实验三 图像的正交变换
- 格式:doc
- 大小:233.50 KB
- 文档页数:5
图像变换实验报告实验三图像变换⼀、实验⽬的1、结合实例学习⼏种常见的图像变换,并通过实验体会图像变换的效果;2、理解和掌握图像旋转、缩放、离散傅⾥叶变换和离散余弦变换的原理和应⽤,掌握利⽤MATLAB编程实现图像变换的⽅法。
⼆、实验内容1、图像的⼏何变换,主要实现图像的缩放与旋转,要求变换中⽤最近邻插值算法实现,或⽤双线性变换法实现并⽐较;2、图像的正交变换,主要实现离散傅⾥叶变换(DFT)与离散余弦变换(DCT)。
三、实验要求1、独⽴完成;2、编写MATLAB程序,并对程序中所调⽤函数的功能进⾏必要的说明(可⽤“help 函数名”进⾏查询);3、调试运⾏后保存实验结果(注意保存的⽂件格式);4、完成实验报告。
四、实验原理(⼀)图像的⼏何运算(变换)1、⽐例缩放⽐例缩放是指将给定的图像在x轴⽅向按⽐例缩放fx倍,在y轴⽅向按⽐例缩放fy倍,从⽽获得⼀副新的图像。
在MATLAB中,进⾏图像⽐例缩放的函数是imresize,它的常见调⽤⽅法如下:B=imresize(A,scale)B=imresize(A,[mrows ncols])B=imresize(A,scale,method)其中,A是要进⾏缩放的图像矩阵,scale是进⾏缩放的倍数,如果scale⼩于1,则进⾏缩⼩操作,如果scale⼤于1,则进⾏放⼤操作。
[mrows ncols]⽤于指定缩放后图像的⾏数和列数,method ⽤于指定的图像插值⽅法,有nearest、bilinear、bicubic 等算法。
2、图像旋转⼀般的旋转是以图像的中⼼为原点,将图像上的所有像素都旋转⼀个相同的⾓度。
在MATLAB中,进⾏图像旋转的函数是imrotate,它的常见调⽤⽅法如下:B=imrotate(A,angle)B=imrotate(A,angle,method)B=imrotate(A,angle,method,bbox)其中,A是要旋转的图像,angle是旋转的⾓度;method是插值⽅法,可以为nearest、bilinear、bicublic等;bbox是指旋转后的显⽰⽅式,有两种选择,⼀种是crop,旋转后的图像效果跟原图像⼀样⼤⼩,⼀种是loose,旋转后的图像包含原图。
图像的正交变换1、二维傅立叶变换一维时间信号,可以看作是由多个单一频率的正弦信号叠加而成的,表达组成信号的每个正弦信号的频率及其幅值的空间称为频率域。
信号在时间域与频率域之间通过傅立叶变换与逆变换进行转换。
求时间信号在频率轴上的幅值分布函数过程为傅立叶变换,而由信号的在频率轴上的幅值分布函数求解时间信号的过程为傅立叶逆变换。
一维傅立叶变换的定义:()()2j t X j x t e dt π+∞-Ω-∞Ω=⋅⎰一维傅立叶逆变换定义:()()2j t x t X j e d π+∞Ω-∞=Ω⋅Ω⎰Ω为频率变量,它的连续变化使()X j Ω包含了无限个正弦和余弦项的和。
根据尤拉公式exp[2]cos 2sin 2j t t j t πππ-Ω=Ω-Ω傅立叶变换系数可以写成如下式的复数和极坐标形式:()()()()()j X j R jI X j e ϕΩΩ=Ω+Ω=Ω其中1222[()()]()RI X j =Ω+ΩΩ定义为傅立叶谱(幅值函数)1()()tan []()I R ϕ-ΩΩ=Ω为相角 而222()()()()E X j R I Ω=Ω=Ω+Ω能量谱二维平面图像是一种幅值沿纵坐标和横坐标两个方向变化的信号,其变化规律的分析也在频率域进行。
二维信号的正交变换由一维信号的正交变换扩展而得到。
连续二维函数的傅立叶变换对定义二维函数的傅立叶正变换 ()()()⎰⎰∞∞-∞∞-+-=dxdy e y x f v u F vy ux j π2,, 二维函数的傅立叶逆变换 ()()()⎰⎰∞∞-∞∞-+=dudv e v u F y x f vy ux j π2,, 二维函数的傅立叶谱 21)],(),([),(22v u I v u R v u F +=二维函数的傅立叶变换的相角 ]),(),([tan ),(1v u R v u I v u -=φ 二维函数的傅立叶变换的能量谱),(),(),(),(222v u I v u R v u F v u E +==2二维离散傅立叶变换对于一维信号()x t 及其傅立叶变换()X j Ω均进行离散(数字化),则离散的傅立叶变换定义如下:一维离散傅立叶正变换()()()11exp 2N x X k x n j kn N N π-==-∑一维离散傅立叶逆变换()()()10exp 2N u x t X k j kn N π-==∑对于N M ⨯图象,其二维离散傅立叶变换定义为:()()∑∑-=-=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-=10102exp ,1,M x N y N vy M ux j y x f MN v u F π ∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(M N N M u v vy ux j v u F y x f π对于N N ⨯图象()()∑∑-=-=⎪⎭⎫ ⎝⎛+-=10122exp ,1,N x N y N vy ux j y x f Nv u F π∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(N N N u v vy ux j v u F y x f π1.3二维离散傅立叶变换的性质 性质1:线性性质如果:11(,)(,)f x y F u v ⇔ 22(,)(,)f x y F u v ⇔ 则有:()()()()v u bF v u aF y x bf y x af ,2,1,2,1+⇔+性质2:尺度性质1(,), 1(,)(,)u v f ax by F a b F x y F u v ab a b ⎛⎫⇔==-→--⇔-- ⎪⎝⎭当时,性质3:可分离性()()()()∑∑∑∑∑-=-=-=-=-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=11102101022exp ,12exp ,2exp 12exp ,1,N x N x N y N x N y N ux j v x F NN vy j y x f N ux j N N vy ux j y x f Nv u F ππππ 二维傅立叶变换可分解成了两个方向的一维变换顺序执行。
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
实验报告课程名称医学图像处理实验名称图像变换专业班级姓名学号实验日期实验地点2015—2016学年度第 2 学期图1 原图像图2 灰度变换后的图像分析:图像的灰度变换处理是图像增强处理技术中基础的空间域图像处理方法。
灰度灰度变换是指根据某种目标条件按照一定变换关系逐点改变原图像中每个像素灰度值的方法。
灰度变换法又可分为三种:线性、分段线性及非线性变换。
目的是为了改善画质,使图像的显示效果更加清晰。
2直方图均衡化I=imread('skull.tif'); %读取图像J=histeq(I); %指定直方图均匀化后的灰度级数n,默认值为64 imshow(I); %显示原图像title('原图像'); %图像标题为‘原图像’图3 原图像 图4 直方图均衡化所得图像 分析:直方图均衡化后的图像在整个灰度值动态变化范围内分布均匀化,改善了原图像的亮度分布状态,增强图像的视觉效果。
它是非线性灰度变换。
1.522.53x 105原图像直方图010020001.522.53x 105均衡化变换后的直方图0100200050100150200250图6直方图规定化所得图像分析:直方图规定化就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。
直方图规定化变换后是亮图像的直方图。
直方图的低端已右移向灰度级的较亮区域4利用matlab软件实现数字图像傅里叶变换I=imread('skull.tif'); %imshow(I); %fftI=fft2(I); %sfftI=fftshift(fftI); %RR=real(sfftI); %II=imag(sfftI); %图8 原图像图9 归一化后的图像分析:利用matlab软件实现数字图像傅里叶变换。
二维离散傅立叶变换将傅里叶变化的中心为。
图像处理中的正交变换探讨刘舜鑫;刘少卿【摘要】正交变换是一类非常重要的变换,其具有使变换前后图像能量保持不变的特性.图像的正交变换是图像处理技术的重要工具,被广泛地运用于图像特征提取、图像增强、图像复原、图像压缩和图像识别等领域.首先,论述了正交变换的定义及编码原理;其次,对正交变换中的傅立时变换和离散余弦变换的基本概念、性质、算法以及在图像处理中的应用等进行了详细的叙述;最后,利用Madab和C++编程,实现了快速离散傅立叶变换和离散余弦变换,并对两种变换结果的优劣作了全面的比较.【期刊名称】《电子产品可靠性与环境试验》【年(卷),期】2013(031)002【总页数】6页(P57-62)【关键词】正交变换;傅立叶变换;离散余弦变换;频域【作者】刘舜鑫;刘少卿【作者单位】工业和信息化部电子第五研究所,广东广州 510610【正文语种】中文【中图分类】TP391.410 引言图像处理是指用计算机对图像进行分析,以达到所需结果的技术,又被称为影像处理。
平常所说的图像处理一般指数字图像处理。
数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素被称为像素,其值为一整数,被称为灰度值。
图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分 [1]。
图像变换是图像处理技术的重要工具。
为了有效和快速地对图像进行处理和分析,图像变换将原定义在图像空间的图像以某种形式转换到另外一些空间,并利用这些空间的特有性质更方便地进行加工,最后再变换回图像空间以得到所需的效果。
正交变换改变图像的表示域及表示数据,给图像处理工作带来了极大的方便。
利用这个工具,可以对图像的频谱进行各种各样的处理。
1 正交变换的两种定义a)定义1:欧氏空间V上的一个线性变换σ被称为正交变换,如果它保持向量的长度不变,即对任意ξ∈V,均有b)定义2:欧氏空间V上的一个线性变换σ被称为正交变换,如果它保持向量的内积不变,即对任意ξ,η∈V,均有(σ(ξ),σ(η))=(ξ,η)。
实验三图像分析实验——图像分割、形态学及边缘与轮廓分析一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、熟悉图像形态学分析的基本原理,观察不同形态学方法处理的结果;2、熟悉图像阈值分割、区域生长、投影及差影检测和模板匹配的基本原理,观察处理的结果;3、熟悉图像边缘检测、Hough平行线检测、轮廓提取及跟踪和种子填充的基本原理,观察处理的结果;4、了解图像矩、空穴检测、骨架提取的基本原理,观察处理的结果。
三、实验原理本次实验侧重于演示观察,由于内容繁多,并且系统中已有部分实验项目的原理说明,因此实验原理及编程实现步骤这里不再详细叙述,有兴趣的同学可以查阅数字图像处理方面的有关书籍。
四、实验内容1、图像形态学分析内容包括:图像膨胀、图像腐蚀、开运算、闭运算和图像细化针对二值图像进行处理,有文字说明,实验步骤中将详细介绍其使用方法。
2、图像分割内容包括:阈值分割、区域生长、投影检测、差影检测和模板匹配阈值分割:支持灰度图像。
从图库中选择图像分割中的源图, 然后执行图像分析→图像分割→阈值分割, 比较原图和分割后的图, 对照直方图分析阈值分割的特点。
对源图再执行一次图像变换→点运算→阈值变换, 比较分析阈值变换和阈值分割的结果。
区域生长:支持灰度图像。
操作方法与阈值分割类似,比较分析其与阈值分割的不同。
投影检测:只支持二值图像。
从图库中选择投影检测中的源图, 然后执行图像分析→投影检测→水平投影, 然后再垂直投影, 记录下检测部分的水平和垂直方向的位置。
如有必要, 在检测之前, 对图像进行平滑消噪。
差影检测:支持灰度图像。
从图库中选择图像合成中的源图, 然后执行图像分析→图像合成→图像相减, 在弹出的文件对话框中选择图库图像合成中的模板图像,观察分析差影结果。
模板匹配:支持灰度图像。
从图库中选择模板匹配中的源图, 然后执行图像分析→模式识别→模板匹配, 在弹出的文件对话框中选择图库模板匹配中的模板图像, 观察分析结果。
实验三图像的正交变换一、实验目的1.了解傅立叶变换、离散余弦变换及其在图像处理中的应用2.了解Matlab线性滤波器的设计方法二、实验步骤1、打开MATLAB软件,设置工作路径,新建M文件。
2、将图片放到当前工作路径下3、写入图像正交变换(包括傅里叶变换、离散余弦变换)程序保存并调试运行。
程序具体要求:(1)傅立叶变换A) 绘制一个二值图像矩阵,并将其傅立叶函数可视化。
B) 利用傅立叶变换分析两幅图像的相关性,定位图像特征。
读入图像‘cameraman.tif’,抽取其中的字母‘a’。
( 2 ) 离散余弦变换(DCT)A)使用dct2对图像‘linyichen.jpg’进行DCT变换。
B)将上述DCT变换结果中绝对值小于10的系数舍弃,使用idct2重构图像并与原图像比较。
4、保存实验结果并完善实验报告。
三、实验程序1、傅立叶变换A)绘制一个二值图像矩阵,并将其傅立叶函数可视化。
f=zeros(30,30);f(5:24,13:17)=1;imshow(f,'notruesize')F=fft2(f);F2=log(abs(F));figure,imshow(F2,[-1 5],'notruesize');colormap(jet);F=fft2(f,256,256); %零填充为256×256矩阵figure,imshow(log(abs(F)),[-1 5],'notruesize');colormap(jet);F2=fftshift(F); %将图像频谱中心由矩阵原点移至矩阵中心figure,imshow(log(abs(F2)),[-1 5],'notruesize');colormap(jet);B)利用傅立叶变换分析两幅图像的相关性,定位图像特征。
读入图像‘cameraman.tif’,抽取其中的字母‘a’。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。