非线性控制系统的相平面分析法讲解
- 格式:doc
- 大小:317.50 KB
- 文档页数:8
非线性系统的分析与控制一、引言非线性系统是指系统的输入与输出之间存在着非线性关系的一类系统。
非线性系统由于其复杂性和多样性,已经成为了现代自动控制与系统工程中的一个热门研究领域。
非线性系统的分析与控制是目前自动控制领域研究的重点之一。
本文主要介绍非线性系统的分析和控制方法。
二、非线性系统的描述非线性系统是指系统输入和输出之间存在非线性关系的系统。
非线性系统可以用数学模型来描述。
常见的一些非线性数学模型有:常微分方程、偏微分方程、差分方程、递推方程等。
非线性系统的特性可以归纳为以下几个方面:1.非线性系统的输入和输出之间存在非线性关系,即输出不是输入的线性函数。
2.非线性系统的行为不稳定,其输出随时间而变化。
3.非线性系统的行为是确定的,但是通常不能被解析地表示。
4.一些非线性系统可能会表现出周期性或者混沌现象。
三、非线性系统的分析方法对非线性系统进行分析是了解和掌握其行为的前提。
主要的分析方法有线性化法和相平面法。
1.线性化法线性化法是将非线性系统在某一特定点附近展开成一系列的一阶或者二阶泰勒级数,然后用线性系统来代替非线性系统,进而对非线性系统进行分析。
线性化法的优点是简单易行,但是必须要求非线性系统在特定点附近的行为与线性系统相似,否则线性化法就失效了。
2.相平面法相平面法通过画出非线性系统的相图来表示系统的行为,较常用的是相轨线和极点分析法。
相轨线是用非线性系统的相图来描述其行为。
相图是将系统的状态表示为一个点,它的坐标轴与系统的每个状态变量相关。
极点分析法则是在相平面上找出使系统输出输出的状态点,然后找出与这些状态点相关的所有极点,以确定出系统的稳定性。
四、非线性系统的控制方法目前,非线性系统的控制方法主要包括反馈线性化控制、自适应控制、滑动模式控制和模糊控制等。
1.反馈线性化控制反馈线性化控制方法以线性控制理论为基础,将非线性系统通过反馈线性化方法转化为等效的线性控制系统,以便使用线性控制理论进行控制。
实验八非线性控制系统分析实验目的1.掌握二阶系统的奇点在不同平衡点的性质。
2.运用Simulink构造非线性系统结构图。
3.利用Matlab绘制负倒描述函数曲线,运用非线性系统稳定判据进行稳定性分析,同时分析交点处系统的运动状态,确定自振点。
实验原理1.相平面分析法相平面法是用图解法求解一般二阶非线性系统的精确方法。
它不仅能给出系统稳定性信息和时间特性信息,还能给出系统运动轨迹的清晰图像。
设描述二阶系统自由运动的线性微分方程为片+ 2冲+承=0分别取和为相平面的横坐标与纵坐标,并将上列方程改写成dx _24/ +曲H上式代表描述二阶系统自由运动的相轨迹各点处的斜率。
从式中看出在’「及—,即坐标原点(0,0)处的斜率灯‘以_门。
这说明,相轨迹的斜率不能由该点的坐标值单值的确定,相平面上的这类点成为奇点。
无阻尼运动形式(二--)对应的奇点是中心点;欠阻尼运动形式(「上」)对应的奇点是稳定焦点;过阻尼运动形式(―-)对应的奇点是稳定节点;负阻尼运动形式(:=二)对应的奇点是不稳定焦点;负阻尼运动形式-)对应的奇点是不稳定节点;■-描述的二阶系统的奇点(0,0)称为鞍点,代表不稳定的平衡状态。
2.描述函数法设非线性系统经过变换和归化,可表示为非线性部分「与线性部分,相串联的典型反馈结构如图所示。
从图中可写出非线性系统经谐波线性化处理线性化系统的闭环频率响应为ROM由上式求得图中所示非线性系统特征方程为■-,还可写成呛曲)=- ….或4丁 丁,对应着一个正弦周期运动。
若系统扰动后,上述周期运 动经过一段时间,振幅仍能恢复为 A 二:,则具有这种性质的周期运动,称为自激振荡。
可见自激振荡就是一种振幅能自动恢复的周期运动。
周期运动解A 二:可由特征方程式求得,亦可通过图解法获得。
由等式 宀小在复数平面上分别绘制|」 曲线和;, 曲线。
两曲线的 交点对应的参数即为周期运动解。
有几个交点就有几个周期运动解。
至于该解是 否对应着自激振荡状态,取决于非线性系统稳定性分析。
非线性控制系统设计和分析一、引言非线性控制系统是一类关于非线性系统的控制理论,具有一定的广泛性和复杂性。
在现代控制理论中,非线性控制系统一直是研究的热点,得到了广泛的应用。
本文旨在探讨非线性控制系统的设计和分析方法,对其进行深入剖析和研究。
二、非线性系统的基本概念1.非线性系统的概念非线性系统指的是一个不满足线性叠加原理的动态系统,即其输入和输出之间的关系不是简单的比例关系。
在现实中的很多系统,如电机、飞行器、化学反应、金融市场等,都是非线性系统。
2.非线性系统的分类按照系统的状态和输入可以将非线性系统分为时变和时不变两类。
按照系统的动态特性可以分为不稳定、稳定和渐进稳定三类。
按照系统的性质可以分为连续和离散两类。
三、非线性系统的数学模型非线性系统的数学模型可以用微分方程、差分方程、偏微分方程等方式表示,采用状态方程、输入-输出方程、状态-输出方程等方式描述。
若系统的动态方程可以表示为:$$\frac{dx}{dt}=f(x,u)$$其中$f(x,u)$是非线性函数,则上式就是非线性系统的微分方程。
四、非线性控制系统的设计方法1.线性化设计法线性化是将非线性动态系统在一个操作点附近,通过Taylor级数展开为线性动态系统。
因此,线性化设计法可以将非线性动态系统的设计问题转化为线性动态系统的设计问题。
线性化方法主要有两种:一是状态反馈线性化法;二是输出反馈线性化法,两种方法可以互相转化。
线性化方法的优点是简单易行,缺点是受到线性化误差的影响。
2.非线性控制设计法非线性控制设计法是基于非线性系统控制理论进行的,包括经典的反馈线性化控制法、滑模控制法、自适应控制法、模糊控制法和神经网络控制法等。
反馈线性化控制法:反馈线性化法是一种将非线性系统转化为线性系统的控制方法,它通过反馈来改变系统的输入来实现控制。
反馈线性化控制法有很好的稳定性和鲁棒性。
滑模控制法:滑模控制法是一种常用的非线性控制方法,具有较好的容错能力和鲁棒性。
7-5 非线性控制系统的相平面分析法 相平面法在分析非线性系统时是很有用处的。但是,我们在介绍非线性系统的分析方法之前,先讨论一下相平面法在分析线性二阶系统中的应用是很有好处的。因为许多非线性元件特性一般都可分段用线性方程来表示,所以非线性控制系统也可以用分段线性系统来近似。 一、线性控制系统的相平面分析 1、阶跃响应 设线性二阶控制系统如图7-38所示。若系统开始处于平衡状态。试求系统在阶跃函数)(1)(0tRtr 作用下,在ee平面上的相轨迹。 建立系统微分方程式,由图示系统可得 KeccT 因为cre,代入上式得 rrTKeeeT (7-31) 对于0),(1)(0ttRtr时,0)()(trtr 因此上式可写成 0KeeeT (7-32) 方程(7-32)与(7-22)式相仿。因为假设系统开始处于平衡状态,所以误差信号的初始条件是0)0(Re和0)0(e。ee平面上的相轨迹起始于)0,(0R点,而收敛于原点(系统的奇点)。当系统特征方程的根是共轭复数根,并且位于左半平面时,其相轨迹如图7-39(a)所示。根据ee平面上的相轨迹就可方便的求得cc平面上系统输出的相轨迹,如图7-39(b)所示。由图7-39可见,欠阻尼情况下系统的最大超调量P及系统在稳态时的误差为零。因为ee平面相轨迹最终到原点,即奇点;所以在cc平面上相轨迹最终到达0
Rc
的稳态值,则奇点坐标为)0,(0R。 2、斜坡响应 对于斜坡输入tVtr0)(;当0t时,)(tr的导数0)(Vtr及0)(tr。因此,方程(7-31)可以写成
0VKeeeT 或 0)(0KVeKeeT
令veKVe0,代入上式,则有
0VKeeeT
(7-33)
在vvee平面上,方程(7-33)给出了相平面图与在ee平面上方程(7-32)给出的相平面图是相同的。 应当指出,特征方程式的根确定了奇点的性质,在vvee平面上的奇点的位置是坐标原点,而在ee平面上奇点坐标为)0,(0KV点。又因为我们假设系统初始状态为平衡状态。 所以误差信号的初始值,0)0(e,0)0(Ve。如果式(7-33)的特征根是处于左半平面的共轭复数根时,则在ee平面上的相轨迹为如图7-40所示。
由上面分析可以看出,图7-38所示系统,对于斜坡输入时的相轨迹,除整个相轨迹图形向右平移KV0之外,其他与阶跃输入时完全相同。另外,当系统在斜坡输入时,相轨迹最终不是到原点而是卷入奇点)0,(0KV。这表示系统在斜坡输入时呈现的稳态误差为KV0。
二、非线性控制系统的相平面分析 当非线性元件静特性可以用分段直线来表示时,这样的非线性系统就可以用几个分段线性系统来描述。这时,整个相平面可以划分成若干个区域,其中每一个区域相应于一个单独的线性工作状态。相应地每一个区域都有一个奇点,不过这个奇点有时可能不一定在本区域之内,而是在其它区域。如果奇点位于本区域之内,则称为实奇点;如果奇点位于本区域之外,那么该区内的相轨迹就永远不可能到达该点,因此,称这样的奇点为虚奇点。具有分段线性特性的二阶系统,一般只有一个实奇点,因此与具有实奇点的区域相邻接的所有区域都将具有虚奇点。每一个奇点的位置和性质,都取决于相应区域的运动方程。每一个区域的相平面图均表示一个相应线性系统的相平面图。有了这些相平面图以后,只要在区域的边界线上,把相应的相轨迹连接起来,就可构成整个系统的完整的相轨迹。下面举例说明具体做法。 1、具有非线性增益的控制系统 设如图7-41(a)所示的非线性控制系统,图中NG表示的方块是一个非线性放大器,其静特性如图7-41(b)所示,当误差信号e的数值大于1e或小于1e时,放大器的增益k分别等于1或小于1,即
mkee 11eeee (7-34) 可见,系统在大误差信号时,具有大的增益;而在小误差信号时,增益也小。 因为图7-40(a)所示系统是分段线性的。所以可以把它看成是两个线性系统的组合,其相应的相轨迹也由两个线性系统的相轨迹组合而成。具体做法如下: 假设系统初始状态为静止平衡状态。根据系统结构图,写出变量c与m之间的微分方程为 KmccT 由于cre,代入上式得 rrTKeeT (7-35) 设系统在单位阶跃输入)(1)(ttr作用下,在ee平面上作相应的相轨迹。 对于单位阶跃输入,当0t时,0rr,所以式(7-35)成为 0KmeeT (7-36) 上式即为非线性系统在单位阶跃作用下的误差微分方程。将式(7-34)代入式(7-36)得下列两个线性微分方程: 0KeeeT 1ee (7-36a) 0KkmeeT 1ee (7-36b)
在下面的分析中,假设方程(7-36a)为欠阻尼的运动方程,其特征根为具有负实部的共轭复数根,对应的相轨迹如图7-42(a)所示,奇点(0,0)为稳定焦点。假设方程(7-36b)为过阻尼的运动方程,相应的特征根为两个负实根,相轨迹如图7-42(b)所示,奇点(0,0)为稳定节点。 根据方程(7-36a)和(7-36b)所确定的相应区域,将图7-42(a)和图7-42(b)组合在一起就可得到图7-41所示非线性系统的相轨迹图,如图7-43所示。图中系统参数为:1T,0625.0k,4K和2.01e。
由图7-43可知,相平面被分割成三个区域:在直线1ee和1ee限定的区域内对应着方程(7-36b),而在这个区域以外相轨迹由方程(7-36a)确定。相轨迹起始于A点,该点由初始条件,0)0(e,0)0(e确定。从A点出发的相轨迹,首先沿7-42(a)所示相轨迹运动,并“企图”收敛到稳定焦点(虚奇点,坐标原点)。然而,当相点(描述点)运动到B点,即到达本区域的边界线1ee线上时,若继续运动将越出边界而进入新的区域。因此,相轨迹将在B点发生转换,B点是上一区域的终点,同时也是下一区域的起点。从B点开始直至再发生下一次转换为止,相点将沿图7-42(b)所示相迹运动而企图收敛到稳定节点),(00。但是在C点,系统又一次发生转换,相轨迹趋向于收敛虚奇点(稳定焦点)。同样,当相点到达D点时又将发生转换……如此反复继续下去,直至最后相轨迹进入1e区域,不再越出并最终收敛到稳定节点,即实奇点(0,0)为止。可见,非线性系统的整个相轨迹为ABCDEFO,如图7-43的实线所示。显然,系统在阶跃输入下稳态误差为零。图7-43中用虚线描绘的相轨迹为图7-44所示欠阻尼二阶系统在单位阶跃作用下的相轨迹图。比较这两条相轨迹,可见前者所对应的阶跃响应特性比后者要好。首先收敛速度快,即系统速度性提高了,其次,超调量小。对于较小的阶跃输入,响应甚至是无超调的。对于中等大小的阶跃输入,系统的阶跃响应具有一次超调。对于大的阶跃输入,虽然在系统的响应曲线中可能出现超调和反向超调,但其超调量肯定比图7-44所示的线性系统要小。图7-41所示系统在典型阶跃输入时的误差响应曲线如图7-45。 2、继电系统 在图7-41所示非线性随动系统中,将放大器换成继电器,并假定继电器具有理想的继电特性,系统结构图如图7-46所示。理想继电器特性的数学表达式为
11m 00ee (7-37) 假设系统初始状态为静止平衡状态。继电系统运动方程为 rrTKmeeT
对于阶跃输入)(1)(0tRtr,当0t时,有0rr,所以上式为
0KmeeT (7-38) 将式(7-37)代入上式得方程组
00KeeTKeeT 00ee )387()387(ba 显然,两个方程均为线性微分方程。因为继电特性是由两条直线段组成,所以两条直线段内继电系统的特性仍为线性的,只是在继电器切换时才表现出非线性特性。 将de
edee
代入(7-38)式,则有
0KmedeedeT
或 edeKmeTde 对上式两边进行积分得相轨迹方程
KmeKmeTKmeTeTee
000ln
由假设条件:00Re,00e代入上式可得
1ln0KmeTKmeTRe
(7-39)
代入m值则有
1ln1ln00KeTKeReKeTKeRe 00ee )397()397(ba 根据上两式可作出继电系统的相轨迹如图7-47所示。由图可见,相轨迹起始于)0,(0R点,在0e的区域内按方程(7-39a)变化,到达e轴A点时,继电器切换,相轨迹方程按方程(7-39b)变化。这样依次进行,最后趋于坐标原点(0,0),得系统完整的相轨迹如图7-47。另外由图可见,相轨迹转换均在纵轴上,这种直线称为开关线,它表示继电器工作状态的转换。
3、速度反馈对继电系统阶跃响应的影响 设系统结构图如图7-48所示,图中T。这时理想继电特性的数学表达式为