离散数学(73图的矩阵表示)资料
- 格式:ppt
- 大小:187.00 KB
- 文档页数:8
离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。
它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。
下面是对离散数学的基础知识点进行的总结。
1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。
2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。
3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。
4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。
5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。
7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。
8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。
9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。
命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。
约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。