300万吨年直馏柴油加氢精制装置简介
- 格式:ppt
- 大小:2.73 MB
- 文档页数:77
一、装置简介1、装置组成装置组成:装置由反应部分(包括新氢、循环氢联合压缩机组)、分馏部分、干气脱硫部分、公用工程部分组成。
2、生产方案柴油加氢精制装置采用加氢精制催化剂DN200,以直馏柴油和催化裂化柴油混合油为原料,经过催化加氢反应进行脱硫、脱氢、烯烃饱和及部分芳烃饱和,生产精制柴油,保证柴油达到GB2522000轻柴油质量标准。
二、主要工艺技术路线1、原料油过滤为了防止放反应器因进料中的固体颗粒堵塞导致压降过大而造成的非正常停工,在装置内设置自动反冲洗过滤器,脱除原料油中大于25微米的固体颗粒。
2、原料油惰性气体保护因为原料油与空气接触会生成聚合物和胶质,为有效防止结垢,原料油缓冲罐采用脱硫燃料气气封。
3、高压空冷器前注水加氢过程中生成的H2S、NH3,在一定温度下会生成NH4HS结晶,沉积在空冷器管束中,导致系统压降增大。
因此在反应流出物进入空冷器前注入脱盐水来溶解铵盐结晶析出。
4、高压换热器采用双壳程、螺纹锁紧环形式,提高换热效率,减少换热面积,节省投资。
5、从工艺流程的优化、高效换热设备的应用、新型内构件的设计技术应用等多方面考虑,采用综合节能技术,降低装置的能耗。
6、采用炉前混氢方案,提高换热器效率和减缓加热炉结焦程度。
7、采用板焊结构热壁反应器。
反应器内件包括入口扩散器、分配盘、冷氢箱、出口收集器等,使进入反应器中催化剂床层的物流分布均匀,催化剂床层的径向温差小。
8、反应器入口温度通过调节加热炉燃料来控制,第二、第三床层入口温度通过调节急冷氢量来控制。
三、装置工艺流程原则工艺流程图附后,工艺流程叙述如下:1、反应部分原料油自装置外来,首先经原料油/低分油换热器(E1109)与低分油换热,然后通过原料油过滤器(F11101)进行过滤,除去原料中大于25μm的颗粒,过滤后的原料油进原料油聚结器脱水,然后进入原料油缓冲罐(V1101),再经加氢进料泵(P1101A/B)升压后,在流量控制下,与混合氢混合作为混合进料。
石化公司加氢精制装置设计方案—、概述(一)设计规模及开工时数公称规模50X104 t/a年开工时数80hr(二)项目范围装置边由反应(包括压缩机)、循环氢脱硫、分馏、公用工程等部分组成,燃料气脱硫及溶剂再生由全厂统一考虑。
(三)原料1、原料油:本装置加工原料为焦化塔顶油、焦化一线油。
2、氢气:装置所需新氢由制氢装置提供。
(四)产品1、化工轻油加氢后轻馏份油作为高质的化工轻油出厂。
2、4#燃料油侧线轻油加氢后作为高质的4#燃料油,硫含量小于5ppm。
二、工艺技术方案(一)确定技术方案的原则1、采用国内先进的工艺技术及催化剂。
2、米用先进合理、成熟可靠的工艺流程。
3、选用性能稳定、运转周期长的机械设备。
4、提高自动控制、安全卫生和环境保护水平。
(二)国内外加氢技术现状加氢精制是指油品在催化剂、氢气和一定的压力、温度条件下,含硫、氮、氧的有机化合物分子发生氢解反应,烯烃和芳烃分子发生加氢饱和反应的过程。
加氢精制的目的是脱硫、脱氮和解决色度及贮存安定性的问题,满足日益严格的环保要求。
常规的加氢精制工艺已有几十年的历史,技术上非常成熟。
新进展主要体现在高活性、高稳定性、低成本新型催化剂的研究和开发上。
荷兰AKZO公司目前最好的脱硫催化剂是KF-752和KF-840.KF-752的活性已是60年代中期相应产品的1.7倍,多用于直馏原料。
对于二次加工原料则采用KF-840O埃克森研究和工程公司(ER&E)于1992年实现商业应用的催化剂RT-601,采用新型A12O3载体,使用先进的促进剂浸渍技术,催化剂活性高,特别适合于加工重质、劣质原料。
在加工直硫柴油时,活性与市场上最好的催化剂相当。
独联体的列宁石油化工科学生产联合体开发的KrM-70催化剂也具有很高活性。
在压力为3.0MPa,空速为3.0h-i,温度为350°C时,可将直硫柴油的硫含量由1.03%降至0.26m%,脱硫率达到99.7%o国内近年来也已开发了多种具有世界先进水平的、高性能的馏分油加氢精制催化剂。
柴油加氢裂化装置最大量生产重石脑油和喷气燃料改造总结李志敏(中海石油宁波大榭石化有限公司,浙江省宁波市315812)摘要:2.0Mt/a工业加氢裂化装置设计原料为环烷基柴油,主要生产重石脑油和超低硫柴油。
受市场环境变化影响,对产品结构进行了调整,最大量生产重石脑油和喷气燃料。
通过调整产品切割点、增设分馏塔等措施实现了该目的。
工业运转结果表明,以柴油为原料,该装置生产的重石脑油和优质喷气燃料的收率分别为52.98%,29.35%,高价值产品收率超过82.3%,柴油收率仅3.63%。
各馏分产品性质优良,其中喷气燃料烟点30.2mm,硫、氮质量分数均小于0.5μg/g,冰点-53℃。
关键词:柴油加氢裂化装置 重石脑油 喷气燃料 改造方案 标定数据 国内炼油产品逐步走向产能过剩,柴汽比逐步降低[1 3]。
然而为了满足国内外非生产性税费一致性的要求,目前仍然暂缓征收喷气燃料产品消费税,对于有喷气燃料需求的企业,提高喷气燃料/柴油比例成为优化产品结构的重要手段,使柴油加氢装置增产喷气燃料成为现实选择。
通过将直馏柴油精制装置改为生产直馏喷气燃料、调整加氢裂化转化率和切割点等方式可以增产喷气燃料[4 6]。
中海石油宁波大榭石化有限公司2.0Mt/a工业燃料油加氢裂化装置上周期主要以环烷基直馏柴油为原料,生产超低硫柴油和重石脑油等,重石脑油收率达到50%以上。
该装置需要将未转化的柴油最大量地转化为喷气燃料。
GB6537—2018《3号喷气燃料》要求其闪点(闭口)不低于38℃,10%回收温度不高于205℃,50%回收温度不高于232℃。
另外市场上优质喷气燃料大多要求烟点高于25mm,冰点低于-50℃,闪点在40~50℃。
装置前期产品以柴油和石脑油为主,主分馏塔重馏分侧线抽出压力不高,如何在工业装置上满足侧线喷气燃料的产品质量要求也成为现实难题[7 8]。
结合装置实际运行情况,优选了中国石油化工股份有限公司大连石油化工研究院催化剂及工艺,依托中石化洛阳工程有限公司进行设计,在2018年底进行了装置改造建设。
加氢操作规程第⼀章装置概况第⼀节装置简介⼀、装置概况:装置由中国⽯化集团公司北京设计院设计,以重油催化裂化装置所产的催化裂化柴油、顶循油,常减压装置⽣产的直馏柴油和焦化装置所产的焦化汽油、焦化柴油为原料,经过加氢精制反应,使产品满⾜新的质量标准要求。
新《轻柴油》质量标准要求柴油硫含量控制在0.2%以内,部分⼤城市车⽤柴油硫含量要求⼩于0.03%。
这将使我⼚的柴油出⼚⾯临严重困难,本装置可对催化柴油、直馏柴油、焦化汽柴油进⾏加氢精制,精制后的柴油硫含量降到0.03%以下,满⾜即将颁布的新《轻柴油》质量标准,缩⼩与国外柴油质量上的差距,增强市场竞争⼒。
该项⽬与50万吨/年延迟焦化装置共同占地⾯积为217m×103m即22351m2;装置建设在140万吨/年重油催化裂化装置东侧,与50万吨/年延迟焦化装置建在同⼀个界区内,共⽤⼀套公⽤⼯程系统和⼀个操作室。
本装置由反应(包括新氢压缩机、循环氢压缩机部分)、分馏两部分组成。
装置设计规模:120×104t/a。
⼆、设计特点:1、根据⼆次加⼯汽、柴油的烯烃含量较⾼,安定性差,胶质沉渣含量多的特点,本设计选⽤了三台⼗五组⾃动反冲洗过滤器,除去由上游装置带来的悬浮在原料油中的颗粒。
2、为防⽌原料油与空⽓接触氧化⽣成聚合物,减少原料油在换热器、加热炉炉管和反应器中结焦,原料缓冲罐采⽤氮⽓或燃料⽓保护。
3、反应器为热壁结构,内设两个催化剂床层,床层间设冷氢盘。
4、采⽤国内成熟的炉前混氢⼯艺,原料油与氢⽓在换热器前混合,可提⾼换热器的换热效果,减少进料加热炉炉管结焦,同时可避免流体分配不均,具有流速快、停留时间短的特点。
5、为防⽌铵盐析出堵塞管路与设备,在反应产物空冷器和反应产物/原料油换热器的上游均设有注⽔点。
6、分馏部分采⽤蒸汽直接汽提,脱除H2S、NH3,并切割出付产品⽯脑油。
7、反应进料加热炉采⽤双室⽔平管箱式炉,炉底共设有32台附墙式扁平焰⽓体燃烧器,⼯艺介质经对流室进⼊辐射室加热⾄⼯艺所需温度,并设有⼀套烟⽓余热回收系统,加热炉总体热效率可达90%。
中石化武汉分公司主要生产装置简介中国石油化工股份有限公司武汉分公司(简称武汉分公司),在中国石化集团武汉石油化工厂整体重组改制中于2000年2月28日成立,主要从事石油加工及部分石油化工产品的生产。
武汉分公司属于以生产燃料油为主的石化企业,是中国500家最大工业企业之一,产品质量保证体系通过ISO9002国际质量体系认证。
公司前身为武汉石油化工厂,始建于1971年,扩建于1975年,于1977年投产,目前已开工生产装置19套。
工厂自投产以来,原油加工能力由250万吨/年增加到500万吨/年。
中国石油化工股份有限公司武汉分公司为生产燃料油为主的石化企业。
加工手段齐全,具有较强的深度加工能力,原油一次加工能力可达500万吨/年,主要加工管混油、进口油和海洋油。
主要产品有:汽油(90#、93#、97#),灯用煤油、航空燃料油、柴油(5#、0#、-10#),石脑油、溶剂油、环烷酸、MTBE、专用重油(1#、2#、3#)、180#重油、工业片状硫磺、石油焦、石油液化气、双壁波纹管等15种产品,12种产品获部优、省优,-10#柴油获国家银质奖,所有产品均通过ISO9002国际质量体系认证。
产品行销鄂、湘、川、渝、云、贵等12个省区,工业片状硫磺等部分产品进入国际市场。
各装置主要情况见下表。
一.#常减压装置简介1#常减压装置以加工管输油为主,原设计年生产能力为250万吨,2004年元月通过扩能改造,处理能力达到350万吨/年。
它包括电脱盐装置、蒸馏装置、电化学精制及减粘装置。
主要产品有:石脑油、200#溶剂油、分子筛料、3#航煤、柴油、燃料油。
二.1#催化裂化装置简介催化剂裂化装置为高低并列式提升管催化剂裂化装置,加工原料主要为减压渣油、蜡油等,改造后设计年生产能力为100万吨。
它主要由反再系统、分馏系统、吸收稳定系统、脱硫系统、脱硫醇系统等组成。
主要产品有:干气、液化气、酸性气、90#汽油、轻柴油、油浆。
三.联合装置简介联合装置由2#常压装置、2#催化裂化装置两部分组成。
文章编号:1000 7466(2018)01 0073 05 加氢型酸性水汽提装置腐蚀分析与防护马红杰a,龚树鹏b(中国石油独山子石化分公司a.研究院;b.科技信息处,新疆独山子 833699)摘要:采用现场宏观腐蚀检查、管线超声波测厚、腐蚀介质分析、在线腐蚀探针监测及能谱分析等方法对加氢型酸性水汽提装置的酸性水储罐、汽提塔顶酸性气线弯头进行了腐蚀分析。
分析结果表明,酸性水中的少量氯化物及酚类物质极易穿透涂层,使得腐蚀介质与金属基体发生腐蚀反应,导致涂层鼓泡、脱落。
汽提塔顶酸性气线弯头背弯处减薄最为严重,主要原因为湿硫化氢腐蚀,而流体的冲刷磨损起到了促进作用,两者循环反复进行导致弯头背弯处快速减薄并穿孔。
针对装置的腐蚀情况,提出了应用效果较好的防护措施。
关键词:储罐;汽提装置;酸性水;腐蚀分析;防护中图分类号:TQ050.7;TE962 文献标志码:B 犱狅犻:10.3969/j.issn.1000 7466.2018.01.015犆狅狉狉狅狊犻狅狀犃狀犪犾狔狊犻狊犪狀犱犘狉狅狋犲犮狋犻狅狀狅犳犎狔犱狉狅犵犲狀犪狋犻狅狀犜狔狆犲犃犮犻犱犻犮犠犪狋犲狉犛狋狉犻狆狆犻狀犵犝狀犻狋犕犃犎狅狀犵 犼犻犲犪,犌犗犖犌犛犺狌 狆犲狀犵犫(DushanziPetrochemicalCompanyofCNPC,a.ResearchInstitute;b.ScienceandTechnologyBureau,Dushanzi833699,China)犃犫狊狋狉犪犮狋:Theacidicwaterstoragetankandacidgaslineofstrippingtowertopwereanalyzedbymeansofin sitemacroscopiccorrosioninspection,lineultrasonicthickness,corrosionmedium,on linecorrosionmonitoringprobeandenergyspectrumanalysismethodforhydrogenationtypeacidicwaterstrippingdevice.Analysisresultsindicatedthatasmallamountofchlorideandphe nolofacidicwaterpenetratedthesurfacecoatingeasily,andcorrosionreactionhappenedbetweencorrosivemediumandmetallicmatrix,whichresultedinbubbling,andfallingoff.Themainrea sonofcorrosionreductiononacidgaslineofstrippingtowertopwaswethydrogensulfidecorro sion,andfluidicerosivewearpromotedcorrosionreduction,leadingtoperforationundertheac tionofcorrosionandfluidicerosivewear.Finally,inviewofthecorrosionsituationofdevices,thebetterprotectivemeasureswereputforward.犓犲狔狑狅狉犱狊:storagetank;strippingunit;acidicwater;corrosionanalysis;protection 某石化公司加氢型酸性水汽提装置于2009年建成投产,生产能力为37t/h。
柴油加氢精制装置节能减排措施本文以云南石化公司180万吨/年直流柴油加氢装置为例,对我国自主设计的大型直流柴油加氢精制装置,节能减排措施进行深入研究。
该公司主要生《欧盟车用柴油标准》IV类标准柴油产品。
通过进行装置的首次开工调解和试验验证,此装置在节能减排方面有着自己的特点,自2017年8月首次开工以来有效降低了柴油加氢精制装置的能耗,获取较好的节能减排效果和经济效益。
标签:柴油加氢精制装置;节能减排;措施1 引言云南石化280万吨/年直柴加氢精制装置由寰球工程公司辽宁分公司设计,采用中国石油大庆化工研究中心研制的柴油加氢精制催化剂,以直馏柴油为原料,通过加氢精制生产精制柴油。
设置一台加氢反应器,(预留一台反应器空地,方便以后的技术升级和改造)装填PHF-101柴油加氢精制催化剂及PHF-101P-2、PHF-101P-3系列保护剂。
结合国内现有同类装置的生产经验,反应部分采用热高分和炉前混氢流程,分馏部分采用脱硫化氢汽提塔单塔汽提流程方案,有利于保证装置长周期、平稳、安全运行,提高产品质量和收率,降低装置物耗和能耗。
2 柴油加氢精制装置节能减排调整及措施2.1 调整冷热进料比例云南石化280万吨/年直柴加氢精制装置共有两路进料,一路是来自罐区的冷直馏柴油只有25℃左右的常温进料。
另一路是来自常减压的热直柴有100℃左右的温度。
开工初期进料主要以冷料为主,通过精制柴油-原料油换热器与精制柴油换热,换热后的原料也只能到80-90℃左右,加热炉负荷很大超过了设计负荷。
经后来经过调整,将冷热比例调整到1:9原料的温度达到140-150℃,有效的节约了燃料气的使用量由原来的280m3/h降低到了200 m3/h,节约越80 m3·h 的消耗。
2.2 原料和循环氢双换热节能原料油自装置外来经原料油过滤器进行过滤,除去原料中大于25?m的颗粒,再经过原料油预过滤器,然后通过精制柴油-原料油换热器与精制柴油换热,换热后的原料从100℃换热至140-150℃油进入滤后原料油缓冲罐再经反应进料泵升压后,在流量控制下,与混合氢混合作为混合进料。
1.1 装置基本原理介绍加氢精制是在一定的温度、压力、氢油比和空速条件下,借助催化剂的作用,将油品(直馏航煤)中的硫、氮、氧化合物转化成易除去的H2S、NH3、H2O而脱除,并将油品中的杂质如重金属截留在催化剂中。
同时烯烃、芳烃得到饱和,从而得到安定性、燃烧性都较好的产品., u- Z0 j/ D” s2 w4 J。
f/ g1。
1。
1 脱硫硫化物的存在影响了油品的性质,给油品的加工和使用带来了许多危害:对机械设备的腐蚀,给炼油过程增加困难,降低油品的质量,燃料燃烧造成环境污染等.其中,有代表的含硫化合物主要有硫醇、硫醚、二硫化物和噻吩等。
9 {5 S;D’ ^1 i1 i; XRSH+H2→RH+ H2S’ }8 K5 \7 N0 D7 I1.1。
2 脱氮含氮化合物对产品质量的稳定性有较大危害,并且在燃烧时会排放出NOX 污染环境.石油产品中的含氮化合物主要是杂环化合物,非杂环化合物较少. 2 R" T!{0 K2 a/ ]$P:d!SR NH2 + H2 RH + NH3% V A— _. a—x’ O1.1.3 脱氧RCH2OOH + 2 H2 RH3 + 2H2O’ C3 `3 I7 `,i。
A*}1。
1。
4 烯烃、芳烃的饱和; n7 \0 y a) \$U& u6 C1 R7 m9 M—z” nRˊCH=CHˊR RˊCH2¬¬-CH2Rˊ x8 r0 W4 ~! B7 d- _! M3 p7 L:U8 H。
O7 M4 u1.2 工艺流程说明1。
2。
1 反应部分直馏航煤自原料罐区及常压装置来经原料油过滤器(1001-SR-101A/B)原料油脱水器(1001-D-104)进入原料缓冲罐(1001-D-101).经加氢进料泵(1001-P-101A/B)升压至约2。
7Mpa与氢气混合,然后经反应流出物/反应进料换热器(1001-E-101A/B/C/D)壳程,换热后进入加热炉(1001-F-101)加热至反应所需的温度进入反应器(1001-R-101).混氢原料在催化剂的作用下进行加氢反应,反应产物与反应进料换热后经空冷器(1001-A-101)冷却到50℃,进入低压分离器(1001-D-102)分离出大部分的生成油进入分馏部分,低分顶部出来的循环氢与装置外来新氢混合经循环氢分液罐(1001-D-103)脱液经循环氢压缩机(1001-K-101A/B)增压后与原料混合进入反应系统。
蜡油加氢装置简介 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】100万吨/年蜡油加氢装置装置简介中国石化股份有限公司上海高桥分公司炼油事业部2007年3月编制:何文全审核:严俊校对:周新娣目录第一章工艺简介一、概述中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。
本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。
本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。
2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。
二、装置概况及特点1.装置规模及组成蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。
本装置为连续生产过程。
主要产品为蜡油、柴油、汽油。
本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。
2.生产方案混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。
柴油加氢装置国 VI 柴油色度超标分析及对策发布时间:2022-10-23T08:37:37.851Z 来源:《科学与技术》2022年6月12期作者:靳朝卉[导读] 超深度脱硫的柴油加氢精制装置靳朝卉中国石化青岛炼油化工有限责任公司 266555摘要超深度脱硫的柴油加氢精制装置,出现精制柴油色度不合格情况,通过分析精制柴油性质、优化原料组成、调整反应条件,逐步解决精制柴油色度不合格问题,并发现催化柴油是影响其精制柴油色度的重要因素。
关键词:国V;色度;催化裂化柴油车用柴油色度是从外观判断柴油质量的指标。
关于柴油的色度,较多研究发生在成品柴油的存储过程的氧化安定性和色度变化、催化/焦化柴油的色度分析等方面[1,2]。
对于超深度脱硫柴油外观上的研究,一般集中在解决柴油的水白色浑浊方面,其色度均在0.5以下。
本文就柴油超深度加氢脱硫的实际生产过程中存在的色度问题进行分析,提出精制柴油的色度与原料性质和反应条件的影响。
1 基本情况某410万吨/年柴油加氢(以下简称柴油加氢)装置采用抚研院新一代柴油超深度脱硫催化剂级配体系,在氢分压5.0MPa,氢油比270,空速0.8h-1,反应平均温度340~380℃的反应条件下,加工直馏柴油、焦化汽柴油以及催化柴油,生产硫含量低于10mg/g的国V(VI)车用柴油。
因其承担部分出口柴油的计划任务,故按照柴油色度<2.0控制精制柴油质量。
该装置自2017年3月份开工后,连续运行至2019年5月份后停工换剂检修。
2 色度不合格情况2019年4月份,柴油加氢装置因连续出现精制柴油色度检测超过2.0,被迫将成品改入产品观察罐。
从外观上看,不合格期间精制柴油颜色呈现浓黄微红不透亮(图1中左图),而正常精制柴油为黄色发绿较清亮(图1中右图)。
3 色度影响因素3.1浑浊油品中含水或者含蜡均会造成浑浊。
通过对精制柴油分析水含量,其结果为59ppm,远低于导致浑浊的300ppm指标,可以排除精制柴油带水。
柴油加氢装置的工艺技术选择及设计摘要:共生产与在加工一直都是我国重点发展的工业生产产业之一。
自上世纪末期以来,我国石油用量大幅提升,由于石油的用途十分广泛,同时伴随着较为关键的工业发展,导致我国在上世纪中后期至本世纪初期所使用的石油用量已经超过了每年六亿吨。
但问题在于,进口的石油大多数是只经过一次加工的含硫原油,其精度和纯度达不到现阶段社会发展过程中所需要的标准,而我国自产的石油由于开发和使用,也呈现出疲态。
在社会和工业日渐发展的今天,被称为万金油的石油需求越来越高,并且对于质量的要求也是越来越高。
另一方面,作为轻质石油制品的柴油,也因其广泛的用途造成恶劣需求量水涨船高,在这个背景下,探索提升柴油产量和柴油生产精度的路径尤为关键。
关键词:柴油;石油;柴油加氢装置;工业工艺前言:柴油是轻质石油制品的一种,通过原油蒸馏或是加氢裂化等工艺制成,在现代工业生产及居民日常生活中占据较为关键的地位。
其最广泛的用途就是用作一些汽车和船舶的柴油发动机,由于其热效率较高,并且燃油消耗率较低的特点,使得一些小型汽车也可以使用柴油。
但是在一零年代之后,由于柴油产生的空气污染较为严重,因此国家出台了相关政策,使得柴油在日常生活中大多作用于货车的运输上。
柴油加氢指的是在柴油中通过加入氢的方式来提升柴油的转化活性,将柴油作为反应的中介质进行反应,以此来达到降低柴油损耗量,提升柴油转化率的根本目的。
总体来说,柴油加氢的根本目的在于更好的利用资源、转化资源。
按道理来说,柴油加氢是一种资源保护的工业生产工艺,而现阶段我国柴油加氢方面的只在工艺也存在多种选择的路径,例如低压加氢和中压加氢。
两种不同的加氢方式适用于不同的柴油种类,但不变的是其作用。
一、现阶段我国柴油加氢装置方面工艺的发展要点如果从广义的角度来说,柴油加氢指的是一种化学反应,而大多数化学反应需要一个反应容器作为储剂,在这个过程中,柴油加氢装置发挥了较为关键的作用。
但问题在于,柴油加氢装置并非是一个整体的工业设备,而是一整套处理设备的综合,分为多个处理部分,包括加热炉、反应器、汽提塔、压缩机等在内的多个反应设备组合而成。
柴油加氢装置运行过程中存在的问题及应对措施摘要:分析了柴油加氢装置生产过程中,出现的高压换热器内漏,反应器出口阀门泄漏,干气带液的问题,并提出了解决措施,确保了装置的安全平稳运行。
关键词:高压换热器;阀门泄漏;干气带液1.装置简介140万t/a柴油加氢装置采用抚顺石化研究院(FRIPP)开发的MCI-降凝组合工艺及配套催化剂,以催化柴油及常三线直馏柴油为原料,生产-20#、0#、5#精制柴油,同时副产部分粗汽油和液化石油气,装置于2009年8月投产,已运行12年。
2.存在的问题原因分析及应对措施2.1干气带液2.1.1现象吸收脱吸塔C-203主要目的是回收瓦斯气中的C3 、C4组分,同时除去石脑油中的C2组分。
C-203频繁出现干气带液的问题,塔压波动,干气量波动,干气脱硫装置脱油量明显增加。
2.1.2原因分析1、气相负荷大,吸收脱吸塔C-203进料中轻烃组分过多,原设计C-203接收柴油精制装置轻烃5吨/天,实际量远大于设计值,达80吨/天,轻组分过多。
2、塔热量平衡影响。
吸收脱吸塔C-203的吸收过程是一放热过程,从塔顶到塔底温度越来越高,随着轻烃量增大,从塔底上升的吸收热量增多,一中、二中回流量小,不能把多余的热量取出来,吸收效果差,可能造成塔顶气体带液。
3、塔顶压力影响。
随着轻烃量增大,塔顶压力高,吸收效果好,脱吸效果差,C2不易脱出,压力低则吸收效果差,脱吸效果好,干气中C5量增加,控制合适的塔压才能保证液化气中的C2脱出,同时干气不带液。
2.1.3应对措施确保液化气中C2不超标的情况下,适当降低调节吸收脱吸塔C-203底温度。
增大吸收脱吸塔C-203一、二中回流量,降低吸收热量,提高了吸收效果。
控制合适的塔顶压力,吸收脱吸效果达到最佳。
表1 吸收脱吸塔参数调整前后对比项目调整前调整后底温/℃一中回流量/(kg/h)75250007028000二中回流量/(kg/h)2500030000塔顶压力/Mpa0.650.60 2.1.4调整后吸收脱吸塔C-203吸收效果对比表2 干气组成对比项目调整前调整后C5/%(w) 6.43 1.86C4/%(w) 3.84 1.75C3/%(w)0.090.09C2/%(w)48.7659.78通过表1和表2来看,在轻烃量增大的工况下,通过调整吸收脱吸塔的底温、压力、一二中回流量,使干气中的C5含量由6.43%降至1.86%,C4含量由3.84%降至1.75%,液化气中C2略有增加,实现了干气不带液。