插补原理及控制方法
- 格式:ppt
- 大小:1.24 MB
- 文档页数:45
1、概述在机床的实际加工中,被加工工件的轮廓形状千差万别,各式各样。
严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成。
然而,对于简单的曲线,数控装置易于实现,但对于较复杂的形状,若直接生成,势必会使算法变得很复杂,计算机的工作量也相应地大大增加。
因此,在实际应用中,常常采用一小段直线或圆弧去进行逼近,有些场合也可以用抛物线、椭圆、双曲线和其他高次曲线去逼近(或称为拟合)。
所谓插补是指数据密化的过程。
在对数控系统输入有限坐标点(例如起点、终点)的情况下,计算机根据线段的特征(直线、圆弧、椭圆等),运用一定的算法,自动地在有限坐标点之间生成一系列的坐标数据,即所谓数据密化,从而自动地对各坐标轴进行脉冲分配,完成整个线段的轨迹运行,以满足加工精度的要求。
机床数控系统的轮廓控制主要问题就是怎样控制刀具或工件的运动轨迹。
无论是硬件数控(NC)系统,还是计算机数控(CNC)系统或微机数控(MNC)系统,都必须有完成插补功能的部分,只是采取的方式不同而已。
在CNC或MNC中,以软件(程序)完成插补或软、硬件结合实现插补,而在NC中有一个专门完成脉冲分配计算(即插补计算)的计算装置——插补器。
无论是软件数控还是硬件数控,其插补的运算原理基本相同,其作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标发出相互协调的进给脉冲,使被控机械部件按指定的路线移动。
有关插补算法问题,除了要保证插补计算的精度之外,还要求算法简单。
这对于硬件数控来说,可以简化控制电路,采用较简单的运算器。
而对于计算机数控系统来说,则能提高运算速度,使控制系统较快且均匀地输出进给脉冲。
经过多年的发展,插补原理不断成熟,类型众多。
从产生的数学模型来分,有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,有基准脉冲插补(又称脉冲增量插补)和数据采样插补。
在基准脉冲插补中,按基本原理又分为以区域判别为特征的逐点比较法插补,以比例乘法为特征的数字脉冲乘法器插补,以数字积分法进行运算的数字积分插补,以矢量运算为基础的矢量判别法插补,兼备逐点比较和数字积分特征的比较积分法插补,等等。
数控编程中的高速插补算法解读在数控机床的操作中,高速插补算法是至关重要的一环。
它能够使机床在高速运动中保持精准的定位和平滑的轨迹,从而实现高效的加工。
本文将对数控编程中的高速插补算法进行解读,探讨其原理和应用。
一、高速插补算法的原理高速插补算法是通过计算机对机床的轴运动进行控制,使其在高速运动中能够准确地按照预定的路径进行插补。
其原理主要包括两个方面:轨迹规划和速度控制。
1. 轨迹规划轨迹规划是指根据加工要求和机床的运动特性,确定机床在加工过程中的运动路径。
常见的轨迹规划方法有线性插补、圆弧插补和螺旋线插补等。
在高速插补算法中,需要根据机床的最大加速度和最大速度等参数,结合加工要求,确定合适的插补方式和路径。
2. 速度控制速度控制是指根据轨迹规划确定的路径,控制机床在运动过程中的速度。
在高速插补算法中,需要考虑机床的加速度和减速度,以及机床的最大速度等参数,通过合理的速度控制算法,使机床在高速运动中保持平稳的轨迹和准确的定位。
二、高速插补算法的应用高速插补算法在数控编程中有着广泛的应用。
它可以用于各种形状的曲线插补、复杂的轮廓加工和高速切割等。
下面将通过几个实际案例来介绍高速插补算法的应用。
1. 曲线插补在数控机床的加工过程中,经常需要对各种形状的曲线进行插补。
高速插补算法可以根据曲线的特点,通过合理的轨迹规划和速度控制,实现精准的曲线插补。
例如,在雕刻加工中,通过高速插补算法可以实现复杂曲线的精细加工,使得加工效率和加工质量得到提高。
2. 复杂轮廓加工在汽车零部件等复杂工件的加工中,常常需要进行复杂轮廓的加工。
高速插补算法可以根据轮廓的特点,通过合理的路径规划和速度控制,实现复杂轮廓的高效加工。
例如,在汽车车身板金加工中,通过高速插补算法可以实现车身轮廓的高速切割,从而提高生产效率和产品质量。
3. 高速切割在金属切割等领域,高速切割是一种常见的加工方式。
高速插补算法可以根据切割的要求,通过合理的路径规划和速度控制,实现高速切割。
插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
脉冲增量插补方法的原理
脉冲增量插补方法是指根据每个坐标轴的移动距离,通过给定的脉冲信号来实现机床的运动控制。
其原理如下:
1. 基准脉冲信号:根据给定的控制方式(比如脉冲数、脉冲频率等),产生用于驱动控制系统的基准脉冲信号。
2. 脉冲计数器:通过对基准脉冲信号进行计数,得到机床每个坐标轴的移动距离。
3. 增量运动控制:根据脉冲计数器的结果,控制机床按照指定的移动方向和距离进行运动。
根据脉冲计数器的正负值,可以确定运动的方向;根据脉冲计数器的绝对值,可以确定运动的距离。
4. 反馈控制:在实际运动过程中,通过传感器等装置对机床的运动状态进行反馈监测,以实现闭环控制。
根据反馈信息,可以对脉冲计数器进行修正,以提高运动的精度和稳定性。
总的来说,脉冲增量插补方法通过脉冲信号的计数和控制,实现了对机床的精确定位和移动控制。
这种方法简单、稳定,并且具有较高的精度和可靠性,广泛应用于数控机床等自动化设备中。
数控系统的实时插补以及加减速控制1 前言在数控系统中,为了保证机床在起动或停止时不产生冲击、失步、超行程或振荡,必须有专门的加、减速控制规律程序,以使机床在各种加工作业的情况下都能按照这个规律快速、准确地停留在给定的位置上,这就是所谓的加减速控制。
对于连续切削的数控机床,其进给速度不仅直接影响到加工零件的表面粗糙度和精度,而且刀具和机床的寿命以及生产效率也与进给速度密切相关。
对于不同材料的工件、加工刀具、加工方式和条件,应选择合适的进给速度。
而进给速度的控制方法则与采用的插补算法有关。
插补运算是数控系统根据输入的基本数据(如直线的起点和终点,圆弧的起点、终点和圆心,进给速度,刀具参数等),在轮廓起点和终点之间,计算出若干中间点的坐标值,通过计算,将工件轮廓描述出来。
插补的任务就是根据起点、终点、轨迹轮廓、进给速度,按数控系统的当量,对轮廓轨迹进行细化。
插补精度和插补速度是插补的两项重要指标,它直接决定了数控系统的控制精度和控制速度,所以插补是整个数控系统控制软件的核心。
由于每个中间点计算所需的时间影响系统的进给速度,而插补中间点的精度又影响到加工精度,因此,本文所采用的插补算法正是满足精度要求和实时性的关键所在。
2 系统采用的插补及加减速控制插补本系统采用的插补算法是时间分割法,或称采样插补法。
因为此法非常适合于以交流伺服电机为执行机构的半闭环位置采样控制系统,且能够满足实时性要求。
这种方法是把加工一段直线或圆弧的整段时间细分为许多相等的时间间隔,称为单位时间间隔(或插补周期)。
每经过一个单位时间间隔就进行一次插补运算,算出在这一时间间隔内各坐标轴的进给量,边计算,边加工,直至加工到终点。
在加工某一直线段或圆弧段时,先通过控制加速度来计算速度轨迹,然后通过速度计算,将进给速度分割成单位时间间隔的插补进给量,也就是轮廓步长,又称为一次插补进给量。
根据刀具运动轨迹与各坐标轴的几何关系,就可求出各轴在一个插补周期内的插补进给量,按时间间隔以增量形式给各轴送出一个个插补增量,通过执行机构使机床完成预定轨迹的加工。