图像处理中的正交变换87页PPT
- 格式:ppt
- 大小:10.20 MB
- 文档页数:87
实验4 图象处理中的正交变换——频域处理一.实验目的:1.掌握二维快速傅里叶变换(FFT)的实现,对频谱图像可视化操作。
2.了解频域滤波的内容,学会如何在频域中直接生成滤波器,包括平滑频域滤波器——低通滤波器、锐化频域滤波器——高通滤波器,并利用生成的滤波器对输入图像进行频域处理。
3.掌握绘制三维可视化滤波器图形的方法。
二.实验内容:1.实现二维快速傅里叶变换,以图像形式显示傅里叶频谱。
2.利用已给出的自定义的M函数,建立频域滤波器的传递函数H(u, v)3.绘制滤波器传递函数H(u, v)三维图形,并以图像形式显示滤波器。
4.对输入图像进行频域滤波处理。
三.实验原理:1.快速傅里叶变换FFT的实现一个大小为M×N的图像矩阵f的快速傅里叶变换FFT可以通过MATLAB 函数fft2获得,其简单语法:F = fft2(f)该函数返回一个大小仍为M×N的傅里叶变换,数据排列如图4.2(a)所示;即数据的原点在左上角,而四个四分之一周期交汇于频率矩形的中心。
傅里叶频谱可以使用函数abs来获得,语法为:S = abs(F)该函数计算数组的每一个元素的幅度,也就是实部和虚部平方和的平方根,即若某个元素为F = a +bj,则S=。
通过显示频谱的图像进行可视化分析是频域处理的一个重要方面。
例如,对图4.3(a)所示的图像f (image.bmp)我们计算它的傅里叶变换并显示其频谱:>> F = fft(f)>> S = abs(F)>> imshow(S, [ ])图 4.3(b)显示了结果,图像四个角上的亮点就是四个四分之一周期的中心点。
函数fftshift将变换的原点移动到频率矩形的中心,语法为:Fc = fftshift(F)F是用fft2得到的傅里叶变换,即图4.2(a),而Fc是已居中的变换,即图4.2(b)。
键入命令:>> Fc = fftshift(F)>> Sc = abs(Fc)>>figure, imshow(Sc, [ ])将产生图4.3(c)所示的图像,居中后的结果在该图像中是很明显的。
图像的正交变换1、二维傅立叶变换一维时间信号,可以看作是由多个单一频率的正弦信号叠加而成的,表达组成信号的每个正弦信号的频率及其幅值的空间称为频率域。
信号在时间域与频率域之间通过傅立叶变换与逆变换进行转换。
求时间信号在频率轴上的幅值分布函数过程为傅立叶变换,而由信号的在频率轴上的幅值分布函数求解时间信号的过程为傅立叶逆变换。
一维傅立叶变换的定义:()()2j t X j x t e dt π+∞-Ω-∞Ω=⋅⎰一维傅立叶逆变换定义:()()2j t x t X j e d π+∞Ω-∞=Ω⋅Ω⎰Ω为频率变量,它的连续变化使()X j Ω包含了无限个正弦和余弦项的和。
根据尤拉公式exp[2]cos 2sin 2j t t j t πππ-Ω=Ω-Ω傅立叶变换系数可以写成如下式的复数和极坐标形式:()()()()()j X j R jI X j e ϕΩΩ=Ω+Ω=Ω其中1222[()()]()RI X j =Ω+ΩΩ定义为傅立叶谱(幅值函数)1()()tan []()I R ϕ-ΩΩ=Ω为相角 而222()()()()E X j R I Ω=Ω=Ω+Ω能量谱二维平面图像是一种幅值沿纵坐标和横坐标两个方向变化的信号,其变化规律的分析也在频率域进行。
二维信号的正交变换由一维信号的正交变换扩展而得到。
连续二维函数的傅立叶变换对定义二维函数的傅立叶正变换 ()()()⎰⎰∞∞-∞∞-+-=dxdy e y x f v u F vy ux j π2,, 二维函数的傅立叶逆变换 ()()()⎰⎰∞∞-∞∞-+=dudv e v u F y x f vy ux j π2,, 二维函数的傅立叶谱 21)],(),([),(22v u I v u R v u F +=二维函数的傅立叶变换的相角 ]),(),([tan ),(1v u R v u I v u -=φ 二维函数的傅立叶变换的能量谱),(),(),(),(222v u I v u R v u F v u E +==2二维离散傅立叶变换对于一维信号()x t 及其傅立叶变换()X j Ω均进行离散(数字化),则离散的傅立叶变换定义如下:一维离散傅立叶正变换()()()11exp 2N x X k x n j kn N N π-==-∑一维离散傅立叶逆变换()()()10exp 2N u x t X k j kn N π-==∑对于N M ⨯图象,其二维离散傅立叶变换定义为:()()∑∑-=-=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-=10102exp ,1,M x N y N vy M ux j y x f MN v u F π ∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(M N N M u v vy ux j v u F y x f π对于N N ⨯图象()()∑∑-=-=⎪⎭⎫ ⎝⎛+-=10122exp ,1,N x N y N vy ux j y x f Nv u F π∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(N N N u v vy ux j v u F y x f π1.3二维离散傅立叶变换的性质 性质1:线性性质如果:11(,)(,)f x y F u v ⇔ 22(,)(,)f x y F u v ⇔ 则有:()()()()v u bF v u aF y x bf y x af ,2,1,2,1+⇔+性质2:尺度性质1(,), 1(,)(,)u v f ax by F a b F x y F u v ab a b ⎛⎫⇔==-→--⇔-- ⎪⎝⎭当时,性质3:可分离性()()()()∑∑∑∑∑-=-=-=-=-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=11102101022exp ,12exp ,2exp 12exp ,1,N x N x N y N x N y N ux j v x F NN vy j y x f N ux j N N vy ux j y x f Nv u F ππππ 二维傅立叶变换可分解成了两个方向的一维变换顺序执行。
数字图像处理第2章图像处理中的正交变换(第二讲)§2 离散余弦变换图像处理中常用的正交变换除了傅里叶变换外,还有其他一些有用的正交变换。
其中离散余弦就是一种。
离散余弦变换表示为DCT。
2.1 离散余弦变换的定义一维离散余弦变换的定义由下式表示∑-==1)(1)0(N x x f N F (3—74) N u x x f N u F N x 2)12(cos )(2)(10π+=∑-=(3—75)式中是第个余弦变换系数,是广义频率变量,;是时域N 点序列,。
F u ()u u 1,,3,2,1-=N u f x ()1,,1,0-=N x一维离散余弦反变换由下式表示1112(21)()(0)()cos 2N u x u f x F F u N N N π-=+=+∑(3—76)显然,式(3—74)式(3—75)和式(3—76)构成了一维离散余弦变换对。
二维离散余弦变换的定义由下式表示N v y N u x y x f N v u F Nu x y x f N u F Nv y y x f N v F y x f N F N x N y N y N x N x N y N x N y 2)12(cos 2)12(cos ),(2),(2)12(cos ),(2)0,(2)12(cos),(2),0(),(1)0,0(101010101010101ππππ+⋅+=+=+⋅==∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=(3—77)式(3—77)是正变换公式。
其中是空间域二维向量之元素。
,是变换系数阵列之元素。
式中表示的阵列为N ×Nf x y (,),1,....2,1,0,-=N y x ),(v u F二维离散余弦反变换由下式表示Nv y N u x v u F N N u x u F N N v y v F N F N y x f N u N v N u N v 2)12(cos 2)12(cos ),(22)12(cos )0,(22)12(cos ),0(2)0,0(1),(11111111ππππ+⋅++++++=∑∑∑∑-=-=-=-=(3—78)式中的符号意义同正变换式一样。