图像处理中正交变换方法对比
- 格式:doc
- 大小:887.13 KB
- 文档页数:23
1、图像的阈值分割方法研究2、图像锐化算子的对比研究3、图像的开运算4、图像的闭运算5、连通区域单元贴标签6、彩色图像的灰度化处理7、图像类型的转换8、FIR滤波器的设计9、图像的算术运算10、图像空域增强方法研究11、图像频域增强方法研究12、图像的腐蚀13、图像的膨胀14、图像的霍夫曼编码15、图像区域特征的描述和测量16、图像无损压缩和编码17、图像有损压缩和编码18、图像高通滤波器19、图像低通滤波器20、图像伪彩色增强21、图像边缘检测算子22、图像平滑滤波器23、数字图像的频谱特性研究24、图像DCT变换25、基于灰度阈值的图像分割技术26、图像分析与增强27、图像邻域与块运算28、正交变换方法对比29、灰度直方图规定化30、图像真彩色增强31、图像局部区域填充32、图像显示技术33、图像文件操作34、数字图像几何运算技术35、数字图像的傅里叶变换36、图像的小波变换参考书目:1、张汗灵编著MA TLAB在图像处理中的应用/ 北京:清华大学出版社,20082、王家文MATLAB 6.5 图形图像处理国防工业出版社3、王晓丹,吴崇明编著基于MATLAB的系统分析与设计[5] 图像处理西安电子科技大学出版社20004、余成波编著数字图像处理及MATLAB实现重庆大学出版社20035、杨枝灵, 王开等编著Visual C++数字图像获取处理及实践应用人民邮电出版社20036、苏彦华等编著Visual C++数字图像识别技术典型案例人民邮电出版社20047、何斌[等] 编著Visual C++数字图像处理人民邮电出版社20028、周金萍编著MA TLAB 6.5图形图像处理与应用实例科学出版社2003TP391.41/04479、清源计算机工作室编著MATLAB 6.0高级应用:图形图像处理机械工业出版社2001 TP391.41/10、郝文化主编MATLAB图形图像处理应用教程中国水利水电出版社200411、苏金明, 王永利编著MA TLAB图形图像电子工业出版社2005。
滨江学院《计算机图像处理》课程设计报告题目论正交变换的理论基础及其在图像处理中的应用专业12计算机科学与技术学生姓名学号二O一五年六月十日目录1课程设计目的 (2)2课程设计要求 (2)3 正交变换的概述 (2)3.1 信号的正交分解 (2)3.2 正交变换的定义 (3)3.3 正交变换的分类 (4)3.4 正交变换的标准基 (4)3.4.1 一维DFT的标准基 (4)3.4.2 二维DFT (6)3.4.3 正交变换的标准基图像 (7)3.5 正交变换在图像处理中的应用 (8)6 总结 (9)7 参考文献 (9)1课程设计目的(1) 理解正交变换的基本概念及分类。
(2) 了解正交变换在图像处理中的应用2课程设计要求(1)掌握课程设计的相关知识、概念清晰。
(2)查阅资料,根据不同处理需求,设计完成对数字图像的处理与分析。
(3)熟练掌握matlab 软件的基本操作与处理命令。
(4)进一步理解数字图像处理与分析的过程与意义。
3 正交变换的概述3.1 信号的正交分解完备的内积空间称为希尔伯特空间。
折X 为一希尔伯特空间,φ1 ,φ2 , ⋯,φn 是X 空间中的一向量,如果它们是线性独立的,则称之为空间X 中的一组“基”。
某一信号x 就可以按这样的一组基向量作分解,即X=∑=Nn n n a 1φ (式3-1)式(3-1)中a 1 , a 2 , ⋯, a n 是分解系数, 它们是一组离散值。
假设φ1 ,φ2 , ⋯,φn 是一组两两互相正交的向量,则式(3-1) 称为x 的正交展开, 或正交分解。
系数a 1 , a 2 , ⋯, a N 是x 在各个基向量上的投影 ,若N=3 ,其含义如图3-1 所示。
图3-1 信号的正交分解3.2 正交变换的定义一维序列 }10),({-≤≤N x x f可以表示成一个N 维向量 [])1(),...,1(),0(-=N f f f T U 其酉变换可以表示为 AU V = 或 )(),()(10x f x u a u g N x ∑-==,10-≤≤N u 其中变换矩阵A 满足A A T *-=1(酉矩阵),若A 为实数阵,则满足A A T =-1,称为正交阵。
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
目录1课程设计目的 (1)2课程设计要求 (1)3 正交变换的概述 (1)3.1 信号的正交分解 (1)3.2 正交变换的定义 (2)3.3 正交变换的分类 (3)3.4 正交变换的标准基 (3)3.4.1 一维DFT的标准基 (3)3.4.2 二维DFT (5)3.4.3 正交变换的标准基图像 (6)3.5 正交变换在图像处理中的应用 (7)4 傅里叶变换 (8)4.1 傅里叶变换的定义及基本概念 (9)4.2 傅里叶变换代码 (13)4.3 傅里叶变换与逆变换结果 (14)5 离散余弦变换 (14)5.1 离散余弦变换的定义 (14)5.2 离散余弦变换代码 (17)5.3 离散余弦变换与逆变换结果 (17)6 小波变换 (18)6.1概述 (18)6.2 小波变换的基本理论 (18)6.3 小波变换代码 (20)6.4 小波变换结果 (21)7 结论 (21)8 参考文献 (22)图像处理中正交变换方法对比1课程设计目的(1) 理解正交变换的基本概念及分类。
(2) 掌握傅立叶变换及逆变换的基本原理方法。
(3) 掌握离散余弦变换的基本原理方法。
(4) 掌握小波变换的基本原理及方法。
(5) 学会利用matlab 软件进行数字图像处理与分析2课程设计要求(1)掌握课程设计的相关知识、概念清晰。
(2)查阅资料,根据不同处理需求,设计完成对数字图像的处理与分析。
(3)熟练掌握matlab 软件的基本操作与处理命令。
(4)进一步理解数字图像处理与分析的过程与意义。
3 正交变换的概述3.1 信号的正交分解完备的内积空间称为希尔伯特空间。
折X 为一希尔伯特空间,φ1 ,φ2 , ⋯,φn 是X 空间中的一向量,如果它们是线性独立的,则称之为空间X 中的一组“基”。
某一信号x 就可以按这样的一组基向量作分解,即X=∑=Nn n n a 1φ (式3-1) 式(3-1)中a 1 , a 2 , ⋯, a n 是分解系数, 它们是一组离散值。
图像处理中的正交变换探讨刘舜鑫;刘少卿【摘要】正交变换是一类非常重要的变换,其具有使变换前后图像能量保持不变的特性.图像的正交变换是图像处理技术的重要工具,被广泛地运用于图像特征提取、图像增强、图像复原、图像压缩和图像识别等领域.首先,论述了正交变换的定义及编码原理;其次,对正交变换中的傅立时变换和离散余弦变换的基本概念、性质、算法以及在图像处理中的应用等进行了详细的叙述;最后,利用Madab和C++编程,实现了快速离散傅立叶变换和离散余弦变换,并对两种变换结果的优劣作了全面的比较.【期刊名称】《电子产品可靠性与环境试验》【年(卷),期】2013(031)002【总页数】6页(P57-62)【关键词】正交变换;傅立叶变换;离散余弦变换;频域【作者】刘舜鑫;刘少卿【作者单位】工业和信息化部电子第五研究所,广东广州 510610【正文语种】中文【中图分类】TP391.410 引言图像处理是指用计算机对图像进行分析,以达到所需结果的技术,又被称为影像处理。
平常所说的图像处理一般指数字图像处理。
数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素被称为像素,其值为一整数,被称为灰度值。
图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分 [1]。
图像变换是图像处理技术的重要工具。
为了有效和快速地对图像进行处理和分析,图像变换将原定义在图像空间的图像以某种形式转换到另外一些空间,并利用这些空间的特有性质更方便地进行加工,最后再变换回图像空间以得到所需的效果。
正交变换改变图像的表示域及表示数据,给图像处理工作带来了极大的方便。
利用这个工具,可以对图像的频谱进行各种各样的处理。
1 正交变换的两种定义a)定义1:欧氏空间V上的一个线性变换σ被称为正交变换,如果它保持向量的长度不变,即对任意ξ∈V,均有b)定义2:欧氏空间V上的一个线性变换σ被称为正交变换,如果它保持向量的内积不变,即对任意ξ,η∈V,均有(σ(ξ),σ(η))=(ξ,η)。
数字图像处理与分析第四章 图像处理中的正交变换3刘定生 中科院中国遥感卫星地面站2005年春季学期1其他变换—小波变换连续小波变换基本小波—一个具有振荡性和迅速衰减的波 小波基函数ψ a ,b ( t ) =t−b 1 ψ( ) a aa-尺度系数(伸缩系数);b-位移系数第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站2其他变换—小波变换连续小波变换连续小波变换定义(又称之为积分小波变换):W f ( a , b ) =< f ,ψ∞a ,b( t ) >= 1 a=−∞∫f ( t )ψa ,b( t ) dt =−∞∫∞t−b ) dt f ( t )ψ ( a连续小波变换的逆变换:1 f (t ) = Cψ∞ ∞∫0da ∫∞W f ( a , b )ψ a ,b ( t ) db a 2 −第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站3其他变换—小波变换连续小波变换 W(a,b)是信号x(t)与小波基本函数在尺度因子a和位移因 子b时的互相关函数 如果信号在特定的尺度因子a和位移因子b下与基本小波函 数具有较大的相关性(相似性),则W(a,b)值将较大 对于任意给定的尺度因子a(频率~ 1/a),小波变换 W(a,b)为输入信号作用于具有响应函数 ψ ∗a,0 (−b) 的滤波 器输出; 小波变换定义了一组由尺度因子a规范的连续滤波器组第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站4其他变换—小波变换小波变换与STFT的基本区别B STFT B B B B Bf0 B CWT2f0 2B3f0 4B4f05f06f0 8Bf02f04f08f0 刘定生 中科院中国遥感卫星地面站5第四章 图像处理中的正交变换其他变换—小波变换小波变换参数的深入分析尺度(Scaling)—小波的“尺度”变化意味着对小波进行“拉伸”或“压 缩”f(t) = sin(t) scale factor1f(t) = sin(2t) scale factor 2f(t) = sin(3t) scale factor 3第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站6其他变换—小波变换小波变换参数的深入分析(续)尺度—某种程度上类似于频率:频率~1/a第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站7其他变换—小波变换小波变换参数的深入分析(续)尺度与频率大尺度对应于“展开”的小波,小波展开越大,该小波表征的信号 特征就越粗糙(平滑)小尺度大尺度小尺度a:对应于压缩的小波;可表征更好的细节(变 化):高频率 大尺度a:对应于展开的小波;表征粗糙部分(慢变化): 低频率 第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站8其他变换—小波变换小波变换参数的深入分析(续)位移(Shifting)—延迟或加速小波 数学上,延迟一个函数f(t)表示为f(t-k)第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站9其他变换—小波变换小波变换参数的深入分析(续)C = 0.0004C = 0.0034 第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站10其他变换—小波变换小波变换参数的深入分析(续)小波变换系数分布图第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站11其他变换—小波变换小波变换的基本性质线性—小波变换是线性变换f (t ) = αf 1(t ) + βf 2 (t )W f ( a, b) = αW f1( a, b) + βW f 2( a, b)平移和伸缩的共变性1 f ( a0 t ) ⇔ W f ( a0 a , a0 b ) a冗余性:连续小波变换中存在信息表述的冗余度其表现是由连续小波变换恢复原信号的重构公式不是唯一的,小波变换 的核函数存在许多可能的选择 尽管冗余的存在可以提高信号重建时计算的稳定性,但增加了分析和解 释小波变换的结果的困难第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站12其他变换—小波变换离散小波变换连续小波变换中,尺度系数和平移系数连续取值,将产生 巨大的计算量,主要用于理论分析 仅取尺度与位置的某些离散量,采用离散化的尺度及位移 因子,可大量减少计算量,形成离散小波变换令m m a = a0 ; b = nb0a0 ; a0 > 1, b0 ≠ 0; m, n为整数系列可有离散小波基函数:m m − t − nb0a0 − ψ m ,n ( t ) = m ψ ( ) = a0 2ψ ( a0 mt − nb0 ) m a0 a01及离散小波变换:< f ,ψ m ,n >=−∞∫∞f (t ) m ,n (t )dt = a0 ψ−m ∞ 2 −∞∫f (t ) ( a0 mt − nb0 )dt ψ −13第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站其他变换—小波变换二进小波变换若基于2的幂次方选择二进伸缩和二进位移(以2的因子伸 缩和平移)构成基函数,即a0 = 2; b0 = 1;则形成二进小波ψ m ,n ( t ) =1 2ψ( mt − n 2m 2m) = 2 ψ ( 2 −m t − n )−m 2第四章 图像处理中的正交变换刘定生 中科院中国遥感卫星地面站14其他变换—小波变换二进正交小波变换满足下列条件的二进小波(正交性条件)< ψ m,n ,ψ j ,k >= δ m, jδ n,k( Kronecher δ 函数)⎧1 m = j, n = k =⎨ 其他 ⎩0为二进正交小波。
正交变换的方法正交变换是线性代数中的重要概念,它在许多领域中都有广泛的应用。
本文将围绕正交变换展开,介绍它的定义、性质以及在几何、图像处理和信号处理等领域中的应用。
一、正交变换的定义与性质正交变换是指保持向量长度和夹角的线性变换。
具体而言,对于一个n维向量空间V中的向量x和y,如果存在一个n×n的矩阵Q,使得对于任意的x和y有Qx·Qy=x·y,那么矩阵Q就是一个正交矩阵,而变换Qx就是一个正交变换。
正交变换的一些基本性质如下:1. 正交变换保持向量的长度不变,即||Qx|| = ||x||;2. 正交变换保持向量之间的夹角不变,即(Qx)·(Qy) = x·y;3. 正交变换的逆变换也是正交变换,即Q的逆矩阵Q^-1也是正交矩阵;4. 正交矩阵的转置等于它的逆矩阵,即Q^T = Q^-1;5. 两个正交矩阵的乘积仍然是正交矩阵。
二、正交变换在几何中的应用在几何中,正交变换被广泛用于描述平移、旋转和镜像等基本变换。
通过矩阵乘法的方式,可以将一个点或一个物体进行平移、旋转或镜像操作,从而改变它在坐标系中的位置和方向。
三、正交变换在图像处理中的应用正交变换在图像处理中有着重要的应用。
其中最著名的正交变换是离散傅里叶变换(DFT),它将一个离散信号从时域转换到频域。
DFT的基础是正交变换的性质,通过将信号拆解成一系列正交基函数的线性组合,可以得到信号在频域上的表示,从而实现信号的频谱分析和滤波处理。
四、正交变换在信号处理中的应用正交变换在信号处理中也有着广泛的应用。
例如,在通信系统中,正交变换被用于多载波调制(OFDM)技术中,通过将信号分成多个正交子载波进行传输,提高了信号的抗干扰性能和频谱利用率。
另外,正交变换还被用于信号压缩和降噪等领域,通过正交变换将信号转换到一个更稳定的域中,可以提取信号的重要特征并减小数据的冗余。
五、总结正交变换作为一种保持向量长度和夹角的线性变换,在几何、图像处理和信号处理等领域中有着广泛的应用。
目录1课程设计目的 (1)2课程设计要求 (1)3 正交变换的概述 (1)3.1 信号的正交分解 (1)3.2 正交变换的定义 (2)3.3 正交变换的分类 (3)3.4 正交变换的标准基 (3)3.4.1 一维DFT的标准基 (3)3.4.2 二维DFT (5)3.4.3 正交变换的标准基图像 (6)3.5 正交变换在图像处理中的应用 (7)4 傅里叶变换 (8)4.1 傅里叶变换的定义及基本概念 (9)4.2 傅里叶变换代码 (13)4.3 傅里叶变换与逆变换结果 (14)5 离散余弦变换 (14)5.1 离散余弦变换的定义 (14)5.2 离散余弦变换代码 (17)5.3 离散余弦变换与逆变换结果 (17)6 小波变换 (18)6.1概述 (18)6.2 小波变换的基本理论 (18)6.3 小波变换代码 (20)6.4 小波变换结果 (21)7 结论 (21)8 参考文献 (22)图像处理中正交变换方法对比1课程设计目的(1) 理解正交变换的基本概念及分类。
(2) 掌握傅立叶变换及逆变换的基本原理方法。
(3) 掌握离散余弦变换的基本原理方法。
(4) 掌握小波变换的基本原理及方法。
(5) 学会利用matlab 软件进行数字图像处理与分析2课程设计要求(1)掌握课程设计的相关知识、概念清晰。
(2)查阅资料,根据不同处理需求,设计完成对数字图像的处理与分析。
(3)熟练掌握matlab 软件的基本操作与处理命令。
(4)进一步理解数字图像处理与分析的过程与意义。
3 正交变换的概述3.1 信号的正交分解完备的内积空间称为希尔伯特空间。
折X 为一希尔伯特空间,φ1 ,φ2 , ⋯,φn 是X 空间中的一向量,如果它们是线性独立的,则称之为空间X 中的一组“基”。
某一信号x 就可以按这样的一组基向量作分解,即X=∑=Nn n n a 1φ (式3-1) 式(3-1)中a 1 , a 2 , ⋯, a n 是分解系数, 它们是一组离散值。
假设φ1 ,φ2 , ⋯,φn 是一组两两互相正交的向量,则式(3-1) 称为x 的正交展开, 或正交分解。
系数a 1 , a 2 , ⋯, a N 是x 在各个基向量上的投影 ,若N=3 ,其含义如图3-1 所示。
图3-1 信号的正交分解3.2 正交变换的定义一维序列 }10),({-≤≤N x x f可以表示成一个N 维向量 [])1(),...,1(),0(-=N f f f T U 其酉变换可以表示为 AU V = 或 )(),()(10x f x u a u g N x ∑-==,10-≤≤N u 其中变换矩阵A 满足A A T *-=1(酉矩阵),若A 为实数阵,则满足A A T =-1,称为正交阵。
向量 =V [])1(),...,1(),0(-N g g g T由此,U 可以表示为 V U A T*= 或 ),()()(10x u u g x f N x a ∑-=*= 10-≤≤N u 可知,给定基向量,}10),,({-≤≤*=→*N x x u a a T 10-≤≤N u ,原序列f (x )可以由一组系数g (u )(10-≤≤N u )表示,这组系数(变换)可以用于滤波,数据压缩,特征提取等。
若矩阵 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A .....................212222111211 满足:I A A A A T T == 则矩阵A 就成为正交矩阵。
对于某向量f ,用上述正交矩阵进行运算:Af g =若要恢复f ,则g g f A A T ==-1以上过程称为正交变换(酉变换)。
3.3 正交变换的分类正交变换总的可分为两大类,即非正弦类正交变换和正弦类正交变换。
我们经常使用的离散傅立叶变换(DFT) 、离散余弦变换(DCT) 、离散正弦变换(DST) 等属于正弦类变换,其中还包括离散Hartley 变换(DHT) 及离散W 变换(DWT) 等。
非正弦类变换包括Walsh —Hadamard 变换(WHT) 、Haar 变换( HRT) 等。
由于正弦类变换在理论价值和应用价值上都优于非正弦类变换,从而在正交变换中占据主导地位。
除了正弦类和非正弦类正交变换,还有两种特殊的正交变换,K-L 变换和正交小波变换。
K-L 变换去除信号中的相关性最彻底,且有着最佳的统计特性,被称为最佳变换。
但是K-L 变换的基函数依赖与原始数据,没有固定的变换核,限制了它的普遍应用。
小波变换能够具有很高的时频分辨率,进行局部化分析,通过伸缩平移运算对信号进行多尺度细化,达到高频处时间细分,低频处频率细分。
但是小波正交基的结构复杂,具有紧支集的小波正交基不可能具有对称性。
随着小波理论及算法的成熟,必将大有作为。
3.4 正交变换的标准基傅立叶变换是正交变换中最常用的变换,以它为例来讨论正交变换标准基具有普遍意义。
3.4.1 一维DFT 的标准基首先从傅立叶级数进行考虑。
假设函数f ( t)满足收敛定理,则函数f ( t) 的傅立叶级数为()∑∞=++10sin cos 2n n n nt b nt a a (式3-2) a 0 , a 1 , b 1 , ⋯是函数f ( t) 的傅立叶系数。
例如,一矩形波f ( t) 是周期为2π的周期函数,在[ -π,π] 上-1 -π≤t <0(式3-3)1 0≤t <π由下式求得傅立叶系数,ntdt t f a n cos )(1⎰=πππ⎰=πππntdt t f b n sin )(1(式3-4) 得到矩形波f (t ) 的傅立叶级数展开为:)(t f =π4⎥⎦⎤⎢⎣⎡++++++...)12sin(121...3sin 31sin t k k t t ,....)2,,0;(ππ±±≠∞<<-∞t t(式3-5)上面得到的展开式表明:矩形波是由一系列不同频率的正弦波乘以一个权值叠加而成。
这些波的频率依次为基波频率的奇数倍。
可以看到,求傅立叶系数的过程相当于傅立叶变换的过程,把原始信号展开,相当于傅立叶逆变换的过程。
实际上,“任意”满足收敛的一个波、一个信号都可以分解成无穷多个不同频率的信号。
这里说的这些无穷多的不同频率的信号就是标准基波。
在DFT 中也是类似的意思。
假设有限长序列f( x) ( x = 0 ,1 , ⋯, N - 1) ,一维DFT 变换对如下:其中e N j W π2-=称为变换核。
将式(6)写成矩阵形式F = W ·f 即:W 是正交变换矩阵, 矩阵元素是变换核函数不同次幂构成。
W 是正交矩阵,有W - 1 = W T 。
可以看出F( u) 是角频率为2πu/ N 信号的加权系数,也就是它在原始信号中分量的大小。
如此诸多标准基波乘以其各自系数再求和得到了原始信号,这也就是离散傅立叶反变换。
3.4.2 二维DFT一幅数字图像可以用一个二维矩阵来表示, f( i , j) 表示i 行j 列这个像素点的灰度值。
数字图像处理主要是二维数据处理。
假设f ( x , y) ( x =0 ,1 , ⋯, M - 1 ; y = 0 ,1 , ⋯, N - 1) 是一幅M ×N 图像,则二维离散傅立叶变换为:∑∑-=-=+-=1010)(2),(),(M X N y N vy N ux j e y x f v u F π u=0,1,…,M-1;v=0,1,…,N-1 (式3-9) 逆变换为:∑∑-=-=+=1010)(2),(1),(M uN v N vy N ux x j e v u F MN y x f x=0,1,…,M-1;y=0,1,…,N-1 (式3-10) 其中,e N vy N ux j )(2+-π称为正交变换核。
在二维DFT 中同样可以将(式2-9)写成矩阵形式: F = W ·f ·W T其中f 是原始的二维矩阵, F 是二维DFT 系数矩阵,W 是正交变换矩阵。
从式(10) 就可以得到逆变换的矩阵形式,两边左乘W - 1 ,右乘W得: (式3-11)因为整段数据或整幅图像的相关性小,相对冗余度低, 所以如果对整段数据或整幅图像进行DFT ,很难保证能量较大的系数处在相对集中的位置。
这不符合我们正交变换的目的。
为了消除对整幅图像进行DFT 带来的大能量系数不能集中的问题,在实际应用中一般都将图像划分为8 ×8 或16 ×16 的小方块来做。
一幅图像在空间上作周期性变化, 则该周期的倒数称为空间频率。
在图像中, 空间频率的大小表征图像明暗变化的快慢, 决定着图像的细节是否丰富[ 。
灰度变化缓慢的区域频率低, 而物体边缘或噪声对应高频。
F( u , v) 表示在对应( u ,v) 的频率点的标准基上的分量大小。
这里的标准基类似一维DFT 的标准基, 一维DFT 中标准基是特定频率的波,在二维DFT 中每个标准基就应该是一幅图像,将在2.4.3 节中详细描述标准基图像。
考虑二维离散傅立叶逆变换, IDFT 就是将原始图像表示成各个标准基图像的加权和。
在图像压缩中常用的就是舍去能量小的标准基图像,只取主分量。
以此来达到数据压缩的目的。
这样压缩后的图像对视觉效果的影响一般不是很明显,略去的只是细节。
但如果舍去的阈值设置过高,就会造成图像模糊。
3.4.3 正交变换的标准基图像由于DFT 得到的变换矩阵元素是复数, mat-lab 图像显示工具不能显示复数数值,所以选择了DCT 为例来绘制标准基图像。
如前面的讲述,取8×8 的小方块来进行二维DCT 变换。
假设F( u ,v) 对应的标准基图像是N uv , 它也是8 ×8 的二维矩阵。
则有∑∑-=-==110,),(),(M o u N v v u N v u F y x f (式3-12)设G = W T ,则式(2-12) 变为: f = G ·F ·W 。
将右边前两个矩阵乘积展开有: 8888})7(:,:),,7({...})2(:,:),,7({})1(:,:),,7({............})7(:,:),,2({...})2(:,:),,2({})1(:,:),,2({})7(:,:),,1({...})2(:,:),,1({})1(:,:),,1({),(⨯⨯⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=W F G F G F G F G F G F G F G F G F G y x f (式3-13) 这里的{G( i , :) , f ( : , j) }表示G 的第i 行与F 的第j 列所有元素对应相乘再求和。