离散数学 7-3 图的矩阵表示
- 格式:ppt
- 大小:1.92 MB
- 文档页数:41
第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。
集合包括最基本的数学概念,例如集合,元素和成员关系。
在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。
集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。
集合论,逻辑和一阶逻辑构成了数学公理化的基础。
同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。
接下来,我们将在两个单独的章节中介绍它们。
集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。
第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。
一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
通常用大写英文字母表示集合。
例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。
用小写英文字母表示集合内元素。
若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。
集合分为有限集合和无限集合两种,下面给出定义。
表示集合方法有列举法和描述法两种方式,下面分别介绍。
1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。
这种表述方式为列举法。
例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。
且集合元素之间没有次序关系。
一个集合可以作为另个集合的元素。
例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。
因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。
,,,c d e f A以上给出的集合实例都是有限集合。
当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。
国家开放大学电大本科《离散数学》网络课形考网考作业及答案国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2022年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩=形成性考核×30%+终结性考试×70%形考任务1单项选择题题目1若集合A={a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{a},4},则下列表述正确的是().选择一项:题目3设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.选择一项:A.传递B.对称C.自反和传递D.自反题目4设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().选择一项:A.{1,2,3,5}B.{4,5,6,7}C.{2,3,4,5}D.{1,2,3,4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.1B.3C.2D.0题目6集合A={1,2,3,4}上的关系R={<x,y>|x=y且x,y∈A},则R的性质为().选择一项:A.不是对称的B.反自反C.不是自反的D.传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A.3B.2C.8D.6题目9设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().选择一项:A.6、2、6、2B.无、2、无、2C.8、1、6、1D.8、2、8、2题目10设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().选择一项:A.f◦fB.g◦fC.g◦gD.f◦g判断题题目11设A={1,2}上的二元关系为R={<x,y>|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a,b},B={1,2},C={a,b},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()选择一项:对错题目14设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a,b,c,d},A上的二元关系R={<a,b>,<b,a>,<b,c>,<c,d>},则R具有反自反性质.()选择一项:对错题目18设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()选择一项:对错题目20设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()选择一项:对错形考任务2单项选择题题目1无向完全图K4是().选择一项:A.树B.欧拉图C.汉密尔顿图D.非平面图题目2已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().选择一项:A.4B.8C.3D.5题目3设无向图G的邻接矩阵为则G的边数为().选择一项:A.7B.14C.6D.1题目4如图一所示,以下说法正确的是().选择一项:A.{(a,e),(b,c)}是边割集B.{(a,e)}是边割集C.{(d,e)}是边割集D.{(a,e)}是割边题目5以下结论正确的是().选择一项:A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.树的每条边都是割边D.无向完全图都是欧拉图题目6若G是一个欧拉图,则G一定是().选择一项:A.汉密尔顿图B.连通图C.平面图D.对偶图题目7设图G=<V,E>,v∈V,则下列结论成立的是().选择一项:题目8图G如图三所示,以下说法正确的是().选择一项:A.{b,d}是点割集B.{c}是点割集C.{b,c}是点割集D.a是割点题目9设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().选择一项:A.(a)是强连通的B.(d)是强连通的C.(c)是强连通的D.(b)是强连通的题目10设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().选择一项:A.(b)只是弱连通的B.(c)只是弱连通的C.(a)只是弱连通的D.(d)只是弱连通的判断题题目11设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()选择一项:对错题目12汉密尔顿图一定是欧拉图.()选择一项:对错题目13设连通平面图G的结点数为5,边数为6,则面数为4.()选择一项:对错题目14设G是一个有7个结点16条边的连通图,则G为平面图.()选择一项:对错题目15如图八所示的图G存在一条欧拉回路.()选择一项:对错题目16设图G如图七所示,则图G的点割集是{f}.()选择一项:对错题目17设G是一个图,结点集合为V,边集合为E,则()选择一项:对错题目18设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:对错题目19如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:对错题目20若图G=<V,E>,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()选择一项:对错形考任务3单项选择题题目1命题公式的主合取范式是().选择一项:题目2设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().选择一项:题目3命题公式的主析取范式是().选择一项:题目4下列公式成立的为().选择一项:题目5设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6前提条件的有效结论是().选择一项:A.QB.┐QC.PD.┐P题目7命题公式(P∨Q)→R的析取范式是().选择一项:A.(P∨Q)∨RB.┐(P∨Q)∨RC.(P∧Q)∨RD.(┐P∧┐Q)∨R题目8下列等价公式成立的为().选择一项:题目9下列等价公式成立的为().选择一项:题目10下列公式中()为永真式.选择一项:A.┐A∧┐B↔┐(A∧B)B.┐A∧┐B↔A∨BC.┐A∧┐B↔┐(A∨B)D.┐A∧┐B↔┐A∨┐B判断题题目11设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()选择一项:对错题目12设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()选择一项:对错题目13下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)选择一项:对错题目14含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()选择一项:对错题目15命题公式P→(Q∨P)的真值是T.()选择一项:对错题目16命题公式┐P∧P的真值是T.()选择一项:对错题目17谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()选择一项:对错题目18命题公式┐(P→Q)的主析取范式是P∨┐Q.()选择一项:对错题目19设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()选择一项:对错题目20设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()选择一项:对错形考任务4要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传形考任务5网上学习行为(学生无需提交作业,占形考总分的10%)。