较实芯焊丝大。
⑶焊丝外表容易锈蚀,粉剂易吸潮,因此对焊丝的保存-管理的要求更为严格。
⑷焊渣多,较实芯焊丝CO2气体保护焊多,故多层焊时要注意清渣、防止产生夹渣缺陷。
芯焊丝编辑本词条缺少信息栏、名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!药芯焊丝也称为管状焊丝,可以通过调整药芯添加物的种类和比例,很方便地设计各种不同用途的焊接材料,因为它的合金成分可灵活方便的调整,所以药芯焊丝的许多品种是实心焊丝无法冶炼和轧制的。
目录1简介2分类▪耐磨系列▪碳钢和低合金系列3制备4特性5历史沿革6其它相关1简介编辑早在1950年代初气保护药芯焊丝便已开始开发问市,但至1957年才开始广为药芯焊丝图片商业上使用。
此种方法可说是取自埋弧焊与CO2焊接(指实心)的优点组合而成,焊剂包在焊丝内并藉外围CO2气体的保护可使焊接时产生较柔和且稳定的电弧以及低飞溅为其特点。
开发之初只有大丝径焊丝(2.0—4.0mm),用于重大工件的平焊与横焊。
直至1972年小丝径焊丝开始发展才大大的扩展了药芯焊丝使用的领域。
自保护药芯焊丝是在气保护药芯焊丝问市不久便被发展出来而且也很快的被工业界广为认同于特定的用途上。
两者最大的不同点在第二单元便已有所述明,本单元将做整体的探讨。
另据资料介绍:日本从1985年至今其焊条占整个焊材的比例从45%下降到20%;而药芯焊丝所占比例已达到近30%。
在美国焊条比例下降到不足40%,药芯焊丝则接近40%;西欧各国焊条约占30%,药芯焊丝约占20%。
由此可见。
药芯焊丝与手工焊条和氩弧焊丝相比有明显的优势,主要是把断续的焊接过程变为连续的生产方式,从而减少了焊接接头的数目,提高了焊缝质量,也提高了生产效率,节约了能源。
2分类编辑药芯焊丝又分为有缝和无缝药芯焊丝,无缝药芯焊丝的成品丝可进行镀铜处理,焊丝保管过程中的防潮性能以及焊接过程中的导电性均优于有缝药芯焊丝。
药芯焊丝按不同的情况有不同的分类方法。
按保护情况可分为气体保护(CO2、富Ar混合气体)和自保护以及埋弧堆焊三种。
按焊丝直径可分为细直径(2.0mm以下)和粗直径(2.0mm以上)。
按焊丝断面可分为简单断面和复杂断面。
SMAW/FCAW管道下向焊工法SMAW/FCAW下向焊是指根焊采用手工电弧焊,填充盖面采用自保护药芯焊丝熔化极半自动焊的一种焊接方法。
它是目前国内外在管道施工,尤其在长输管线施工中一项重要的焊接工艺,与传统焊接方法(手工电弧上向焊)有其独特的优越性。
我国在九十年代引进并开始应用到管道工程施工,我公司是首次在“西气东输”管道施工中应用。
为了加快该新的焊接工艺推广应用,保证工程质量,提高工效,特制定本工法。
SMAW/FCAW的焊接方法为焊接流水作业创造了条件。
本工法是在总结了我公司在“西气东输”六标项目的管道焊接施工实践经验的基础上编制而成。
1特点1.1 本工法采取了纤维素焊条直流正接根焊,熔化极半自动焊填充盖面的施工方法。
1.2 采用纤维素型焊条直流正接进行根焊,具有操作灵活、抗风性能好、适应性强、焊速快、单面焊背面成型平缓、均匀、美观、内在质量保证。
1.3 填充盖面全部采用自保护药芯焊丝直流正接半自动焊方法具有较优越的技术经济指标,其熔敷效率高,焊接速度快,全位置成型好,环境适应能力强,焊工易于掌握,焊缝质量稳定。
2 适用范围本工法可适用于长输管线工程中,直径≥300mm以上管道的焊接。
3.1根焊采用纤维素下向焊条,其药皮中含有15%以上的有机物(纤维物),具有极强的造气功能,焊接时分解出大量的CO和CO2气体,在保护熔池的同时增加了电弧吹力,保证了熔滴在全位置焊接时向熔池稳定过渡,并阻止铁水下淌,同时熔透能力强,焊缝背面成型好,气孔敏感性小,易获得高质量的焊缝。
3.2填充盖面采用自保护药芯焊丝半自动下向焊,由于药芯在高温分解释放出大量气体对电弧及熔池进行保护,同时通过熔渣对熔池及凝固焊缝金属进行保护,故焊缝质量稳定,熔敷率高,焊接速度快。
3.3 纤维素下向焊条与自保护药芯焊条均应采取直流焊接,其不同极性连接方法会影响焊接过程及效果。
5.1以合格的焊接工艺评定为依据,编制详细的焊接作业指导书。
药芯焊丝气体保护焊使用药芯焊丝作为填充金属的各种电弧焊方法称为药芯焊丝电弧焊。
分类:1、药芯焊丝气体保护焊的原理及特点 (1).药芯焊丝气体保护焊的原理采用可熔化的药芯焊丝作电极及填充材料,在外加气体如CO2的保护下进行焊接的电弧焊方法。
这种焊接方法是一种气渣联合保护的方法。
(2)药芯焊丝气体保护焊的特点综合了焊条电弧焊和普通熔化极气体保护焊的优点。
①气渣联合保护,保护效果好,抗气孔能力强,成形美观,电弧稳定,飞溅少且颗粒细小。
①药芯焊丝气体保护电弧焊药芯焊丝CO 2气体保护电弧焊药芯焊丝熔化极惰性气体保护焊药芯焊丝混合气体保护焊②药芯焊丝埋弧焊 ③药芯焊丝自保护焊应用最多的是:药芯焊丝CO 2气体保护电弧焊②焊丝的熔敷速度快,明显高于焊条,略高于实芯焊丝,熔敷效率和生产率都较高,生产率比焊条电弧焊高3~4倍,经济效益显著。
③焊接各种钢材的适应性强。
④药粉改变了电弧特性,对焊接电源无特殊要求,交、直流,平缓外特性均可。
⑤缺点:焊丝制造过程复杂;送丝困难。
焊丝外表易锈蚀,药粉易受潮。
故焊前应对焊丝表面进行清理,并进行250~300℃的烘烤。
2、药芯焊丝及焊接工艺 (1)药芯焊丝的组成组成:由金属外皮(如08A )和芯部药粉组成。
截面形状有:E 形、O 形、梅花形、中间填丝形、T 形等。
药粉的成分与焊条的药皮类似,目前国产CO2气保焊药芯焊丝多为钛型药粉焊丝。
规格有2.0、2.4、2.8、3.2等几种。
(2)药芯焊丝的型号根据GB/T10045-2002《碳钢药芯焊丝》标准规定,碳钢药芯焊丝型号是根据熔敷金属力学性能、焊接位置及焊丝类别特点(如保护类型、电源类型及渣系特点等)进行划分的。
例如:E 50 1 T -1 M L表示保护气体为氩气含量为75%~80%的Ar 气+CO2混合气体表示焊丝类别特点:外加保护气,直流电源,焊丝接正极,用于单道焊和多道焊。
表示药芯焊丝表示焊丝熔敷金属V 形缺口冲击功在-40℃时不小于27J(3)药芯焊丝的牌号(字母及数字含义见(表4—13、14)字母钢类别字母钢类别L 结构钢用G 铬不锈钢R 低合金耐热钢A 奥氏体不锈钢D堆焊例如:编号 焊接时保护类型编号 焊接时保护类型 YJXX —1气体保护YJXX —3 气体保护、自保护两用YJXX —2 自保护 YJXX —4 其他保护形式 表4—13药芯焊丝类别表4—14药芯焊丝的保护类型表示保护形式。
药芯焊丝电弧焊工艺分析及其应用研究文章主要对药芯焊丝电弧焊工艺特点与应用形式进行研究,具体是基于药芯焊丝电弧焊具有工艺性能良好、生产效率较高等特点,对其在掘进机截割头制造过程中的具体应用进行解析,最后药芯焊丝电弧焊的应用要点进行概括,希望该焊接手段在我国制造行业将会获得更大的应用空间。
标签:药芯焊丝;电弧焊;工艺分析;掘进机截割头;应用形式药芯焊丝电弧焊方法(FMAW)是在熔化极气体保护焊(GMAW)上发展起来的,与GMAW工作原理类似,FMAW能够利用连贯性的电弧热达到熔化焊接接头金属的目标,从而有效的将焊丝和工件衔接在一起[1]。
FMAW焊丝为管状构造,电弧维护是药芯内药剂分解的气体(通常为CO2)。
基于药芯焊丝电弧焊可以实现优化工艺性能等实况,本文对其工艺特点与在工业制造领域具体应用形式进行研究。
1 药芯焊丝电弧焊工艺特点分析(1)焊接工艺性能优良。
与实芯焊丝气保护焊相比较,药芯焊丝电弧焊在获得优良焊缝金属方面体现出巨大优越性。
对其原因进行剖析,主要是由于药芯内存有稳弧剂与造渣剂,从而保证电弧的稳定性与柔韧性,熔滴过渡环节的均匀性,残渣溅出量的极少性与易脱落性,焊道的优质性。
(2)生产效率高。
焊接生产效率可以由熔敷速度间接体现出来。
对于药芯焊丝电弧焊而言,因为药芯导电性不强,且大部分电流汇聚在横截面积较小的金属位置,所以焊接电流密度变大,焊丝熔敷速率势必会提高。
与手工电弧焊相比较,药芯焊丝电弧焊熔敷速度更大,两者速度比大概为1:4。
基于电弧焊熔敷速度又与焊丝半径相关联这一实况,适度减少焊丝半径,可以确定增加熔敷速度的效果,目前科研人员正研究半径(r≤010.8mm)的藥芯半径。
(3)焊接成本相对较低。
相关资料记载,药芯焊丝CO2保护焊的成本花销不足手工电弧焊的90%。
尽管其成本与实芯焊丝CO2大体持平,但是仅仅是药芯焊丝成本略高于实芯焊丝,其他方面制造成本均低于实芯焊丝[2]。
这能够间接的推测出随着药芯焊丝的改良发展,以及其单价的压缩,药芯焊丝电弧焊的经费开销势必会低于实芯焊丝CO2保护焊。
管45°对接药芯焊丝CO2气体保护焊焊接工艺分析摘要:药芯焊丝C02气体保护焊综合了焊条电孤焊和普通熔化极气体保护焊的优点。
药芯焊丝C02气体保护焊的推广应用,必将极大的提高工程焊接质量及施工生产效率。
在我厂电力机车变压器箱体焊接中,管对接应用广泛。
在工厂批量生产过程中,结合实际生产中的经验,具体就药芯焊丝C02气体保护焊一管45°对接焊(Φ159 mmx8mm)中的焊前准备、焊接特点、焊接工艺参数、操作技术要领、典型缺陷预防等方面作了介绍。
关键词:管对接;操作技术;焊接工艺;典型缺陷预防引言药芯焊丝C02气体保护焊综合了焊条电弧焊和普通熔化极气体保护焊的优点,具有焊缝成形美观、电弧稳定性好、飞溅少、熔敷速度快、熔敷效率和生产效率高的优点。
药芯焊丝C02气体保护电弧焊的推广应用,必将极大地提高丁程焊接质量及施工生产效率。
本文涉及的管材材质为Q345E,规格Φ159 mmx8 mm,是一种低合金结构钢。
产量大、成本低、杂质较多,且具有一定的力学性能,一般在热轧状态下供应。
适用于一般结构钢和工程用热轧钢板、钢带、型钢、棒钢。
可供焊接、铆接、以及栓接构件之用。
广泛应用于桥梁、船舶、建筑工程中制作各种静负荷的金属结构件不需要热处理的一般机械零件和普通焊接件,是一种用途广泛的工程用钢。
电源类型与极性:直流正接;焊丝干伸长15-20 mm;焊丝型号及规格:E501T-11.2 mm;保护气体:C02(纯度不低于99.5%)。
1.焊接工艺管对接药芯焊丝CO2气体保护焊焊接工艺(包括焊前准备、焊接材料的选择、预热和层间温度)如下:1.1焊接前准备a )坡口加工300~400 MPa级别的低合金高强钢,如Q345E.通常状态下坡口均是机械加工的坡口。
这一级别的低合金钢气割性能与碳素结构钢的一样良好。
在气割边缘宽lmm范围内虽有淬硬现象,但由于淬硬区很窄小,焊接过程中可以将淬硬区熔入焊缝金属的熔池中.气割后的边缘不需要进行机械加工就可以直接施焊。
药芯焊丝电弧焊工艺方法
药芯焊丝电弧焊的工艺方法,主要分为自保护药芯焊丝电弧焊和气体保护药芯焊丝电弧焊两种。
现代的自保护药芯焊丝电弧焊,可在最高风速为48km/h的施工现场使用,且能保证焊缝金属的力学性能符合相应的技术要求。
由于不需要外加保护气体,除了上述药芯焊丝电弧焊共有的优点,自保护药芯焊丝电弧焊还具有下列可利用的特点:
1)省略了供气系统的设施和操作步骤,节约了与此相关的一切费用。
解决了施工现场供气困难的问题。
2)简化了焊枪和送丝机的结构,降低了这些设备的维修时间和费用。
3)省去了野外施工现场的挡风屏障,节省了由此引起的人力和物力。
4)可以采用较长的焊丝伸出长度(50~70mm),熔敷率更高、同时降低了焊接热输入。
5)操作工艺性好,可适应全位置焊接。
6)搭桥性好,可放宽焊件接缝组装间隙容差。
7)熔深较大,可用于窄坡口的焊接,提高了经济性。
8)焊前准备的辅助时间短,缩短了焊接生产周期,提高了总的焊接效率。
在早期,自保护药芯焊丝电弧焊的应用范围受到很大的限制,主要原因是焊缝的质量和力学性能达不到重要焊接结构提出的高要求。
近年来。
自保护药芯焊丝有了较大的发展,熔敷金属最高抗拉强度可达620MPa,-40℃低温的缺口冲击功,可满足不低于27J的要求。
目前自保护药芯焊丝电弧焊,不仅在一般钢结构制造中得到应用,而且在桥梁、船舶、大型石油、天然气储罐、管道和海上建筑等重要焊接结构中推广应用。
药芯焊丝电弧焊焊接参数
药芯焊丝电弧焊的主要焊接参数有:焊接电流(送丝速度)、电弧电压、焊接速度及焊丝伸出长度
(1)焊接电流药芯焊丝电弧焊与MIG/MAG焊相似;使用直流平特性焊接电源,焊接电流与送丝速度成正比关系,同时还取决于焊丝伸出长度。
加大焊接电流,提高焊丝的熔化速度和熔敷率;但过大的焊接电流会形成凸形的焊道,不仅加大了焊丝的消耗量,而且使焊道成形不良。
焊接电流与电弧电压之间存在一定的匹配关系。
随着焊接电流的提高,应适当增加电弧电压,以形成外形良好的焊道。
电弧电压过高,可能导致气孔的产生。
(2)电弧电压在焊接电流、焊接速度和焊丝伸出长度保持不变的条件下,改变电弧电压可能产生以下的作用:
1)较高的电弧电压,导致形成较宽的较平滑的焊道。
2)过高的电弧电压,会引起焊缝产生气孔。
3)过低的电弧电压,使焊道成凸形,恶化焊道成形。
最佳的电弧电压,应根据所选定的焊接电流、焊接速度和焊丝伸出长度确定。
(3)焊接速度与其他弧焊方法相似,焊接速度是调整焊道成形的主要工艺参数之一。
在电弧电压、焊接电流和焊丝伸出长度保持不变的条件下,改变焊接速度将引起焊道形状产生以下变化:
1)焊接速度太高,使焊道的凸度增加,造成焊缝边缘参差不齐。
2)焊接速度太低,会造成焊缝金属夹渣、焊道表面变的粗糙、不均整。
为使焊道成形良好,焊接速度必须适中,并与所选定的焊接电流和电弧电压相匹配。
(4)焊丝伸出长度药芯焊丝电弧焊时,焊丝的伸出长度是指导电嘴末端至焊件表面的距离。
与传统的MIG/MAG焊相似,焊丝伸出长度变化所产生的影响更为明显。
在电弧电压、送丝速度和焊接速度保持不变的条件下,改变焊丝伸出长度将产生以下主要影
响。
1)增加焊丝伸出长度,则降低焊接电流,相反则提高焊接电流。
2)增加焊丝伸出长度,降低了实际的电弧电压,导致形成凸度较大的焊道,气孔形成倾向减小。
3)在焊接组装质量较差、根部间隙较大的焊件时,瞬间加大焊丝伸出长度,可减弱烧穿的倾向。
为保护焊道良好的成形,焊接过程中,焊丝伸出长度容许变化的范围:对于小于25mm的焊丝伸出长度为±3.2mm;对于大于25mm的焊丝伸出长度为±6.4mm。