当前位置:文档之家› 工件的定位与定位基准的 选择

工件的定位与定位基准的 选择

工件的定位与定位基准的 选择
工件的定位与定位基准的 选择

工件的定位与定位基准的选择

工件的定位与定位基准的选择

机械加工中,为了保证工件的位置精度和用调整法获得尺寸精度时,工件相对于机床与刀具必须占有一正确位置,即工件必须定位。而工件装夹定位的方式有:直接找正、划线找正和用夹具装夹三种方式,下面我们讨论工件在夹具中的定位问题。

工件在夹具中的定位涉及到定位原理、定位误差、夹具上采用的定位元件和工件上选用的定位基准等几方面的问题,有关定位误差的计算和定位元件的选用在夹具设计一章讲授,这里只介绍定位原理和定位基准的选择。

一、定位原理

1.六点定则

工件在夹具中的定位的目的,是要使同一工序中的所有工件,加工时按加工要求在夹具中占有一致的正确位置(不考虑定位误差的影响)。怎样才能各个工件按加工要求在夹具中保持一致的正确位置呢?要弄清楚这个问题,我们先来讨论与定位相反的问题,工件放置在夹具中的位置可能有哪些变化?如果消除了这些可能的位置变化,那么工件也就定了位。任一工件在夹具中未定位前,可以看成空间直角坐标系中的

自由物体,它可以沿三个坐标轴平行方向放在任意位置,即具有沿三个坐标轴移动的自由度X,Y,Z;同样,工件沿三个坐标轴转角方向的位置也是可以任意放置的,即具有绕三个坐标轴转动的自由度X,Y,Z。因此,要使工件在夹具中占有一致的正确位置,就必须限制工件的X,Y,Z;X,Y,Z六个自由度。。

图2-16工件的六个自由度

为了限制工件的自由度,在夹具中通常用一个支承点限制工件一个自由度,这样用合理布置的六个支承点限制工件的六个自由度,使工件的位置完全确定,称为“六点定位规则”,简称“六点定则”。

例如用……

使用六点定则时,六个支承点的分布必须合理,否则不能有效地限制工件的六个自由度。

在具体的夹具结构中,所谓定位支承是以定位元件来体现的,如上例中长方体的定位以六个支承钉代替六个支承点(图

2-17c),这种形式的六点定位方案比较明显,下面再介绍其他形式工件的定位方案。

2.对定位的两种错误理解

我们在研究工件在夹具中的定位时,容易产生两种错误的理解。一种认为:工件在夹具中被夹紧了,也就没有自由度而言,因此,工件也就定了位。这种把定位和夹紧混为一谈,是概念上的错误。我们所说的工件的定位是指所有加工工件在夹紧前要在夹具中按加工要求占有一致的正确位置,(不考虑定位误差的影响)而夹紧是在任何位置均可夹紧,不能保证各个工件在夹具中处于同一位置。如图2-20所示定位方式,由于在x方向上没有定位销,工件在x方向的任一位置均可被夹紧,实际上就是工件沿x方向移动的自由度没有消除,使一批工件在x方向的位置不确定,造成各个工件孔到端面的尺寸不一。

另一种错误的理解认为工件定位后,仍具有沿定位支承相反的方向移动的自由度,这种理解显然也是错误的。因为工件的定位是以工件的定位基准面与定位元件相接触为前提条件,如果工件离开了定位元件也就不成为其定位,也就谈不上限制其自由度了。至于工件在外力的作用下,有可能离开定位元件,那是由夹紧来解决的问题。

3.工件定位时应限制的自由度与加工要求的关系

上述几例中,工件的定位都采用了六个支承点,限制了工件

全部六个自由度,使工件在夹具中占有唯一确定的位置,称为完全定位。当工件在x、y、z三个方向都有尺寸精度或位置精度要求时,需采用这种完全定位方式。但是,并不是所有加工都必须设置六个支承点,来限制工件的六个自由度。如图2-19所示在轴上铣油槽,若轴为没有键槽的光轴且油槽为通槽时,则只需限制;x、y、z、z四个自由度,x、y、z 的自由度可不限制,只需用长V形铁定位即可。又如图2-2la 在车床上加工通孔,只需限制四个自由度,不需限制x、y、z自由度,用三爪自动定心卡盘装夹即可。再如在乎面磨床上磨平面,当工件只有厚度和平行度要求时,工件只需限制三个自由度,如图2-2lb所示,工件放置在平面磨床磁力工台就可加工。综上所述,加工时工件的定位需要限制几个自由度,完全由工件的技术要求所决定。

根据加工要求,工件不需要限制的自由度而没有限制的定位,称为不完全定位。不完全定位在加工中是允许的。在考虑定位方案时,为简化夹具结构,对不需限制的自由度,一般不设置定位支承点。但也不尽然,如在光轴上铣通槽,按定位原理,轴的端面可不设置定位销,但常常设置一定位档销,一方面可承受一定的切削力,以减小夹紧力,另一方面也便于

调整机床的工作行程。又如图2-18所示在环状工件上钻通孔,Z的自由度可不限制,但被短销限制了,若有意不限制,

反而夹具的结构更难实现。

4.欠定位与过定位

(1)欠定位根据工件的加工技术要求,应该限制的自由度而没有限制的定位称为欠定位。欠定位必然会不能保证本工序的加工技术要求,是不允许的。如图2-20所示的工件钻孔,若在x方向上未设置定位档销,孔到端面的距离尺寸就无法保证。

(2)过定位工件的同一自由度被二个以上不同定位元件重复限制的定位,称为过定位。如图2-X所示在插齿机上插齿时工件的定位,工件3以内孔在,L、轴1上定位,限制了工件x、y、z、z四个自由度,又以端面在凸台3上定位,限制了工件x、y、z、z三个自由度,其中;、/被心轴和凸台重复限制。由于工件内孔和心轴的间隙很小,当工件内孔与端面的垂直度误差较大时,工件端面与凸台实际上只有一点相接触。如图2-23a所示,造成定位不稳定。更为严重的是,工件一旦被夹紧,在夹紧力的作用下,势必引起心轴或工件的变形,如图2-23b所示。这样就会影响工件的装卸和加工精度,这种过定位是不允许的。但是,在有些情况下,形式上的过定位是允许的。

1一心轴2-工作台3一支承凸台4--:5一压垫6-7-压紧螺母

如上例中,当工件的内孔和定位端面是在一次装夹下加工出来的,具有好的垂直度,而夹具的心轴和凸台也具有很好的垂直度,即使二者仍有很小的垂直度偏差,但可由心轴和内孔之间的配合间隙来补偿。因此,尽管心轴和凸台重复限制了XY自由度,属于过定位,但不会引起相互干涉和冲突,在夹紧力作用下,工件或心轴不会变形。这种定位的定位精度高,刚性好,是可取的。

综上所述,欠定位不能保证工件的加工要求,是不允许的。过定位在一般情况下,由于定位不稳定,在夹紧力的作用下会使工件或定位元件产生变形,影响加工精度和工件的装卸,应尽量避免;但在有些情况下,只要重复限制自由度的支承点不使工件的装夹发生干涉及冲突,这种形式上的过定位,不仅是可取的,而且有利于提高工件加工时的刚性,在生产实际中也有较多的应用。

二、定位基准的选择

在定位的原理中已讲到,工件在夹具中的定位实际上是以工件上的某些基准面与夹具上定位元件保持接触,从而限制工件的自由度。那么,究竟选择工件上哪些面与夹具的定位元件相接触为好呢?这就是定位基准的选择问题。定位基准的选择是工艺上一个十分重要的问题,它不仅影响零件表面间的位置尺寸和位置精度,而且还影响整个工艺过程的安排和夹具的结构,必须十分重视。在介绍定位基准的选择原则之前,

先介绍有关基础准的一般知识。

(一)基准的概念及分类

基准的广义含义就是“依据”的意思。机械制造中所说的基准是指用来确定生产对象上几何要素间的几何关系所依据

的那些点、线、面。根据作用和应用场合不同,基准可分为设计基准和工艺基准两大类,工艺基准又可分为:工序基准、定位基准、测量基准和装配基准。

1.设计基准

零件图上用以确定零件上某些点、线、面位置所依据的点、线、面。

2.工艺基准,

零件加工与装配过程中所采用的基准,称为工艺基准它包括以下几种。

(1)工序基准工序图上用来标注本工序加工的尺寸和形位公

差的基准。就其实质来说,与设计基准有相似之处,只不过是工序图的基准。工序基准大多与设计基准重合,有时为了加工方便,也有与设计基准不重合而与定位基准重合的。(2)定位基准加工中,使工件在机床上或夹具中占据正确位置所依据的基准。如用直接找正法装夹工件,找正面是定位基准;用划线找正法装夹,所划线为定位基准;用夹具装夹,工件与定位元件相接触的面是定位基准。作为定位基准的点、线、面,可能是工件上的某些面,也可能是看不见摸不

着的中心线、中心平面、球心等,往往需要通过工件某些定位表面来体现,这些表面称为定位基面。例如用三爪自定心卡盘夹持工件外圆,体现以轴线为定位基准,外圆面为定位基面。严格地说,定位基准与定位基面有时并不是一回事,但可以替代,这中间存在一个误差问题,有关这个问题在夹具设计一章讲授。

(3)测量基准工件在加工中或加工后测量时所用的基准。

(4)装配基准装配时,用以确定零件在部件或产品中的相对位置所采用的基准。如图2-24d所示床头箱箱体的D面和E面,就是确定箱体在床身上相对位置的装配基准。

上述各类基准应尽可能使其重合。如在设计机器零件时,应尽可能以装配基准作设计基准以便直接保证装配精度。在编制零件加工工艺规程时,应尽量以设计基准作工序基准,以便直接保证零件的加工精度。在加工和测量工件时,应尽量使定位基准和测量基准与工序基准重合,以便消除基准不重合误差。

(二)定位基准的选择

定位基准有粗基准和精基准之分。零件开始加工时,所有的面均未加工,只能以毛坯面作定位基准,这种以毛坯面为定位基准的,称为粗基准,以后的加工,必须以加工过的表面做定位基准,以加工过表面为定位基准的称精基准。

在加工中,首先使用的是粗基准,但在选样定位基准时,为

了保证零件的加工精度,首先考虑的是选择精基准,精基准选定以后,再考虑合理地选择粗基准。

1.精基准的选择原则

选择精基准时,重点考虑是如何减少工件的定位误差,保证工件的加工精度,同时也要考虑工件装卸方便,夹具结构简单,一般应遵循下列原则:

(1)基准重合原则所谓基准重合原则是指以设计基准作定位

基准,以避免基准不重合误差。

(2)基准统一原则当零件上有许多表面需要进行多道工序加

工时,尽可能在各工序的加工中选用同一组基准定位,称为基准统一原则。基准统一可较好地保证各个加工面的位置精度,同时各工序所用夹具定位方式统一,夹具结构相似,可减少夹具的设计、制造工作量。

基准统一原则在机械加工应用较为广泛,如阶梯轴的加工,大多采用顶尖孔作统一的定位基准;齿轮的加工,一般都以内孔和一端面作统一定位基准加工齿坯,齿形;箱体零件加工大多以一组平面或一面两孔作统一定位基准加工孔系和

端面;在自动机床或自动线上,一般也需遵循基准统一原则。

(3)自为基准原则有些精加工工序,为了保证加工质量,要求加工余量小而均匀,采用加工面自身作定位基准,称为自为基准原则。例如在导轨磨床上磨削床身导轨时,为了保证加工余量小而均匀,采用百分表找正床身表面的方式装夹工

件,如图2-26所示,又如浮动镗孔、浮动铰孔、珩磨及拉削孔等,均是采用加工面自身作定位基准。

(4)互为基准原则为了使加工面获得均匀的加工余量和加工

面间有较高的位置精度,可采用加工面间互为基准反复加工。例如加工精度和同轴度要求高的套筒类零件,精加工时,一般先以外圆定位磨内孔,再以内孔定位磨外圆。又如加工精密齿轮时,通常是齿面淬硬后再磨齿面及内孔。由于齿面磨削余量很小,为了保证加工要求,采用图2-27所示装夹方式,先以齿面为基准磨孔,再以内孔为基准磨齿面,这样不但使齿面磨削余量小而均匀,而且能较好地保证内孔与齿切圆有较高的同轴度。

(5)装夹方便原则所选定位基准应能使工件定位稳定,夹紧可靠,操作方便,夹具结构简单。

以上介绍了精基准选择的几项原则,每项原则只能说明一个方面的问题,理想的情况是使基准既“重合”又“统一”,同时又能使定位稳定、可靠,操作方便,夹具结构简单。但实际运用中往往出现相互矛盾的情况,这就要求从技术和经济两方面进行综合分析,抓住主要矛盾,进行合理选择。

还应该指出,工件上的定位精基准,一般应是工件上具有较高精度要求的重要工作表面,但有时为了使基准统一或定位可靠,操作方便,人为地制造一种基准面,这些表面在零件的工件中并不起作用,仅仅在加工中起定位作用,如顶尖孔、

工艺搭子等。这类基准称为辅助基准。

2.粗基准的选择原则

选择粗基准时,重点考虑如何保证各个加工面都能分配到合理的加工余量,保证加工面与不加工面的位置尺寸和位置精度,同时还要为后续工序提供可靠精基准。具体选择一般应遵下列原则:

1)为了保证零件各个加工面都能分配到足够的加工余量,应选加工余量最小的面为粗基准。

2)为了保证零件上加工面与不加工面的相对位置要求,应选不加工面为粗基准。当零件上有几个加工面,应选与加工面的相对位置要求高的不加工面为粗基准。

3)为了保证零件上重要表面加工余量均匀,应选重要表面为粗基准。零件上有些重要工作表面,精度很高,为了达到加工精度要求,在粗加工时就应使其加工余量尽量均匀。

例如车床床身导轨面是重要表面,不仅精度和表面质量要求很高,而且要求导轨表面的耐磨性好,整个表面具有大体一致的物理力学性能。床身毛坯铸造时,导轨面是朝下放置的,其表面层的金属组织细微均匀,没有气孔、夹砂等缺陷。因此,导轨面粗加工时,希望加工余量均匀,这样,不仅有利于保证加工精度,同时也可能使粗加工中切去一层金属尽可能薄一些,以便留下一层组织紧密而耐磨的金属层。为了达到上述目的,在粗基准选择时,应以床身导轨面为粗基准先

加工床脚平面,再以床脚面为精基准加工导轨面,如图2-30a 所示,这样就可以使导轨面的粗加工余量小而均匀。反之,若以床脚为粗基准先加工导轨面,由于床身毛坯的平行度误差,不得不在床身的导轨面上切去一层不均匀的较厚金属,如图2-30b所示,不利于床身加工质量的保证。

以重要表面作粗基准,在重要零件的加工中得到较多的应用,例如机床主轴箱箱体的加工,通常是以主轴孔为粗基准先加工底面或顶面,再以加工好的平面为精准加工主轴孔及其他孔系,可以使精度要求高的主轴孔获得均匀的加工余量。

4)为了使定位稳定、可靠,应选毛坯尺寸和位置比较可靠、平整光洁面作粗基准。作为粗基准的面应无锻造飞边和铸造浇冒口、分型面及毛刺等缺陷,用夹具装夹时,还应使夹具结构简单,操作方便。

5)粗基准应尽量避免重复使用,特别是在同一尺寸方向上只允许装夹使用一次。因粗基准是毛面,表面粗糙、形状误差大,如果二次装夹使用同一粗基准,两次装夹中加工出的表面就会产生较大的相互位置误差

轴类零件

论文题目:轴类零件加工工艺及夹具设计 学生姓名: 学号: 所在院部: 所学专业: 指导老师: 完成时间:2010年03月

摘要 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间;轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基准,它们的精度和表面质量一般要求较高。根据零件的结构及其功能,运用定位夹紧的知识完成了夹具设计。 关键词:轴类零件、轴颈、夹具

Abstract The machine shaft is often encountered in one of the typical components. It is mainly used for support in mechanical gears, pulleys, cams and connecting rods and other transmission parts, to transfer torque. Different forms according to the structure, the axis can be divided into stepped shaft, taper spindle, axis, hollow shaft, crankshaft, camshaft, eccentric shafts, all kinds of screw shaft such as short axis aspect ratio of less than 5 large known as the slender shaft 20, most shaft in between; shaft bearings bearing, and bearing with the shaft segment called the journal. Journal is the axis of the assembly base, and their general requirements for precision and high surface quality. According to parts of the structure and function, using the knowledge of locating and clamping fixture design completed. Key words:Shaft, journ

典型轴类零件加工工艺分析

6.4典型轴类零件加工工艺分析 6.4.1 轴类零件加工的工艺分析 (1)轴类零件加工的工艺路线 1)基本加工路线 外圆加工的方法很多,基本加工路线可归纳为四条。 ① 粗车—半精车—精车 对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。 ② 粗车—半精车—粗磨—精磨 对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。 ③ 粗车—半精车—精车—金刚石车 对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。 ④ 粗车—半精—粗磨—精磨—光整加工 对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。 2)典型加工工艺路线 轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。 对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。 (1)轴类零件的预加工 轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。 校直毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值, (2) 轴类零件加工的定位基准和装夹

1)以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。 2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 3)以两外圆表面作为定位基准在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。 4)以带有中心孔的锥堵作为定位基准在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准,见图6.9所示。 锥堵或锥套心轴应具有较高的精度,锥堵和锥套心轴上的中心孔即是其本身制造的定位基准,又是空心轴外圆精加工的基准。因此必须保证锥堵或锥套心轴上锥面与中心孔有较高的同轴度。在装夹中应尽量减少锥堵的安装此书,减少重复安装误差。实际生产中,锥堵安装后,中途加工一般不得拆下和更换,直至加工完毕。 图 6.9 锥堵和锥套心轴 a)锥堵 b)锥套心轴

工件的定位教案

教学首页设计

教学过程授课思路和教学方法 教学内容和教师活动学生活动 Ⅰ、复习引入 用锥柄连接式车床专用夹具加工支架 (参照书P127图6-2) 车床夹具定位实例 (参照书P129图6-3) 回顾: ⑴、夹具的组成; ⑵、夹具的作用。 Ⅱ、讲授新课 一、定位和基准的基本概念 (结合书P129图6-3讲解) 1、工件的定位 【师】:使用夹具对工件进行加工时,必须按照加工工艺的要求把工件放在夹具中,使工件在夹紧之前相对于机床和刀具有一个正确的确定位置,这个过程称为工件的定位。 【强调】:(1)、工件的定位是靠工件上某些表面和夹具中的定位元件(或装置)相接触来实现的。 (2)、工件的定位必须使一批工件逐次放入夹具中都能占有同一位置。 2、定位基准 【师】:所谓定位基准是指工件与夹具定位 元件工作表面相接触的表面。 【扩展】: (1)、当工件的定位基准确定后,工件上其他部分的位置也随之确定。 (2)、定位基准可以是点、线、面,但作为基准的点和线往往由某些具体表面体现出来的。 二、工件的定位原理 1、六点定位规则 自由度 【过渡】:空间内自由的物体可能具有的运动? 【总结归纳】:任何一个工件在夹具中未定位前,都可以看成在空间直角坐标系中的自由物体。一个物体在三维空间中具有的运动包括沿三个坐标轴的移动和转动。分别是三个移动自由度: 和三个转动自由度:共六个自由度。?如下图所示: 看图想 问题,回忆 上次课内 容 【学生思 考】:怎样 保证在切 削加工过 程中,使工 件的各个 加工表面 的尺寸,形 状及位置 精度符合 规定要 求?----必 须使工件 在机床或 夹具中占 有一个确 定的位置。 【提问】: 如何保证 同一批工 件在夹具 中占有一 致的正确 加工位置 呢?根据 学生作答 情况 引出定 位的概念 【学生讨 论】:空间 内自由的 物体可能 具有的运 动?学生 首先 介绍定位 的目的让 学生明白 此次课程 的作用 通过 对熟悉的 知识类比 掌握与之 有关的陌 生知识促 使学生带 着问题有 目的地参 与课堂教 学活动。

1定位基准的选择

定位基准的选择 在制定零件加工的工艺规程时,正确地选择工件的定位基准有着十分重要的意义。定位基准选择的好坏,不仅影响零件加工的位置精度,而且对零件各表面的加工顺序也有很大的影响。本节先建立一些有关基准和定位的概念,然后再着重讨论定位基准选择的原则。 (一)基准的概念 零件都是由若干表面组成,各表面之间有一定的尺寸和相互位置要求。模具零件表面间的相对位置要求包括两方面:表面间的距离尺寸精度和相对位置精度(如同轴度、平行度、垂直度和圆跳动等)要求。研究零件表面间的相对位置关系离不开基准,不明确基准就无法确定零件表面的位置。基准就其一般意义来讲,就是零件上用以确定其他点、线、面的位置所依据的点、线、面。基准按其作用不同,可分为设计基准和工艺基准两大类。 1、设计基准 在零件图上用以确定其他点、线、面的基准,称为设计基准。例如图9-1所示的零件,其轴心线O-O是各外圆表面和内孔的设计基准;端面A是端面B,C的设计基准;内孔表面D体现的轴心线O-O是φ40h外圆表面径向圆跳动和端面B端面圆跳动的设计基准。 2、工艺基准 零件在加工和装配过程中所使用的基准,称为工艺基准。工艺基准按用途不同,又分为定位基准、测量基准和装配基准。 (1)定位基准加工时使工件在机床或夹具中占据正确位置所用的基准,称为定位基准。例如图9-1所示零件,零件套在心轴上磨削φ40h外圆表面时,内孔即为定位基准。 (2)测量基准零件检验时,用以测量已加工表面尺寸及位置的基准,称为测量基准。如图9-1所示,当以内孔为基准(套在检验心轴上)检验φ40h外圆的径向圆跳动和端面B的端面圆跳动时,内孔即为测量基准。 (3)装配基准装配时用以确定零件在部件或产品中位置的基准,称为装配基准。例如, 图9-1所示零件φ40h及端面B即为装配基准。 (二)工件的安装方式 为了在工件的某一部位上加工出符合规定技术要求的表面,在机械加工前,必须使工件在机床上相对于工具占据某一正确的位置。通常把这个过程称为工件的“定位”。工件定位后,由于在加工中受到切削力、重力等的作用,还应采用一定的机构将工件“夹紧”,使其确定的位置保持不变。工件从“定位”到“夹紧”的整个过程,统称为“安装”。 工件安装的好坏是模具加工中的重要问题,它不仅直接影响加工精度、工件安装的快慢、稳定性,还影响生产率的高低。为了保证加工表面与其设计基准间的相对位置精度,工件安装时应使加工表面的设计基准相对机床占据一正确的位置。如图9-1所示,为了保证加工表面φ40h径向圆跳动的要求,工件安装时必须使其设计基准(内孔轴心线O-O)与机床主轴的轴心线重合。 在各种不同的机床上加工零件时,有各种不同的安装方法。安装方法可以归纳为直接找正法、划线找正法和采用夹具安装法等3种。

六点定位原则及定位基准的选择

六点定位原则及定位基准的选择 一、六点定位原则 一个尚未定位的工件,其位置是不确定的。如图3-29 所示,将未定位的的工件(长方体)放在空间直角坐标系中,长方体可以沿X 、Y 、Z 轴移动有不同的位置,也可以绕X 、Y 、X 轴转动有不同的位置,分别用、、和、、表示。 用以描述工件位置不确定性的、、、、、合称为工件的六个自由度。其中、、称为工件沿X 、Y 、Z 轴的移动自由度,、、称为工件绕X 、Y 、Z 轴的转动自由度。 工件要正确定位首先要限制工件的自由度。设空间有一固定点,长方体的底面与该点保持接触,那么长方体沿Z 轴的移动自由度即被限制了。如果按图3-30 所设置六个固定点,长方体的三个面分别与这些点保持接触,长方体的六个自由度均被限制。其中XOY 平面上的呈三角形分布的三点限制了、、三个自由度;YOZ 平面内的水平放置的两个点,限制了、二个自由度;XOZ 平面内的一点,限制了一个自由度。限制三个或三个以上自由度的称为主要定位基准。

这种用适当分布的六个支承点限制工件六个自由度的原则称为 六点定位原则。 支承点的分布必须适当,否则六个支承点限制不了工件的六个自由度。例图3-30 中XOY 平面内的三点不应在一直线上,同理,YOZ 平面内的两点不应垂直布置。六点定位原则是工件定位的基本法则,用于实际生产时起支承作用的是有一定形状的几何体,这些用于限制工件自由度的几何体即为定位元件。表3-10 为常用定位元件能限制的工件自由度。

二、由工件加工要求确定工件应限制的自由度数 工件定位时,影响加工精度要求的自由度必须限制;不影响加工精度要求的自由度可以限制也可以不限制,视具体情况而定。 按照工件加工要求确定工件必须限制的自由度是工件定位中应解决的首要问题。 例如图3-31 所示为加工压板导向槽的示例。由于要求槽深方 向的尺寸 A 2 ,故要求限制Z 方向的移动自由度;由于要求槽底

1轴类零件的功用

1 轴类零件的功用、结构特点 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5 的称为短轴,大于20 的称为细长轴,大多数轴介于两者之间。 1.1轴类零件的毛坯和材料 1.1.1 轴类零件的毛坯 轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 1.1.2 轴类零件的材料 轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr 15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20Mn 2B、20Cr等低碳合金钢或38CrMoAI氮化钢。 45 钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45? 52HRC 40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50?58HRC

工件定位的基本原理

工件定位的基本原理 教学环节教学内容 教学方法 说明 引入新课课前提问: 1、三轴数控铣床一般指哪三个轴 ¥ 2、多轴数控机床(例如五轴加工中心)一般有哪些轴 答案: 1、X、Y、Z三个轴。 2、X、Y、Z(三个直线轴)和A、B、C(三个旋轴) 通过对熟 悉的知识 类比掌握 与之有关 的陌生知 识 讲授新课, 讲 \授新课 [一、工件的定位: 指工件在机床或夹具中取得一个正确的加工位置的过程。 例如:机床在装配时,其主轴箱、滑板及其上的工件,均须精确地安装在相应的位置上; 机械加工时,刀具必须精确地安装在主轴头上,其回转中心必须与主轴中心线重合;模 具也一样,其零部件均须精确地安装在以冲模上下座板或者是塑料模的定动模板的相应 位置上。 定位的目的是使工件在夹具中相对于机床、刀具占有确定的正确位置,并且应用夹具定 位工件,还能使同一批工件在夹具中的加工位置一致性好。 二、自由度 一个物体在三维空间中可能具有的运动。 例如:工件有六个自由度,分别是:三个移动自由度:,三个转动自由度:。 如图1所示: 图1 ) 三、六点定位原理 用一个支承点限制工件的一个自由度,用六个合理分布的支承点限制工件的 六个自由度,使工件在机床或夹具中取得一个正确的加工位置,即为工件的六点定位原 理。如果工件的六个自由度用六个支承点与工件接触使其完全消除,则该工件在空间的 位置就完全确定了。如下图所示: , 首先介绍 定位的目 的,让学生 明白此次 课程的作 用 通过图例 联系物体 的运动掌 握自由度 的概念 ` 通过挂图, 让学生更 加形象的 理解六点 定位原理

讲> 授新课 ¥ 讲授 新 、课 图2 四、工件定位的几种情况 完全定位:工件的六个自由度需要完全被限制的定位情况。 不完全定位:工件的六个自由度不需要完全被限制的定位情况。 欠定位:工件应该被限制的自由度而没有被限制的定位情况。 过定位:工件某个自由度被限制了两次或两次以上而出现的重复定位现象。 1、完全定位 工件的六个自由度全部被限制的定位,称为完全定位。当工件在x、y、z三个坐标方向 上均有尺寸要求或位置精度要求时,一般采用这种定位方式。见图3所示。 ' 图3 1、平面支承2、短圆柱销3、侧挡销 2、不完全定位 根据工件的加工要求,并不需要限制工件的全部自由度,这样的定位,称为不完全定位。 见图4所示。 图4 … 通过实物 定位销和 V型铁让 学生理解 其限制的 自由度 通过车细 长轴实例 讲述过定 位与不完 全定位 — 通过插齿 机上的夹 具掌握过 定位的应 用场合。 、

典型轴类零件加工工艺标准规范标准分析

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。

(一)结构及技术条件分析 该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。 (二)加工工艺过程分析 1.确定主要表面加工方法和加工方案。

传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。 但下列情况不能用两中心孔作为定位基面: (1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。 (2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;

如何确定精密大型轴类零件的定位基准

1、如何确定精密大型轴类零件的定位基准? 答:轴类零件的定位基准用的最多的是两端面的中心孔,因轴类零件各回转表面的设计基准为轴线,所以使用中心孔作定位基准夹装,符合基准重合原则;同时,在许多工序加工中重复使用,也符合基准统一原则。因此。精密大型轴类零件的加工,应尽可能使用两端的中心孔作为安装低能定位的基准。但机床主轴往往是空心轴模,所以中心孔会随着深孔加工而消失,这时可用以下两种方法重新建立外圆加工的基准: 1)当中心通孔直径较小时,可直接在孔口车出宽度不大于2mm,表面粗糙度值为Ra1.6um的60°工艺锥面来代替中心孔。 2)当孔为锥度较小(如莫氏锥度)的锥孔时,可配用工艺锥度定位头中心孔定位; 若扩孔锥度较大时,可采用拉杆心轴上的中心孔定位。 2、多件套加工件的工艺分析内容有哪些? 答:1)分析多件套的装配关系。根据多件套的装配关系及其技术要求,理清各零件的装配顺序,明确对多套件装配关系起直接影响的基准零件,熟悉其各项技术要求。 2)分析基准零件的加工工艺。基准零件的加工非常重要,基准零件加工工艺不仅关系着基准零件的加工质量,而且合理安排多件套其他零件的加工也起着十分关键的作用。 3)分析保证多件套装配精度要求的方法。车削多件套其余零件时,一方面应按基准零件的加工要求进行,同时更要注意按照基准零件加工的实测结果进行相应调整,分析选择运用配研、配车、修整、组合等加工方法及手段,确保多件套的装配精度要求。 3、试述平面螺纹的车削特点及方法。 答:在卧式车床上车削平面螺纹主要以中滑板横向进给、小滑板控制背吃刀量的方式来完成,其中需重点解决的是交换齿轮的传动比和中滑板丝杠的传动方式。车削平面螺纹有两种方法: 1)交换齿轮或进给量和扩大螺距机构车削平面螺纹。利用车床上交换齿轮机构、铭牌表进给量和通过计算传动比所配备的齿轮,借助车床扩大螺距机构,通过光杆传动使中滑板横向进给即车削出平面螺纹。 2)利用齿轮传动装置车削平面螺纹。 4、难加工材料的性能特点有哪些? 答:难工材料是指可加工性差,难以切削的金属材料。在通常情况下,难加工金属材料与一般金属材料相比,在化学成分、金相组织、力学和物理性能等方面都有很大差别,具有自己的特点。 1)切削力大。难加工材料的强度和硬度高,切削时变形抗力大,塑形变形大,切削力剧增。 高温合金和高强度钢的切削力是切削45钢时的2-3倍,要求机床功率大,工艺系统刚性好。 2)切削温度高。高温合金的切削温度最高可达1000℃,需加大切削液流量,带走大量热量,选用较大的刀尖角和刀尖圆弧半径,改善刀尖散热条件。 3)加工硬化严重。奥氏体组织切削时,加工硬化倾向大。高温合金是奥氏体组织,加工硬化可达基本硬度的1.5-2倍。切削时,不能突然停机或手动进给。 4)容易粘刀。奥氏体不锈钢和高温合金的切削温度高,切削与刀具产生粘接、熔焊现象严重,刀具容易崩刃。 5)刀具磨损剧烈。难加工材料大都硬度高,切削易产生加工硬化,而使刀具磨损比较厉害。6)切削控制困难。难加工材料的工件塑性好,强度高,容易产生切削卷曲、折断和排屑困难,易缠绕在工件和刀具上,划伤工件表面,甚至发生安全事故。 针对上述特点,为改善难加工材料的切削加工性能,从加工角度可采取以下措施:选用

(完整版)定位基准选择解析

定位基准的选择 一、定位基准的概念和类型 在加工时,用以确定零件在机床的正确位置所采用的基准,称为定位基准。它是工件上与夹具定位元件直接接触的点、线或面。如图11-14a所示零件,加工平面F和C时是通过平面A和D放在夹具上定位的,所以,平面A和D是加工平面F和C的定位基准。又如图11-14b所示的齿轮,加工齿形时是以内孔和一个端面作为定位基准的。 根据工件上定位基准的表面状态不同,定位基准又分为精基准和粗基准。精基准是指已经经过机械加工的定位基准,而没有经过机械加工的定位基准为粗基准。 图11-4基准分析 二、精基准的选择 定位基准的选择应先选择精基准,再根据精基准的加工选择粗基准。 选择精基准时,主要应考虑保证加工精度和工件安装方便可靠。其选择原则如下: 1.基准重合原则 即选用设计基准作为定位基准,以避免定位基准与设计基准不重合而引起的基准不重合误差。当设计基准与定位基准不重合时,在加工误差中将会增加一个误差值,其值大小等于设计基准和定位基准之间的尺寸误差,这就是基准不重合误差。当基准重合时,则没有基准不重合误差。 图11-5表示具有相交孔的轴承座准备镗以O-O为中心线的孔。在该工序之前,零件的M、H、K 平面已加工好,并且M-H、H-K之间的尺寸为C+T C及B+T B。本工序要求镗出的孔中心线O-O距K表面的尺寸为A+T A。为此,工件可以考虑几个定位加工方案: 图11-15b所示方案以M面为定位基准。加工时采用“调整法”加工,即镗杆中心线距机床工件台或夹具定位元件工作表面间的位置已经调好,固定不变。这时获得的尺寸A的大小将和M-K面间的可能相对位置变化有关,其最大可能位置变化为尺寸B和C的公差之和,即 ΔB =T B +T C 图11-15c所示方案以H面为定位基准。因工序基准与定位基准不重合而引起的A尺寸的误差

工件定位原理及机床夹具设计

第三模块工件定位原理及机床夹具设计 习题及答案 一、填空题 1.工件装夹的实质,就是在机床上对工件进行()和()。 2.工件装夹的目的,则是通过()和()而使工件在加工过程中始终保持其正确 的加工位置,以保证达到该工序所规定的技术要求。 3.按工件在加工过程中实现定位的方式来分,常见的工件的装夹方法可归纳为两类: ()、()。 4.工件在夹具中定位的目的,就是要使()在夹具中占有一致的正确加工位置。 5.工件直接装入夹具,依靠工件上的()与夹具的()相接触,而占有正确 的相对位置,不再需要找正便可将工件夹紧。 6.专用机床夹具主要适用于生产批量(),()相对稳定的场合。 7.工件相对于刀具的位置取决于()的正确位置和()的正确位置。 8.用专用夹具装夹进行加工时,一般都采用()加工,所以,为了预先调整刀具 的位置,在夹具上设有确定刀具位置或引导刀具方向的()。 9.工件在定位时应该采取的定位支承点数目,或者说,工件在定位时应该被限制的自由度 数目,完全由工件在该工序的()所确定。 10.工件用平面定位时,常用的定位元件有各种形式的()和()。 11.工件用外圆柱面定位时,常用的定位元件是()和()。 12.可调支承主要用于(),而又以()。 13.辅助支承只能起提高()的()作用,而决不能允许它破坏基本支 承应起的主要定位作用。 14.由于一对定位副存在()和(),从而使定位基准相对于限位基准发生位 置移动,产生基准位移误差。 15.工件定位时,几个定位支承点重复限制同一个自由度的现象,称为(). 16.按某一种工件的某道工序的加工要求,由一套预先制造好的标准元件拼装成的“专用夹 具”称为()夹具。 17.V形块定位元件适用于工件以()面定位。 18.定位误差由两部分组成,即基准位置误差和()误差。 19.在使用圆偏心轮夹紧工件时能保证自锁,则应使圆偏心轮上任意一点的 () 角都小于该点工作时的()角。 20.分度装置可分为()装置和直线分度装置两大类。 21.机床夹具的动力夹紧装置由()、中间传力机构和()所组成。 22.套类零件采用心轴定位时,长心轴限制了()个自由度;短心轴限制了()个自 由度。 23.钻套按其结构型式可分为()钻套、()钻套、快换钻套和非标准钻套四种。 24.几个定位元件重复限制同一个自由度的定位,是()。 25.多点联动夹紧机构中必须有()元件。 26.由于工件定位所造成的加工面相对其()的位置误差,称为定位误差。———————————————————————————————————————

定位基准的选择

定位基准的选择 一、基本概念 1、基准的定义及分类 1)确定生产对象上几何要素之间的几何关系所依据的那些点、线、面称为基准。基准分类见下图: 图1 基准分类图 2)定位基准:在加工时用于工件定位的基准叫定位基准。分:粗基准、精基准和辅助基准。 粗基准 使用未经机械加工表面作为定位基准,称为粗基准。 精基准 使用经过机械加工表面作为定位基准,称为精基准。 辅助基准 零件上根据机械加工工艺需要而专门设计的定位基准。如用作轴类零件定位的顶尖孔,用作壳体类零件定位的工艺孔或工艺凸台等。 二、定位基准选择的一般原则

1、选最大尺寸的表面为安装面(限3个自由度),选最长距离的表 面为导向面(2个自由度),选最小尺寸的表面为支撑面(限1个自由度)。 2、首先考虑保证零件的空间位置精度,再考虑保证尺寸精度。因为 在加工中保证空间位置精度有时比保证尺寸精度困难的多。 3、应尽量选择零件的主要表面为定位基准,因为主要表面是决定该 零件其他表面的设计基准,也就是主要设计基准。 4、定位基准应有利于夹紧,在加工过程中稳定可靠。 三、粗基准的选择 1、粗基准选择的出发点(见图2) 图2 两种粗基准选择对比 左a)以外圆1为粗基准:孔的余量不均,加工后壁厚均匀 右b)以内孔3为粗基准:孔的余量均匀,但加工后壁厚不均匀 1-外圆2-加工面3-孔 由此得出结论:粗基准的选择将影响到加工面与不加工面的相互位置(不同轴/偏心),或影响到加工余量的分配(均匀否?)。 2、粗基准的选择原则

(1)保证相互位置要求的原则:如果必须保证工件上加工面与不加工面之间的相互位置要求,则应以不加工面作为粗基准。除了图4 -8例子外,图3例子同理。 图3 粗基准的选择 (2)保证加工表面加工余量合理分配的原则:如果必须首先保证工件上某重要表面的余量均匀,应选择该表面的毛坯面为粗基准。 图4 床身加工粗基准选择正误对比

轴类零件的定位安装注意事项是什么

轴类零件的定位安装注意事项是什么 2012年06月25日
一般以重要的外圆面作为粗基准定位,加工出中心孔,再以轴两端的中心孔为定位精基准; 尽可能做到基准统一、基准重合、互为基准,并实现一次安装加工多个表面。中心孔是工件 加工统一的定位基准和检验基准,它自身质量非常重要,其准备工作也相对复杂,常常以支 承轴颈定位, 一般以重要的外圆面作为粗基准定位,加工出中心孔,再以轴两端的中心孔为定位精基准; 尽可能做到基准统一、基准重合、互为基准,并实现一次安装加工多个表面。中心孔是工件 加工统一的定位基准和检验基准,它自身质量非常重要,其准备工作也相对复杂,常常以支 承轴颈定位,车(钻)中心锥孔;再以中心孔定位,精车外圆;以外圆定位,粗磨锥孔;以 中心孔定位,精磨外圆;最后以支承轴颈外圆定位,精磨(刮研或研磨)锥孔,使锥孔的各 项精度达到要求。 2用外圆表面定位装夹 对于空心轴或短小轴等不可能用中心孔定位的情况, 可用轴的外圆面定位、 夹紧并传递扭矩。 一般采用三爪卡盘、四爪卡盘等通用夹具,或各种高精度的自动定心专用夹具,如液性塑料 薄壁定心夹具、膜片卡盘等。
耳环、耳轴类安装要领
①耳环轴线的平行性采用耳环类安装的液压缸,是以耳环的销轴作为 支点和回转中心,液压缸可以在与耳环销轴相垂直的平面内摆动的同时作往复直线 运动,所以,活塞杆与负载连接的耳环的销轴轴线,必须与缸体耳环销轴的轴线保 持平行,如图1-17 (a)所示。这样,可以保证液压缸在一个垂直平面内摆动和舒展, 不会产生附加弯矩。 如果两者轴线不平行,则两者运动方向不一致,如图1-17(b)所示,则液压缸就 会受到以耳环销轴为支点的弯曲载荷, 在弯曲载荷作用下, 细长的活塞杆极易弯曲, 并导致杆端连接蜾纹折断。而且,因为活塞杆弯曲状态下往复运动,将会带来单边 拉伤缸筒内壁、导向套局部磨损、密封件的翘曲和油液的内泄漏及外泄漏等一系列

(整理)工件的定位原理及方法简介

工件以一面两孔定位时,为什么要用一个圆柱销和一个菱形销且菱形销怎么是限制一个自由度? 一个零件有六个自由度,平移四向、上下两向、旋转两向。 一销可消除平移四向、旋转一向和向下移动三个自由度,再加一销会产生过定位问题,所以,改用菱形销,只留一个向上的自由度。 自由度有计算公式,点、线接触为高付,面接触为低付。 平面自由度计算公式F=3n-(2p+3q), n为自由构件数目(不含支架),p为低副数,q为高副数目 数控机床上工件定位的原理 在机械加工过程中为确保加工精度,在数控机床上加工零件时,必须先使工件在机床上占据一个正确的位置,即定位,然后将其夹紧。这种定位与夹紧的过程称为工件的装夹。用于装夹工件的工艺装备就是机床夹具。 1 工件定位的基本原理 六点定位厦理 工件在空问具有六个自由度,即沿x、y、z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度因此,要完全确定工件的位置,就必须消除这六个自由度,通常用六个支承点(即定位元件)来限制关键的六个自由度,其中每一个支承点限制相应的一个自由度,在如y平面上,不在同一直线上的三个支承点限制了工件的王、于三个自由度,这个平面称为主基准面;在平面上沿长度方向布置的两个支承点限制了工件的拿两个自由度,这个平面称为导向平面;工件在xoz乎面上,被一个支承点限制了,一个自由度,这个平面称为止动平面。 工件的六个自由度综上所述,若要使工件在央具中获得唯一确定的位置.就需要在夹具上合理设置相当于定位元件的六个支承点.使工件的定位基准与定位元件紧贴接触,即可消除工件的所有六个自由度.这就是工件的六苣定位原理。工件的六点定位(2)六点定位原理的应用 六点定位原理对于任何形状工件的定位都是适用的,如果违背这个原理,工件在央具中的位置就不能完全确定。然而.用工件六点定位原理进行定位时,必须根据具体加工要求灵活运用.工件形状不同t定位表面不同,定位点的分布情况会各不相同,宗旨是使用最简单的定位方法,使工件在夹具中迅速获得正确的位置。

工件的定位与定位基准的选择

第八讲工件的定位与定位基准的选择 机械加工中,为了保证工件的位置精度和用调整法获得尺寸精度时,工件相对于机床与刀具必须占有一正确位置,即工件必须定位。而工件装夹定位的方式有:直接找正、划线找正和用夹具装夹三种方式,下面我们讨论工件在夹具中的定位问题。 工件在夹具中的定位涉及到定位原理、定位误差、夹具上采用的定位元件和工件上选用的定位基准等几方面的问题,有关定位误差的计算和定位元件的选用在夹具设计一章讲授,这里只介绍定位原理和定位基准的选择。 一、定位原理 1.六点定则 工件在夹具中的定位的目的,是要使同一工序中的所有工件,加工时按加工要求在夹具中占有一致的正确位置(不考虑定位误差的影响)。怎样才能各个工件按加工要求在夹具中保持一致的正确位置呢?要弄清楚这个问题,我们先来讨论与定位相反的问题,工件放置在夹具中的位置可能有哪些变化?如果消除了这些可能的位置变化,那么工件也就定了位。 任一工件在夹具中未定位前,可以看成空间直角坐标系中的自由物体,它可以沿三个坐标轴平行方向放在任意位置,即具有沿三个坐标轴移动的自由度X,Y,Z;同样,工件沿三个坐标轴转角方向的位置也是可以任意放置的,即具有绕三个坐标轴转动的自由度X,Y,Z。因此,要使工件在夹具中占有一致的正确位置,就必须限制工件的X,Y,Z;X,Y,Z六个自由度。

图2-16工件的六个自由度 为了限制工件的自由度,在夹具中通常用一个支承点限制工件一个自由度,这样用合理布置的六个支承点限制工件的六个自由度,使工件的位置完全确定,称为“六点定位规则”,简称“六点定则”。 例如用…… 使用六点定则时,六个支承点的分布必须合理,否则不能有效地限制工件的六个自由度。

常见的定位方式及其定位元件

二、常见的定位方式及其定位元件 ( 一 ) 工件以平面定位 平面定位的主要形式是支承定位,工件的定位基 准平面与定位元件表面相接触而实现定 位。常见的支承元件有下列几种: 1. 固定支承支承的高矮 尺寸 是固定的,使用时不能调整高度。 1)支承钉图5-6所示为用于平面定位的 几种常用支承钉,它们利用顶面对工件进行定位。 其中图5-6a 为平顶支承钉,常用于精基准面的 定位。图5-6b为圆顶支承钉,多用于粗 基准面的定位。图5-6c为网纹顶支承钉,常用在 要求较大摩擦力的侧面定位。图 5-6d为带 衬套支承钉,由于它便于拆卸和更换,一般用于 批量大、磨损快、需要经常修理的场合。支承 钉限制一个自由度。 2)支承板支承板有较大的接触面积,工件定位 稳固。一般较大的精基准平面定位多用支承板 作为定位元件。 图5-7是两种常用的支承板,图5-7a为平板式 支承板,结构简单、紧凑,但不易清除落入沉 头螺孔中的切屑,一般 用于侧面定位。图5-7b为斜槽式支承板,它在结 构上做了改进,即在支承面上开两个斜槽为固定 螺钉用,使清屑容易,适用于底面定位。短支承 板限制一个自由度,长支承板限制两个自由度。 支承钉、支承板的结构、尺寸均已标准化, 设计时可查国家标准手册。 2?可调支承可调支承的顶端 位置可以在一定的范围内调整。图5-8为几种常用 的可调支承典型结构,按要求高度调整好调整支 后,用螺母2锁紧。可调支承用于未加工过的平 面定位,以调节补偿各批毛坯尺寸误差,一般不 是对每个加工 3 V) c) d) 图5-8 几种常用的可调支承 1—可调支承螺钉2 —螺母 图5-6 几种常用支承钉 b) 图5-7 两种常用的支承板

基准的概念及其分类;定位基准的选择

二、定位基准的选择 在定位的原理中已讲到,工件在夹具中的定位实际上是以工件上的某些基准面与夹具上定位元件保持接触,从而限制工件的自由度。那么,究竟选择工件上哪些面与夹具的定位元件相接触为好呢?这就是定位基准的选择问题。定位基准的选择是工艺上一个十分重要的问题,它不仅影响零件表面间的位置尺寸和位置精度,而且还影响整个工艺过程的安排和夹具的结构,必须十分重视。在介绍定位基准的选择原则之前,先介绍有关基础准的一般知识。 (一)基准的概念及分类 基准的广义含义就是“依据”的意思。机械制造中所说的基准是指用来确定生产对象上几何要素间的几何关系所依据的那些点、线、面。根据作用和应用场合不同,基准可分为设计基准和工艺基准两大类,工艺基准又可分为:工序基准、定位基准、测量基准和装配基准。 1.设计基准 零件图上用以确定零件上某些点、线、面位置所依据的点、线、面。 2.工艺基准, 零件加工与装配过程中所采用的基准,称为工艺基准它包括以下几种。 (1)工序基准工序图上用来标注本工序加工的尺寸和形位公差的基准。就其实质来说,与设计基准有相似之处,只不过是工序图的基准。工序基准大多与设计基准重合,有时为了加工方便,也有与设计基准不重合而与定位基准重合的。 (2)定位基准加工中,使工件在机床上或夹具中占据正确位置所依据的基准。如用直接找正法装夹工件,找正面是定位基准;用划线找正法装夹,所划线为定位基准;用夹具装夹,工件与定位元件相接触的面是定位基准。作为定位基准的点、线、面,可能是工件上的某些面,也可能是看不见摸不着的中心线、中心平面、球心等,往往需要通过工件某些定位表面来体现,这些表面称为定位基面。

阶梯轴零件设计

阶梯轴零件设计 ——15机电2班王宇该轴主要采用45钢能承受一定的载荷与冲击。此轴为阶梯轴类零件,尺寸精度,形位精度要求均较高。两个Φ35,以及M20×1.5,M33×1.5的螺纹为主要配合面,其中有些精度均要求较高,需通过磨削得到。轴线圆跳动度要求较高,对于Φ35js5与Φ30js6的外表面需达到52HRC的强度,工过程中须进行滚压加工。 轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 根据上述的工艺分析,和我们自身的生产条件,确定阶梯轴的毛坯。阶梯轴材料为45钢,要求强度较高,且工件的形状比较简单,毛坯精度低,加工余量大,因年产量400件,所以达到中等批量生产水平。综上考虑,采用锻件,其锻造方法为模锻,毛坯的尺寸精度要求为IT12以下。 正确的选择定位基准是设计工艺过程中的一项重要的内容,也是保证加工精度的关键,定位基准分为精基准和粗基准,以下为定位基准的选择。 粗基准的选择应能保证加工面与非加工面之间的位置精度,合理分配各加工面的余量,为后续工序提供精基准。所以为了便于定位、装夹和加工,可选轴的外圆表面为定位基准,或用外圆表面和顶尖孔共同作为定位基准。用外圆表面定位时,因基准面加工和工作装夹都比较方便,一般用卡盘装夹。为了保证重要表面的粗加工余量小而均匀,应选该表面为粗基准,并且要保证工件加工面与其他不加工表面之间的位置精度。按照粗基准的选择原则,选择次要加工表面为粗基准。又考虑到阶梯轴的工艺特点,所以选择φ30的外圆及一端面为粗基准。 精基准的选择根据轴的技术要求,轴的中心线为设计基准,也是测

常见的定位方式及其定位元件

二、常见的定位方式及其定位元件 (一)工件以平面定位 平面定位的主要形式是支承定位,工件的定位基准平面与定位元件表面相接触而实现定位。常见的支承元件有下列几种: 1.固定支承 支承的高矮尺寸是固定的,使用时不能调整高度。 1)支承钉 图5-6所示为用于平面定位的几种常用支承钉,它们利用顶面对工件进行定位。其中图5-6a 为平顶支承钉,常用于精基准面的定位。图5-6b 为圆顶支承钉,多用于粗 基准面的定位。图5-6c 为网纹顶支承钉,常用在要求较大摩擦力的侧面定位。图5-6d 为带衬套支承钉,由于它便于拆卸和更换,一般用于批量大、磨损快、需要经常修理的场合。支承钉限制一个自由度。 2)支承板 支承板有较大的接触面积,工件定位稳固。一般较大的精基准平面定位多用支承板作为定位元件。图5-7是两种常用的支承板,图5-7a 为平板式支承板,结构简单、紧凑,但不易清除落入沉头螺孔中的切屑,一般用于侧面定位。图5-7b 为斜槽式支承板,它在结构上做了改进,即在支承面上开两个斜槽为固定螺钉用,使清屑容易,适用于底面定位。短支承板限制一个自由度,长支承板限制两个自由度。 支承钉、支承板的结构、尺寸均已标准化,设计时可查国家标准手册。 2.可调支承 可调支承的顶端位置可以在一定的范围内调整。图5-8为几种常用的可调支承典型结构,按要求高度调整好调整支承钉1后,用螺母2锁紧。可调支承用于未加工过的平面定位,以调节补偿各批毛坯尺寸误差,一般不是对每个加工 工件进行调整,而是一批工件毛坯调整一次。 3.自位支承 又称浮动支承,在定位过程中,支承本身所处的位置随工件定位基准面的变化而自动调整并与之相适应。图5-9是几种常见的自位支承结构,尽管每一个自位支承与工件间可能是二点或三点接触,但 图5-6 几种常用支承钉 图5-7 两种常用的支承板 图5-8 几种常用的可调支承 1—可调支承螺钉 2—螺母 图5-9 几种常见的自位支承结构

工件的定位与定位基准的 选择

工件的定位与定位基准的选择 工件的定位与定位基准的选择 机械加工中,为了保证工件的位置精度和用调整法获得尺寸精度时,工件相对于机床与刀具必须占有一正确位置,即工件必须定位。而工件装夹定位的方式有:直接找正、划线找正和用夹具装夹三种方式,下面我们讨论工件在夹具中的定位问题。 工件在夹具中的定位涉及到定位原理、定位误差、夹具上采用的定位元件和工件上选用的定位基准等几方面的问题,有关定位误差的计算和定位元件的选用在夹具设计一章讲授,这里只介绍定位原理和定位基准的选择。 一、定位原理 1.六点定则 工件在夹具中的定位的目的,是要使同一工序中的所有工件,加工时按加工要求在夹具中占有一致的正确位置(不考虑定位误差的影响)。怎样才能各个工件按加工要求在夹具中保持一致的正确位置呢?要弄清楚这个问题,我们先来讨论与定位相反的问题,工件放置在夹具中的位置可能有哪些变化?如果消除了这些可能的位置变化,那么工件也就定了位。任一工件在夹具中未定位前,可以看成空间直角坐标系中的

自由物体,它可以沿三个坐标轴平行方向放在任意位置,即具有沿三个坐标轴移动的自由度X,Y,Z;同样,工件沿三个坐标轴转角方向的位置也是可以任意放置的,即具有绕三个坐标轴转动的自由度X,Y,Z。因此,要使工件在夹具中占有一致的正确位置,就必须限制工件的X,Y,Z;X,Y,Z六个自由度。。 图2-16工件的六个自由度 为了限制工件的自由度,在夹具中通常用一个支承点限制工件一个自由度,这样用合理布置的六个支承点限制工件的六个自由度,使工件的位置完全确定,称为“六点定位规则”,简称“六点定则”。 例如用…… 使用六点定则时,六个支承点的分布必须合理,否则不能有效地限制工件的六个自由度。 在具体的夹具结构中,所谓定位支承是以定位元件来体现的,如上例中长方体的定位以六个支承钉代替六个支承点(图

相关主题
文本预览
相关文档 最新文档