梳理
1、分式的基本性质。
2、分式的约分,最简分式。
3、分式的通分,最简公分母。
再见
25a bc (1) 约分: 2 15ab c
2
示范
3
x 9 ( 2) 2 x 6x 9
2
分析:为约分要先找出分子和分母的公因式。
5ac2 25a 2 bc3 5abc 5ac2 解: (1) 2 3b 15ab c 5abc 3b
x2 9 ( x 3)( x 3) x3 ( 2) 2 2 x 6x 9 ( x 3) x3
1 1 解: 与 的最简公 分母为( x y )( x y ), x y x y 即 x 2 y 2 , 所以
1 1 ( x y) x y 2 , 2 x y ( x y )( x y ) x y
1 1 ( x y) x y 2 . 2 x y ( x y )( x y ) x y
分式的基本性质
分式的分子与分母同乘(或除以)一个 不等于0的整式,分式的值不变。
用式子表示为:
C , C C .(C 0) C
其中A,B,C是整式。
分式的约分
把一个分式的分子和分母的公因式 约去,不改变分式的值,这种变形叫做分 式的约分。 1.约分的依据是:分式的基本性质 2.约分的基本方法是: 先找出分式的分子、分母公因式,再约 去公因式. 3.约分的结果是: 整式或最简分式
(3)
1 x²-y² ,
1 x²+xy
(x+y)(x-y) ∵ x²-y²=________________,
x(x+y) x²+xy=_____________,
先把分母