柴油加氢精制工艺
- 格式:doc
- 大小:1.30 MB
- 文档页数:7
生物柴油加氢工艺流程全文共四篇示例,供读者参考第一篇示例:生物柴油是一种由植物油或动物油转化而来的燃料,被广泛应用于交通运输和工业生产中。
在生物柴油生产过程中,加氢工艺是一种重要的技术手段,可以提高生物柴油的品质和性能。
下面我们将介绍生物柴油加氢工艺流程及其原理。
一、生物柴油加氢工艺简介生物柴油加氢是一种通过催化剂作用将生物柴油中的不饱和化合物和杂质转化为饱和烃的过程。
这种工艺可以有效降低生物柴油的凝固点、改善燃烧性能和减少废气排放。
一般来说,生物柴油加氢包括催化裂化、沉淀脱硫、氢解等步骤。
1. 催化裂化催化裂化是生物柴油加氢的第一步,通过将原料与催化剂接触,在高温高压条件下,将大分子链的生物柴油分解为较小的碳氢化合物。
这个过程可以有效减少不饱和烃和杂质的含量,提高生物柴油的质量。
2. 沉淀脱硫沉淀脱硫是生物柴油加氢工艺的第二步,用于去除生物柴油中的硫化物。
硫化物是生物柴油中的一种有害物质,容易损坏催化剂和污染环境。
通过将生物柴油与脱硫剂反应,可以将硫化物转化为不溶于油中的硫酸盐或硫代硼酸盐,然后通过沉淀分离的方式将其去除。
3. 氢解1. 提高生物柴油的品质和性能,减少废气排放。
2. 可以降低生物柴油的凝固点,提高其在低温条件下的流动性。
3. 减少生物柴油的不饱和烃和杂质含量,减少燃料的积炭和系统堵塞。
4. 延长动力系统和催化转化器的使用寿命,降低维护成本。
生物柴油加氢工艺是一种有效的技术手段,可以提高生物柴油的品质和性能,减少废气排放,符合现代工业生产和环境保护的要求。
未来随着生物能源技术的不断发展,生物柴油加氢工艺将在全球范围内得到更广泛的应用。
第二篇示例:生物柴油是一种由植物油或动物油经过一系列化学反应加工而成的燃料,与传统石油燃料相比,生物柴油具有低碳排放、可再生资源等优点,因此备受关注。
而加氢工艺是生物柴油生产过程中的关键环节,通过加氢反应可以改善生物柴油的质量,提高其燃烧效率,减少有害物质排放。
收稿:2006年3月,收修改稿:2006年7月 3国家重点基础研究发展规划(973项目)(N o.2004C B217807)和中国石油重点基础研究项目(N o.04A50502)资助33通讯联系人 e 2mail :liuyq @柴油加氢精制催化剂制备技术3安高军 柳云骐33 柴永明 刘晨光(中国石油大学重质油国家重点实验室C NPC 催化重点实验室 东营257061)摘 要 柴油加氢精制催化剂制备技术的发展大致经历了3个阶段,由此形成了三代柴油加氢催化剂:单层分散的负载型金属硫化物催化剂,多层分散的负载型金属硫化物催化剂和非负载型金属硫化物催化剂。
本文对金属硫化钼基柴油加氢精制催化剂的应用背景、制备思想及催化剂研究开发现状进行了系统的总结,对柴油加氢催化剂的发展方向进行了展望。
关键词 加氢脱硫 加氢脱氮 加氢脱芳 加氢催化剂中图分类号:O643138;O61216 文献标识码:A 文章编号:10052281X (2007)02Π320243207F abricating Technologies of Diesel Oil H ydrotreating C atalystsAn Gaojun Liu Yunqi33 Chai Yongming Liu Chenguang(State K ey Laboratory of Heavy Oil Processing ,K ey Laboratory of Catalysis of C NPC ,China University of Petroleum ,D ongying 257061,China )Abstract The fabricating technologies of diesel oil hydrotreating catalysts are considered to have developed through three stages in general.C onsequently ,three generations of hydrotreating catalysts have been formed ,which are m onolayer 2dispersed and supported metallic sulfide catalysts ,multilayer 2dispersed and supported metallic sulfide catalysts and unsupported metallic sulfide catalysts ,respectively.The application background ,fabrication thoughts and progress in the researches of the m olybdenum sulfide 2based hydrotreating catalysts are reviewed systemically ,and the opinions with respect to the future development trend of diesel oil hydrotreating catalysts are proposed.K ey w ords hydrodesulfurization (H DS );hydrodenitrogenation (H DN );hydrodearomatization (H DAr );hydrotreating catalysts1 引言柴油中的含硫、含氮化合物燃烧后,排放出S O x 、NO x ,这是城市大气污染的重要来源。
柴油加氢精的工艺有哪些
柴油加氢精制工艺有以下几种:
1. 传统加氢精制工艺:包括催化加氢裂解、催化裂化、催化重整等步骤。
2. H-Oil工艺:采用催化加氢裂解和热调整技术,通过将原油加热至裂化温度后再进行催化加氢裂化操作。
3. L-Design工艺:是一种低温热调整工艺,通过将原油送入加湿催化剂床进行加湿和加热,再将其送入经过加热的加氢催化剂床进行加氢裂化。
4. VRDS工艺:采用催化加氢重整、溶剂精制等步骤,能够有效降低硫和氮含量,提高柴油的品质。
5. 二次加氢精制工艺:对传统加氢精制工艺的改进,通过在催化裂化之后再次进行催化加氢,可进一步降低硫、氮和芳烃含量。
以上是一些常见的柴油加氢精制工艺,具体选用哪种工艺取决于原油的性质以及产品要求等因素。
汽柴油加氢技术总结汇报汽柴油加氢技术是指通过催化剂在一定条件下将汽油、柴油等石油产品与氢气进行化学反应,使其得到加氢处理,从而改善燃油质量和性能。
加氢技术在石油炼制行业被广泛应用,成为提高燃料质量和降低汽车尾气排放的关键技术之一。
以下是关于汽柴油加氢技术的总结汇报。
一、加氢技术的原理及优势:汽柴油加氢技术是通过加氢反应,将含硫、含氧、含氮和含杂质的汽柴油转化为低硫、低氮和低杂质的高质量燃料。
加氢技术通过催化剂催化作用,使石油产品中的硫、氮、杂质等有害物质与氢气发生化学反应,产生无害的化合物。
这种技术能够有效减少车辆尾气中的有害物质排放,改善空气质量,保护环境。
二、加氢技术的应用范围:加氢技术主要应用于炼油企业,用于石油产品的提质改良。
其中,汽柴油加氢技术是一项重要的应用。
通过加氢技术,可以将重油、残油等石油废料转化为高质量的汽柴油,提高资源利用率。
同时,汽柴油加氢技术也广泛应用于燃料油的精制过程中,可以降低燃料油的粘度,提高燃烧性能。
三、加氢技术的操作步骤:汽柴油加氢技术的操作步骤主要包括预加氢、主加氢、分离、除尘等环节。
首先将汽柴油与高纯度的氢气混合,通过加热加压进入反应器,催化剂在一定温度下催化汽柴油与氢气发生反应。
加氢反应后,通过分离器分离出汽柴油和氢气,并通过一系列的脱硫、脱氮、脱杂等工艺处理,最终得到高质量的汽柴油产品。
四、加氢技术的优势与不足:加氢技术具有以下优势:1. 改善燃料质量:通过加氢处理,汽柴油的硫含量、氮含量和杂质含量得到有效降低,提高了燃料的质量。
2. 降低尾气排放:加氢技术能够减少燃料中的有害物质含量,从而降低了汽车尾气中的污染物排放,改善环境质量。
3. 提高能源利用率:通过将废料油转化为汽柴油,提高了资源利用效率,减少了能源浪费。
不足之处:1. 技术要求高:加氢技术对催化剂稳定性、反应条件、操作参数等要求较高,需要专业技术人员掌握和操作。
2. 设备投资大:加氢技术需要投入大量设备和催化剂,投资成本较高。
柴油加氢精制工艺流程柴油加氢精制工艺流程是指将原油中的杂质和硫化物去除,提高柴油的品质和环保性能的过程。
下面将详细介绍柴油加氢精制工艺的流程。
首先,原油经过预处理,将其中的大部分杂质去除。
这一步包括沉淀、过滤和脱水等过程,旨在去除原油中的固体颗粒、水分和可溶性杂质。
经过预处理的原油会被送至加氢装置。
其次,原油加氢。
原油加氢是指将原油与氢气在催化剂的作用下进行反应,去除其中的硫化物和一些其他杂质。
加氢装置中包括催化剂床,催化剂床中的催化剂能够加速反应的进行。
在加氢过程中,硫化物会被催化剂吸附并转化为硫化氢,其他的杂质则会被催化剂转化为较低的分子量化合物。
经过加氢反应后的原油会被送至分离装置。
然后,原油分离。
在分离装置中,经过加氢的原油会被分离成不同的组分。
首先是将气体组分将从液体组分分离出来,然后再将液体组分分离成不同油品。
柴油是其中重要的产品之一。
分离出来的柴油可以进行后续的处理操作。
最后,柴油进行后处理。
柴油后处理的目的是进一步提高柴油的品质和环保性能。
后处理包括脱色、脱臭和脱硫等过程。
在脱色过程中,柴油会通过吸附剂床,使其颜色变浅。
在脱臭过程中,通过蒸汽冲洗,去除柴油中的异味。
在脱硫过程中,通过添加脱硫剂,将柴油中的硫化物去除,以降低其对环境的污染。
综上所述,柴油加氢精制工艺流程包括预处理、加氢、分离和后处理等几个步骤。
通过这些步骤,原油中的杂质和硫化物可以被有效去除,从而提高柴油的品质和环保性能。
这是炼油行业中非常重要的一个工艺流程,也是保障柴油质量的关键步骤之一。
柴油加氢工艺流程
概述
柴油加氢是一种重要的燃料精制工艺,通过加氢反应将柴油中的不饱和烃和有
害杂质转化为饱和烃,提高柴油的燃烧性能和清洁度。
本文将介绍柴油加氢工艺的流程及其原理。
工艺流程
原料准备
1.柴油进料
–原料柴油需提前进行预处理,去除水分、固体杂质和硫等杂质。
2.氢气供应
–大量的高纯度氢气是柴油加氢反应中不可或缺的反应气体。
加氢反应器
1.加氢反应器
–将预处理后的柴油和高纯度氢气送入加氢反应器进行反应。
2.催化剂
–通常使用铑、钼等金属催化剂催化反应,将柴油中的不饱和烃加氢成为饱和烃。
催化剂再生
1.再生装置
–催化剂在反应中会因为积聚杂质而失活,需定期送入再生装置进行再生处理。
产品分离
1.产品分离装置
–将加氢反应得到的产品分离出来,其中包括提炼后的高品质柴油及产生的废弃物。
产品处理
1.柴油处理
–对提炼出的高品质柴油进行后续处理,以满足燃料标准和市场需求。
原理解析
柴油加氢工艺利用氢气在催化剂的作用下,将柴油中的不饱和烃和杂质加氢转化为饱和烃。
这一过程中,发生了加氢裂解、加氢饱和等一系列反应,最终得到更高品质的柴油产品。
结语
柴油加氢工艺是一项重要的能源精制技朧,通过对原料柴油进行加氢处理,可以得到更高品质的柴油产品。
随着环保意识的提升,柴油加氢工艺在提高柴油清洁度和燃烧性能方面具有重要意义。
加氢精制工艺流程
《加氢精制工艺流程》
加氢精制是一种重要的炼油工艺,用于将原油中的硫、氮等杂质以及不饱和化合物去除,从而提高燃料的品质。
下面我们来了解一下加氢精制工艺的流程。
首先,原油经过加热,使其成为易于处理的状态。
然后,原油进入加氢反应器,与氢气在高温高压的环境下发生化学反应。
在反应器内,硫化物和氮化物会与氢气发生反应,生成硫化氢和氨气,这使得原油中的硫和氮杂质被去除。
接下来,通过分离装置将产生的硫化氢和氨气与反应后的油品分离开来,以便进行后续处理。
分离后的油品含有较高含硫量的硫化物,这时需要通过一系列的洗涤和吸附过程来进一步去除硫化物和其他杂质,以提高油品的纯度。
最后,经过连续的处理和分离,得到的产品就是高质量的燃料油品,能够满足汽车等机械设备的使用需求。
总的来说,加氢精制工艺是通过氢气的加氢反应,去除原油中的硫、氮等杂质,并通过一系列的化学和物理处理,得到高品质的燃料产品。
这一工艺在提高石油产品品质、保护环境等方面发挥着重要作用。
柴油加氢精制工艺
定义:加氢精制是指在一定温度、压力、氢油比和空速条件下,原料油、氢气通过反应器内催化剂床层,在加氢精制催化剂的作用下,把油品中所含的硫、氮、氧等非烃类化合物转化成为相应的烃类及易于除去的硫化氢、氨和水。
提高油品品质的过程。
石油馏分中各类含硫化合物的C—S键是比较容易断裂的,其键能比C—C或C—N键的键能小许多。
在加氢过程中,一般含硫化合物中的C—S键先行断开而生成相应的烃类和H2S。
但由于苯并噻吩的空间位阻效应,C-S键断键较困难,在反应苛刻度较低的情况下,加氢脱硫率在85%左右,能够满足目前产品柴油硫含量小于2000ppm 的要求。
柴油馏分中有机氮化物脱除较困难,主要是C-N键能较大,正常水平下,在目前的加氢精制技术中脱氮率一般维持在70%左右,提高反应压力对脱氮有利。
烯烃饱和反应在柴油加氢过程中进行的较完全,此反应可以提高柴油的安定性和十六烷值。
当然,在加氢精制过程中还有脱氧、芳烃饱和反应。
加氢脱硫、脱氮、脱氧、烯烃饱和、芳烃饱和反应都会进行,只是反应转化率纯在差别,这些反应对加氢过程都是有利的反应。
但同时还会发生烷烃加氢裂化反应,此种反应是不希望的反应类型,但在加氢精制的反应条件下,加氢裂化反应有不可避免。
目前为了解决这个问题,主要是调整反应温度和采用选择性更好的催化剂。
下面以我厂100万吨/年汽柴油加氢精制装置为例,简单介绍一下工艺流程:
60万吨柴油加氢精制。
柴油加氢精制工艺
定义:加氢精制是指在一定温度、压力、氢油比和空速条件下,原料油、氢气通过反应器内催化剂床层,在加氢精制催化剂的作用下,把油品中所含的硫、氮、氧等非烃类化合物转化成为相应的烃类及易于除去的硫化氢、氨和水。
提高油品品质的过程。
石油馏分中各类含硫化合物的C—S键是比较容易断裂的,其键能比C—C或C—N键的键能小许多。
在加氢过程中,一般含硫化合物中的C—S键先行断开而生成相应的烃类和H2S。
但由于苯并噻吩的空间位阻效应,C-S键断键较困难,在反应苛刻度较低的情况下,加氢脱硫率在85%左右,能够满足目前产品柴油硫含量小于2000ppm 的要求。
柴油馏分中有机氮化物脱除较困难,主要是C-N键能较大,正常水平下,在目前的加氢精制技术中脱氮率一般维持在70%左右,提高反应压力对脱氮有利。
烯烃饱和反应在柴油加氢过程中进行的较完全,此反应可以提高柴油的安定性和十六烷值。
当然,在加氢精制过程中还有脱氧、芳烃饱和反应。
加氢脱硫、脱氮、脱氧、烯烃饱和、芳烃饱和反应都会进行,只是反应转化率纯在差别,这些反应对加氢过程都是有利的反应。
但同时还会发生烷烃加氢裂化反应,此种反应是不希望的反应类型,但在加氢精制的反应条件下,加氢裂化反应有不可避免。
目前为了解决这个问题,主要是调整反应温度和采用选择性更好的催化剂。
下面以我厂100万吨/年汽柴油加氢精制装置为例,简单介绍一下工艺流程:
60万吨柴油加氢精制
催化汽油选择性加氢脱硫醇技术(RSDS技术)
催化汽油加氢脱硫醇装置的主要目的是拖出催化汽油中的硫含量,目前我国大部分地区汽油执行国三标准,硫含量要求小于150ppm,烯烃含量不大于30%,苯含量小于1%。
在汽油加氢脱硫的过程中,烯烃极易饱和,辛烷值损失较大,针对这一问题,石科院开发了RSDS技术。
本技术的关键是将催化汽油轻重组分进行分离,重组分进行加氢脱硫,轻组分碱洗脱硫。
采取轻重组分分离的理论基础是,轻组分中烯烃含量高,可达到50%以上,通过直接碱洗,辛烷值几乎不损失。
而重组分中烯烃大多是环烯烃,经过加氢后变为环烷烃,辛烷值几乎不损失,导致重组分加氢辛烷值损失的是C7以上单烯烃
和双烯烃饱和,但以上两种物质所占比例较小,正常情况下重组分加氢后辛烷值损失在1.5以内。
RSDS技术的另一个优点是设立了两个反应器,第一个反应器在低温高空速下操作,目的是将二烯烃饱和成单烯烃,防止在高温反应条件下二烯烃聚合生胶,可以延长装置运转周期。
60万吨汽油选择性加氢
制氢装置
本套装置采用烃类水蒸气制氢方法,我公司采用的原料是炼厂干气和水蒸气在催化剂上进行反应,产生的氢气在经过变压吸附将氢气提浓,外送氢气纯度达到99.9%。
主要包括以下几个过程。
1、干气脱硫部分
进入脱硫部分的原料气,首先进入加氢反应器(R4001),发生将有机硫转
化为无机硫,然后再进入氧化锌脱硫反应器(R4002A.B)脱氯段脱除原料中的氯,最后进入氧化锌脱硫段,在此氧化锌与硫化氢发生脱硫反应。
精制后的气体要求硫含量小于0.5ppm,烯烃小于1%(V)、氯小于0.2ppm 进入转化部分。
2、转化部分
精制后的原料气按水碳比不小于3.2与水蒸汽混合,再经转化炉(F4001)对流段预热,进入转化炉辐射段。
在催化剂的作用下,发生复杂的水蒸汽转化反应,从而生产出氢气、甲烷、一氧化碳、二氧化碳和水的平衡混合物。
主要反应有:
C n H m + nH2O = nCO +(n+m/2)H2①
CO + 3H2 = CH4 + H2O △H o298=-206kJ/mol ②
转化反应是强吸热反应,转化炉内温度高达900度。
3、中变部分
由转化部分来的转化气进入中温变换反应器(R4003),在催化剂的作用下发生变换反应:
CO+H2O=CO2+H2△H o298=-41.4KJ/mol
将变换气中CO含量降至3%左右,同时继续生产氢气。
中变气经过汽包给水换热器(E4002A.B、E4003)、低温热水换热器(E4004)进行热交换回收部分余热后,再经中变气水冷却器(E4005)冷却至35℃左右,经分水后进入PSA 部分。
半再生重整
催化重整是石油炼制和石油化工主要过程之一。
它是在一定温度、压力、临氢和催化剂存在的条件下,使石脑油转变成富含芳烃的重整生成油,并副产氢气的过程。
我公司重整的主要目的是生产高辛烷值汽油组分。
重整的主要进
料是常压直馏石脑油,辛烷值大概只有60左右。
经过重整后,辛烷值可以提高到95以上,连续重整装置辛烷值可以提高到100以上。
重整生成油是理想的汽油调和组分。
半再生重整指的是采用固定床反应器,装置定期停工对催化剂进行再生。
连续(再生)重整是指采用移动床反应器,设有催化剂循环及连续再生系统。
催化剂在反应器和再生器之间循环移动,连续进行再生。
重整过程大致可以分为三部分
1、原料预处理部分
由于重整催化剂的活性组分铂、铑对硫、AS等非常敏感,这些物质可以引起催化剂中毒。
所以原料油进入重整反应器之前必须进行加氢处理,将原料中的硫、氮、重金属脱除。
预处理后杂质指标为S小于0.5ppm、N小于0.5ppm、AS小于1ppb,其它重金属小于20ppb。
2、重整部分
重整催化剂是双功能催化剂,金属铂组成金属活性中心,完成加氢、脱氢的催化反应,卤素、载体本身和载体上的羟基组成酸性活性中心,完成异构、裂化功能。
合理匹配重整催化剂的金属功能和酸性功能,对重整生成油的品质起着重要作用。
从预处理部分来的精制石脑油进入重整反应器。
一般半再生反应器设四个,根据重整反应类型的不同,各个反应器内进行的反
应有所差别。
重整的主要反应有以下五种。
●六元环烷脱氢生成芳烃的反应
环己烷------------- 苯+ 3H2
●五元环烷异构化脱氢反应
甲基环戊烷------------- 苯+ 3H2
●烷烃环化脱氢反应
正己烷------------- 苯+ 4H2
●烷烃异构化反应
正庚烷------------- 2,2-二甲基戊烷
●加氢裂化反应
正庚烷+ H2 ------------- 丙烷+ 丁烷其中六元环烷脱氢反应最易进行,在第一个反应器内就可进行完全。
这个反应是高吸热反应,对辛烷值提高贡献较大。
五元环烷异构化脱氢反应反应历程较长,要求条件苛刻,反应速度较慢,但这是重整反应中重要的反应。
在原料中五元环烷占50%(m)左右,需要催化剂金属功能和酸性功能合理匹配,才能有较大的转化率。
正构烷烃异构化反应在酸性中心上完成,反应速度较快,选择性好,辛烷值增大较多,是生产高辛烷值的重要反应。
烷烃脱氢环化反应,是重整反应中历程最长,反应速度最慢的反应,反应条件苛刻。
对提高汽油辛烷值贡献较大。
加氢裂化反应生成小分子烃类,降低液收,是不希望发生的反应。
3、分馏部分
●重整反应的产物需要进一步处理,分离成氢气、轻烃(燃料气与液化气)
和重整油。
●氢气需要进行再接触以回收烃类。
●重整油进行稳定、脱丁烷或脱戊烷。
氢气再接触
副产氢气从产物分离罐出来,用氢气压缩机(增压机)压缩后送入再接触罐,使重整油与含氢气体在高压条件下再接触,重新建立气液平衡,使含氢气体中轻烃溶解在油中。
压力越高温度越低效果越好。
重整生成油的稳定
从反应器及再接触出来的重整生成油中除C6+烃类外,还含有少量C1~C5轻烃,在送出装置以前,先要经过稳定塔(脱丁烷塔)脱除这些轻组分。
P7202E7204E7204E7207。