5线性定常系统的综合 (2)
- 格式:ppt
- 大小:993.50 KB
- 文档页数:70
A. B. C.A. B. C. D.A. B. C. D.A. B. C. D.A. B. C.A. B. C. D.A. B. C.A. B. C.A. B. C.A. B. C.对. 错对. 错A. B. C. D.A. B. C. D.A. B. C. D.A. B. C. D.某系统的传递函数为,该传递函数有(A. B. C. D.某典型环节的传递函数是,则该环节是(已知系统的单位脉冲响应函数是,则系统的传递函数是(A. B. C. D.A. B. C. D.A. B. C. D.某系统的传递函数是,则该可看成由(A. B. C. D.A. B. C. D.A. B. C. D.对. 错对. 错对. 错.闭环极点为的系统.闭环特征方程为的系统.阶跃响应为的系统.脉冲响应为的系统.最大超调量 DA. B. C. D.已知二阶系统的传递函数是,则该系统属于A. B. C. D.A. B. C. D.已知系统的开环传递函数为,则其型别为(A. B. C. D.已知系统的开环传递函数为,则该系统的开环增益为A. B. C. D.若某负反馈控制系统的开环传递函数为,则该系统的闭环特征方程为. B.. DA. B. C. D.某单位反馈系统的开环传递函数为,则该系统要保持稳定的. B. C. D.A. B. C. D.系统在作用下的稳态误差,说明(.系统型别 BA. B. C. D.A. B. C. D.A. B. C. D.A. B. C. D..最大超调量 DA. B. C.A. B. C.特征方程最靠近虚轴的根和虚轴的距离表示系统的稳定裕度,越大则系统的稳定性越低。
对. 错对. 错对. 错对. 错对. 错A. B. C. D.A. B. C. D.系统渐近线与实轴正方向夹角为(A. B. C. D.A. B. C. D.A. B. C. D.A. B. C. D.、 B、、 D、A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.对. 错对. 错对. 错对. 错A. B. C. D.A. B. C. D.已知单位反馈系统的开环传递函数为,则根据频率特性的物理意义,该闭环系统输入信号为时系统的稳态输出为(A. B.C. D.A. B. C. D.A. B.C. D.A. B. C. D.传递函数G(S)为()。
2012年现代控制理论考试试卷一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的,( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。
( √ )2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现。
( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
( √ )4. 对线性定常系统xAx =&,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。
( √ )5.一个不稳定的系统,若其状态完全能控,则一定可以通过状态反馈使其稳定。
( × )6. 对一个系统,只能选取一组状态变量;( √ )7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;( × )8. 若传递函数1()()G s C sI A B -=-存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;( × )9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;( × )10. 状态反馈不改变系统的能控性和能观性。
二、已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R2上的电压为输出量的输出方程。
(10分)解:(1)由电路原理得:二.(10分)图为R-L-C 电路,设u 为控制量,电感L 上的支路电流和电容C 上的电压2x 为状态变量,电容C 上的电压2x 为输出量,试求:网络的状态方程和输出方程,并绘制状态变量图。
解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。
以电感L 上的电流和电容两端的电压为状态变量,即令:12,L c i x u x ==,由基尔霍夫电压定律可得电压方程为:从上述两式可解出1x •,2x •,即可得到状态空间表达式如下:⎥⎦⎤⎢⎣⎡21y y =⎥⎥⎦⎤⎢⎢⎣⎡++-211212110R R R R R R R ⎥⎦⎤⎢⎣⎡21x x +u R R R ⎥⎥⎦⎤⎢⎢⎣⎡+2120三、(每小题10分共40分)基础题(1)试求32y y y u u --=+&&&&&&&的一个对角规范型的最小实现。
《现代控制理论》复习题一、填空题1.动态系统的状态是一个可以确定该系统 的信息集合。
这些信息对于确定系统 的行为是充分且必要的。
2.以所选择的一组状态变量为坐标轴而构成的正交 空间,称之为 。
3. 定义: 线性定常系统的状态方程为()()()x t Ax t Bu t =+&,给定系统一个初始状态00()x t x =,如果在10t t >的有限时间区间10[,]t t 内,存在容许控制()u t ,使1()0x t =,则称系统状态在0t时刻是的;如果系统对任意一个初始状态都 , 称系统是状态完全 的。
4.系统的状态方程和输出方程联立,写为⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x &,称为系统的 ,或称为系统动态方程,或称系统方程。
5.当系统用状态方程Bu Ax x+=&表示时,系统的特征多项式为 。
6.设有如下两个线性定常系统7002()05000019I x x u -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦&则系统(I ),(II )70001()0504000175II x x u -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦&的能控性为,系统(I ) ,系统(II ) 。
7.非线性系统()xf x =&在平衡状态e x 处一次近似的线性化方程为x Ax =&,若A 的所有特征值 ,那么非线性系统()x f x =&在平衡状态e x 处是一致渐近稳定的。
8.状态反馈可以改善系统性能,但有时不便于检测。
解决这个问题的方法是: 一个系统,用这个系统的状态来实现状态反馈。
9.线性定常系统齐次状态方程解)()(0)(0t x e t x t t A -=是在没有输入向量作用下,由系统初始状态0)(x t x =激励下产生的状态响应,因而称为 运动。
10.系统方程()()()()()x t Ax t bu ty t cx t=+⎧⎨=⎩&为传递函数()G s的一个最小实现的充分必要条件是系统。
第三十八章线性定常控制系统的数学模型第一节控制系统模型的构成一、控制系统的模型描述控制系统动态特性的数学表达式称为系统的数学模型,它是分析和设计系统的依据。
数学模型应当既能足够准确地反映系统的动态特性,又具有较简单的形式。
实际系统都程度不同地存在非线性和分布参数特性,如果这些因素影响不大,则可忽略不计。
在正常工作点附近变化时,可以用线性化模型来处理;但当系统在大范围内变化时采用线性化的模型就会带来较大误差。
可以根据系统内部的变化机理写出有关的运动方程,或者通过实验测取系统的输入!输出数据,然后对这些数据进行处理,从而建立系统的数学模型。
前者是机理法,后者是测试法,又称系统辨识。
二、微分方和差分方程微分方程是连续系统最基本的数学模型,可按下列步骤建立:"!将系统划分为单向环节,并确定各个环节的输入量、输出量。
单向环节是指后面的环节无负载效应,即后面的环节存在与否对该环节的动态特性没有影响。
#!根据系统内部机理,通过简化、线性化、增量化建立各个环节的微分方程。
$!消去中间变量,保留系统的输入量、输出量,得出系统的微分方程。
%!整理成标准形式,将含输出量的项写在方程左端,含输入量的项写在右端,并将各导数项按降阶排列。
设&!’,则单输入!单输出系统的微分方程的一般形式为((")())*+"((&!")())*…*+&!"(!())*+&(()),-./(’)())*-"/(’!")())*…*-’!"/!())*-’/())($0!")离散系统在某一时刻12的输出((1),可能既与同一时刻的输入与同一时刻的输入/(1)有关,又与过去时刻的输入((1!"),…,/(1!’)有关;而且还与过去时刻的输出/(1!"),…,((1!&)有关。
因此,&!’时,输入和输出之间的关系可表示为#($)*%"#($!")*…*%"#($!"),&.’($)*&"’($!")*…*&(’($!()($0!#)不失一般性,可以假定/(1),.,((1),.,13.。
《现代控制理论》习题第一章 控制系统的状态空间模型1.1 考虑以下系统的传递函数:656)()(2+++=s s s s U s Y试求该系统状态空间表达式的能控标准形和可观测标准形。
1.2 考虑下列单输入单输出系统:u y y yy 66116=+++试求该系统状态空间表达式的对角线标准形。
1.3 考虑由下式定义的系统:Cxy Bu Ax x=+=式中]11[,213421=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=C B A ,--试将该系统的状态空间表达式变换为能控标准形。
1.4 考虑由下式定义的系统:Cxy Bu Ax x=+=式中]011[,10030021101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=C B A ,--试求其传递函数Y(s)/U(s)。
1.5 考虑下列矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001100001000010A试求矩阵A 的特征值λ1,λ2,λ3 和λ4。
再求变换矩阵P ,使得),,,(diag 43211λλλλ=-AP P第二章 状态方程的解2.1 用三种方法计算下列矩阵A 的矩阵指数函数At e 。
1) ⎥⎦⎤⎢⎣⎡--=5160A; 2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6116100010A2.2 计算下列矩阵的矩阵指数函数At e 。
1) ⎥⎦⎤⎢⎣⎡=0010A ; 2) ⎥⎦⎤⎢⎣⎡=1002--A ; 3) ⎥⎦⎤⎢⎣⎡-=0110A ; 4) ⎥⎦⎤⎢⎣⎡=1021A5) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=200010011A ; 6) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210010001A ; 7) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000100010A2.2 给定线性定常系统Ax x=式中⎥⎦⎤⎢⎣⎡--=2310A且初始条件为⎥⎦⎤⎢⎣⎡-=11)0(x试求该齐次状态方程的解x (t )。
2.4 已知系统方程如下[]xy u x x 11015610-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=求输入和初值为以下值时的状态响应和输出响应。
现代控制理论试卷 1一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打×(1)用独立变量描述的系统状态向量的维数是唯一。
()(2)线性定常系统经过非奇异线性变换后,系统的能观性不变。
()(3)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。
()(4)状态反馈不改变被控系统的能控性和能观测性。
()(5)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时能控和能观的。
()二、(12分)已知系统1001010,(0)00121x x x⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求()x t.三、(12分) 考虑由下式确定的系统:2s+2(s)=43Ws s++,求其状态空间实现的能控标准型和对角线标准型。
四、(9分)已知系统[]210020,011003x x y⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?五、(17分) 判断下列系统的能控性、能观性;叙述李亚普诺夫稳定性的充要条件并分析下面系统的稳定性.[]xy u x x 11103211=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=六、(17分)已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 2∑ []22222110,01011x x u y x -⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦求出串联后系统的状态模型和传递函数.七、(15分)确定使系统2001020240021a x x u b -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦为完全能控时,待定参数的取值范围。
八、(8分)已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。
现代控制理论 试卷 1参考答案一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打× (1) 用独立变量描述的系统状态向量的维数是唯一。
实验二线性定常系统的瞬态响应一、实验目的2、掌握瞬态响应的测量方法及实验操作技能。
3、熟练掌握 Matlab 仿真平台的应用及实验中常用函数的使用方法。
4、通过实验,深化对线性定常系统的理解,提高实验技能和分析问题的能力。
二、实验原理1、线性时不变系统线性时不变系统在同一时刻作用于不同的信号,其输出的响应相互独立。
线性时不变系统可以用输入与输出之间的关系来描述,即系统的输入信号与输出信号之间存在线性关系,而且系统对同一输入信号的响应与系统的工作时间无关。
2、瞬态响应瞬态响应是指当输入信号由零变为非零时,系统输出信号在一段时间内的响应,这个时间段叫做瞬间响应时间。
瞬态响应包括超调、上升时间、峰值时间、定态误差等,通过测量系统的瞬态响应特性,可以评价系统的性能和稳定性。
3、系统特征方程假设线性时不变系统的输入输出关系可以用某种函数 f(t) 表示,在时域中可以表示为:y(t)=f(t)*x(t)其中 y(t) 为系统的输出信号,x(t) 为系统的输入信号,符号 * 表示卷积运算。
在复域中,系统可以表示为:Y(s)=G(s)X(s)其中 G(s) 为系统的传递函数,Y(s)、X(s) 分别为系统的输出与输入的拉氏变换,传递函数可以表示为:D(s)+a1D(s-1)+a2D(s-2)…..+apD(s-p)=b0X(s)+b1X(s-1)+b2X(s-2)…..bnX(s-n)其中 D(s) 为复域中的微分算子,a1-a2…ap 和 b1-b2…bn 为常数系数。
三、实验内容1、绘制系统阶跃响应曲线1)将 RC 阻塞放入实验板上,按下 RESET 按键,使运算放大器处于初始状态。
2)将 DC 发生器的正负极分别连接到实验板中的 VCC 和地,调整 DC 发生器的电压,使其输出为 3V。
3)将信号发生器的正极连接到实验板的输入端,负极连接到地,信号发生器输出一个幅值为 1V,频率为 1kHz 的方波信号。