植物多倍体的育种意义
- 格式:docx
- 大小:24.27 KB
- 文档页数:1
第九章倍性育种植物的倍性育种是植物育种的重要研究内容,主要包括单倍体育种和多倍体育种。
1.单倍体的基因呈单存在,加倍后获得的个体基因型高度纯合。
而常规育种需经多代自交才能获得基因型基本纯合的个体。
因此,单倍体育种可缩短育种的年限。
2.同源多倍体较二倍体具有某些器官增大或代谢产物含量提高的特点,对于以收获营养器官为目的的作物及无性繁殖作物有极好的育种利用价值。
3.人工创造多倍体也可以将野生种与栽培种的遗传物质重组,育成新型作物。
第一节多倍体育种多倍体:是指体细胞中有3个或3个以上染色体组的植物个体。
多倍体广泛存在于植物中。
据估计被子植物中约 50%以上是多倍体,禾本科中有75%,豆类中有18%,草类中有的物种80%为多倍体。
蓼科、景天科、蔷薇科、锦葵科、禾本科和鸢尾科中多倍体最多。
自然界存在的多倍体主要是异源多倍体,同源多倍体较少。
一、多倍体的种类、起源及特点自然界的多倍体是由二倍体进化而来的。
二倍体物种的染色体加倍,不同二倍体物种间杂交,染色体自发加倍是多倍体产生的主要来源(图9-1)。
(一)多倍体的来源多倍体的发生可通过二倍体的染色体数目加倍形成,也可经不同种属间杂交,而后经染色体数目加倍形成。
植物体细胞染色体数目加倍主要通过下列三种途径产生。
1 .合子染色体数目加倍一般是二倍体产生少数四倍体细胞或四倍体组织。
2.分生组织染色体加倍体细胞在有丝分裂过程中受外界环境的影响而发生异常,染色体正常复制、分裂,但细胞不分裂,导致细胞染色体数目加倍,染色体数目加倍的细胞发育成多倍性组织和器官。
3.不减数配子的受精结合(二)多倍体的类别根据多倍体染色体组的组成特点可将多倍体分为同源多倍体、异源多倍体、同源异源多倍体、节段异源多倍体、异数的(混合的)异源多倍体和倍半二倍体等多种类型。
育种上应用的主要是同源多倍体和异源多倍体。
1 .同源多倍体指体细胞中染色体组相同的多倍体,如同源四倍体黑麦(RRRR。
同源多倍体与二倍体相比,主要有下列两方面的效应:(1)生物学性状的变化。
多倍体育种的原理
多倍育种是通过杂交或突变等方法,将具有良好性状的个体进行交配或进一步繁殖,从而产生具有更好品质或更强适应性的后代。
其原理主要包括优势和组合优势两个方面。
优势是指杂交后代相比于父本有更好的性状表现。
在杂交过程中,不同个体之间的基因组合会引发一系列的基因效应,其中包括显性和隐性效应。
显性效应是指两个不同等位基因的任何一个对性状的表现优于另一个;而隐性效应是指只有同时拥有两个在两个等位基因里的基因时,性状才会表现出来。
这些基因效应的作用使得杂交后代相比于父本具有更强的适应性和品质。
组合优势是指杂交后代在某些性状上表现出比父本更好的表现。
这是因为杂交后代获得了来自两个不同个体的多样性基因组合,这种多样性可以导致基因的互补和协同作用。
通过组合优势,杂交后代可以拥有更高的生长速度、更好的抗病性、更高的产量等优势。
总体而言,多倍体育种通过杂交或突变等手段引入多样的基因组合和效应,使得后代具有更好的适应性和品质。
这种育种方法可以用于改良农作物、家禽、牲畜等种类的品种,提高其产量、抗病性、食用品质等方面。
一、实验目的1. 掌握化学诱导植物多倍体的原理和方法。
2. 学习利用秋水仙素诱导植物多倍体的一般方法及多倍体诱导在植物育种上的意义。
3. 学习利用细胞学方法观察鉴定多倍体的特点及诱导染色体加倍后的细胞学表现。
4. 利用染色体分析的方法对多倍体的细胞做出准确判断。
二、实验原理生物体的细胞核中都有相对稳定的染色体数目,这是物种的基本特征之一。
多倍体是指细胞中具有3个或3个以上的染色体组的生物体。
在植物育种上,利用多倍体可以改良作物的经济性状,同时还可以利用多倍体克服远缘杂交过程中的障碍。
秋水仙素是一种常用的化学诱导剂,可以抑制细胞有丝分裂过程中纺锤体的形成,使子染色体不能移向两极,从而诱导植物产生多倍体。
在适宜浓度的秋水仙素作用下,细胞经一定时期后仍可恢复正常,继续分裂,只是染色体数目加倍成为多倍性细胞。
三、实验材料与仪器1. 实验材料:大蒜根尖分生组织区2. 试剂:0.2%秋水仙素溶液、卡诺氏液、改良苯酚品红染液、盐酸酒精溶液3. 仪器:显微镜、载玻片、盖玻片、吸管、滴管、酒精灯、烧杯、剪刀、镊子、培养皿四、实验步骤1. 将大蒜根尖分生组织区剪取约0.5cm,放入装有0.2%秋水仙素溶液的培养皿中,处理48小时。
2. 将处理后的根尖用蒸馏水清洗3次,放入装有卡诺氏液的培养皿中固定30分钟。
3. 将固定后的根尖用蒸馏水清洗3次,放入装有盐酸酒精溶液的培养皿中解离10分钟。
4. 将解离后的根尖用蒸馏水清洗3次,放入装有改良苯酚品红染液的培养皿中染色10分钟。
5. 将染色后的根尖用蒸馏水清洗3次,制成临时装片。
6. 在显微镜下观察染色体的形态和数目,记录观察结果。
7. 将观察结果进行统计分析,判断多倍体诱导率。
五、实验结果与分析1. 实验结果在显微镜下观察,部分大蒜根尖细胞染色体数目加倍,形成多倍体细胞。
染色体数目加倍现象主要出现在有丝分裂中期。
2. 分析通过实验,我们成功利用秋水仙素诱导了大蒜根尖分生组织区的多倍体。
人工诱导多倍体在育种上的应用:与二倍体植株相比,多倍体植株的茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。
例如,四倍体葡萄的果实比二倍体品种的大得多,四倍体番茄的维生素C的含量比二倍体的品种几乎增加了一倍。
因此,人们常常采用人工诱导多倍体的方法来获得多倍体,培育新品种。
目前世界各国利用人工诱导多倍体的方法已经培育出不少新品种,如含糖量高的三倍体无子西瓜和甜菜。
此外,我国科技工作者还创造出自然界没有的作物——八倍体小黑麦。
基因变异还可以带来好处,比如说杂交水稻,三倍体无籽西瓜,八倍体小黑麦等,多数采用人工方法使其基因变异。
动物也有,比如短腿安康羊。
也有利用一些酶剪切基因,比如抗虫棉。
小麦中出现矮秆、抗倒伏的变异,这就是有利变异。
有一些小麦品种在高水肥的条件下产量很高,但是由于植株高,抗倒伏能力差,大风一来,就会大片大片地倒伏,既影响产量,又不容易收割。
怎样才能得到既高产又抗倒伏的品种呢?科学工作者利用一种普通的矮秆小麦抗倒伏能力强的特性,将这种小麦与高产的高秆小麦杂交,在后代植株中再挑选秆较矮、抗倒伏、产量较高的植株进行繁殖。
经过若干代的选育以后,就得到了高产、矮秆、抗倒伏的小麦新品种。
为了得到优良的新品种,人们还采用射线照射和药物处理等手段,使种子里的遗传物质发生改变在这些种子发育成的植株或它们的后代中,就会出现各种各样的变异。
从中选出对人有益的变异类型进行定向选育,就有可能得到农作物的新品种。
有一些小麦品种在高水肥的条件下产量很高,但是由于植株高,抗倒伏能力差,大风一来,就会大片大片地倒伏,既影响产量,又不容易收割。
怎样才能得到既高产又抗倒伏的品种呢?科学工作者利用一种普通的矮秆小麦抗倒伏能力强的特性,将这种小麦与高产的高秆小麦杂交,在后代植株中再挑选秆较矮、抗倒伏、产量较高的植株进行繁殖。
经过若干代的选育以后,就得到了高产、矮秆、抗倒伏的小麦新品种。
其实在生物,医学等各个方面还有很多好处我们知道,地球上的环境是复杂多样、不断变化的。
60城乡规划与园林景观在自然界中多倍体很常见,相关数据显示,在高峰植物中多倍体占据65%以上,高等植物中小麦、棉花、马铃薯以及甘蔗都是天然的多倍体植物。
一半以上的被子植物都是多倍体,75%以上的禾本科植物都是多倍体。
由此可见,多倍体植物的出现是动植物逐步走向高级的重要因素,同时也是多样物种形成的原因之一。
1.多倍体技术的特点和原理所谓多倍体育种技术就是通过人工方式让染色体增倍,因为多倍体植物的染色体加倍,植物从细胞到器官相比,二倍体植物的植株更大,尤其是叶子、花朵以及果实这些营养器官会出现明显的增大,同时多倍体植株有很强的抗逆性,对变化的自然环境适应能力很强,实际中会减少损失,带来经济效益。
在园艺作物中使用多倍体育种技术,在无性繁殖的植物种类中的作用和价值尤其显著。
因为通常情况下,相比较于二倍体植物,多倍体植物开花比较多,果实也比较大,植株的叶片也比较厚,在运输和贮藏的过程中多倍体植株损坏小,因此多倍体植株不仅在观赏方面存在一定价值,因其抗逆性也存在经济价值以及商业价值。
2.多倍体诱导材料2.1综合性状比较好的二倍体多倍体之所以有遗传性,是因为原有的低倍体材料拥有遗传性,而在染色体加倍的过程中,会增强原来的性状,并不会出现新性状。
一定要选择综合性状比较好的二倍体,避免因为细胞分裂不均衡的分配造成的植株不育。
2.2通过远缘杂交诱导异源多倍体远缘杂交会让2种细胞的染色体组合,组合后染色体会加倍,由此形成异源多倍体。
使用这种方式能避免后代的不育,也能在一定程度上提高植株的结实率,在后代中选择优良的个体培育新品种。
2.3使用杂合程度比较高的二倍体作为诱导材料选择这种材料是因为遗传上有很强的可塑性,也有很多样的遗传基础,在诱导其染色体加倍过程中会有很大的成功可能。
以往的试验可以看出,相比较于纯合二倍体,杂合程度比较高的二倍体培养出同源多倍体的几率更高,结得果实更多。
2.4选择收获营养器官的植物同源多倍体植物结果不多,种子比较干瘪,但是其营养器官通常比较饱满,因此这种类型的植物比如瓜果类、无性繁殖的植物、花卉都比较适合用作同源多倍体的诱导材料。
园艺植物育种:根据人类需要利用自然变异及利用品种间杂交,远缘杂交,人工诱变,离体培养和DNA分子改造等途径来创造新的变异,按照一定的目标进行选择,筛选出新品种。
园艺植物育种学:研究选育与繁殖园艺植物新品种的原理和方法的科学。
任务:改变植物的遗传模式,即基因型品种:经人工选择培育,在遗传上相对纯合稳定,在形态特征和生物学特性上相对一致,并作为生产资料在农业生产中应用的作物类型。
作物品种的特性:特异性、一致性、稳定性、适应性、优良性良种: 优良品种,指在适应的地区,采用优良的栽培技术,能够生产出高产、优质,并能适时供应产品的品种。
良种作用:(1)提高单位面积产量;(2)改进产品品质;(3)提高抗逆性,增强适应性和稳产性;(4)有利于耕作制度改革,提高复种指数;(5)扩大园艺植物种植面积;(6)有利于农业机械化、集约化管理及提高劳动生产率;园艺植物种质资源调查、搜集、保存、研究及利用。
无性繁殖定义:生物不是通过有性生殖,而是利用营养器官或体细胞、无融合生殖等繁殖后代的繁殖。
有性繁殖:生物通过有性过程产生的雌雄配子结合形成合子发育成新个体繁殖后代,有完整的个体发育周期。
品种的类型:(1)同行纯合类:包括纯育品种和自交系(2)同型杂合类:包括杂交种品种和营养系品种(3)异型纯合类:包括杂交合成群体和多系品种(4)异型杂合类:包括自由授粉品种和综合品种种质:是决定生物遗传性状,并将遗传信息从亲代传递给子代的遗传物质,遗传学上称为基因。
种质库:又称基因库,指以种为单位的群体内的全部遗传物质,它由许多个体的不同基因所组成。
种质资源具有特定种质,可供育种和相关研究利用的各种生物类型。
或称遗传资源、基因资源、品种资源。
种质创新:人们利用各种变异,通过人工选择的方法,根据不同目的而创造成的新作物,新品种,新类型,新材料。
种质资源按来源分类:(1).本地种质资源(2).外地种质资源(3).野生植物资源(4).人工创造的种质资源种质资源保存方式:(1)就地保存(在资源植物的产地,通过保护其生态环境达到保存资源的目的。
植物多倍体的育种意义
植物多倍体指的是具有超过2倍染色体数目的植物细胞和个体。
常见的多倍体有3倍体、4倍体、6倍体、8倍体等等。
多倍体植物的出现可以是自然发生的,也可以人工诱导的结果。
多倍体植物在育种方面具有较大的意义。
首先,多倍体植物比同种的二倍体植物拥有更多的基因组,这意味着多倍体植物的基因组中存在着更多的遗传变异,从而为进一步的育种提供了更多的可能性。
其次,多倍体植物的某些性状表现出更强的优势性。
比如,多倍体植物通常比同种的二倍体植物拥有更大的花和叶子,更长的茎和根系等等。
这些性状在育种中可以作为重要的材料和指标。
第三,多倍体植物拥有更高的杂种优势。
在育种过程中,通过将不同种的植物杂交后再选育其中的多倍体,可以得到具有更优良性状的作物品种。
比如,许多饲料作物、水稻、小麦等都有通过多倍体杂交获得优良品种的成功案例。
第四,多倍体植物可以提高植物育种的效率。
在育种过程中,通过利用多倍体植物进行某些遗传变异的筛选,可以缩短育种周期和降低育种成本,提高育种效率和成功率。
综上所述,植物多倍体的出现和应用对于植物育种和生产具有重要意义。
通过利用多倍体植物进行育种,可以获得更优质、更高产的作物品种,从而更好地满足人类日益增长的食品需求。