布莱克-斯科尔斯模型
- 格式:ppt
- 大小:187.00 KB
- 文档页数:57
布莱克斯科尔斯模型计算公式【原创版】目录1.布莱克斯科尔斯模型简介2.布莱克斯科尔斯模型计算公式概述3.布莱克斯科尔斯模型计算公式详解4.布莱克斯科尔斯模型计算公式的应用实例5.总结正文【1.布莱克斯科尔斯模型简介】布莱克斯科尔斯模型(Black-Scholes Model)是一种用于估算欧式期权价格的数学模型,由 Fisher Black 和 Myron Scholes 于 1973 年提出。
该模型基于假设:标的资产价格符合对数正态分布、市场无风险利率和波动率恒定等。
布莱克斯科尔斯模型为金融市场提供了一种较为准确的期权定价方法,被广泛应用于金融领域。
【2.布莱克斯科尔斯模型计算公式概述】布莱克斯科尔斯模型的计算公式较为复杂,包含多个变量和数学函数。
公式主要包括以下几个部分:标的资产价格、无风险利率、行权价格、到期时间、波动率和正态分布函数。
通过这些变量和函数的组合,可以计算出期权的理论价格。
【3.布莱克斯科尔斯模型计算公式详解】布莱克斯科尔斯模型的计算公式如下:C = S * N(d1) - X * e^(-r * T) * N(d2)P = X * e^(-r * T) * N(-d2) - S * N(-d1)其中,C 表示看涨期权的价格,P 表示看跌期权的价格,S 为标的资产价格,X 为行权价格,T 为到期时间,r 为无风险利率,e 为自然对数的底数,约等于 2.71828,N(d) 为正态分布函数,d1 和 d2 为中间变量,计算公式如下:d1 = (ln(S / X) + (r + σ^2 / 2) * T) / (σ * sqrt(T))d2 = d1 - σ * sqrt(T)其中,σ表示波动率,ln 表示自然对数函数。
【4.布莱克斯科尔斯模型计算公式的应用实例】假设某股票的当前价格为 100 元,行权价格为 105 元,无风险利率为 5%,波动率为 20%,到期时间为 1 年。
bs模型定价公式一、布莱克 - 斯科尔斯(Black - Scholes,BS)模型定价公式概述。
1. 公式的基本形式。
- 对于欧式看涨期权的定价公式:C = S_0N(d_1)-Ke^-rtN(d_2)- 对于欧式看跌期权的定价公式:P = Ke^-rtN( - d_2)-S_0N( - d_1)- 其中:- S_0是标的资产的当前价格。
- K是期权的执行价格。
- r是无风险利率(连续复利)。
- t是期权的到期时间(以年为单位)。
- σ是标的资产价格的波动率。
- N(x)是标准正态分布的累积分布函数,x = d_1或者d_2。
- d_1=frac{ln(S_0 / K)+(r+frac{σ^2}{2})t}{σ√(t)}- d_2 = d_1-σ√(t)2. 公式中各参数的意义。
- 标的资产当前价格S_0- 这是在当前时刻标的资产(如股票、期货等)的市场价格。
它是确定期权价值的基础,如果标的资产价格上涨,看涨期权价值可能增加,看跌期权价值可能减少(在其他条件不变的情况下)。
- 执行价格K- 是期权合约中规定的,在到期日时可以按照该价格买入(对于看涨期权)或卖出(对于看跌期权)标的资产的价格。
执行价格与标的资产当前价格的相对关系对期权价值有重要影响。
当S_0> K(对于看涨期权)时,期权处于实值状态,有更大的内在价值。
- 无风险利率r- 无风险利率反映了资金的时间价值。
在BS模型中,无风险利率越高,执行价格的现值Ke^-rt越低,对于看涨期权价值有正向影响,对看跌期权价值有反向影响(因为看涨期权持有者希望以更低的现值购买资产,而看跌期权持有者希望以更高的现值出售资产)。
- 到期时间t- 期权距离到期日的剩余时间。
一般来说,到期时间越长,期权的价值越高(在其他条件不变的情况下)。
对于看涨期权,较长的到期时间给予标的资产更多的时间上涨超过执行价格;对于看跌期权,给予更多时间下跌低于执行价格。
- 标的资产价格的波动率σ- 波动率衡量了标的资产价格的波动程度。
•布莱克-斯科尔斯模型,简称BS模型,是一种为期权或权证等衍生性金融商品定价的数学模型,它是由美国经济学家迈伦·斯科尔斯与费雪·布莱克率先提出来的,用这个模型没能推导出布莱克-舒尔斯公式,这个公式还能够估算出欧式期权的理论价格。
除此之外,B-S模型还有7个比较重要的假设,如下所示:
1、股票价格行为服从对数正态分布模式;
2、在期权有效期内,无风险利率和金融资产收益变量是不会发生改变
的;
3、市场是没有摩擦的,也就是没有税收和交易成本,所有证券完全可分
割;
4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);
5、该期权是欧式期权,也就是在期权到期前不可以进行实施。
6、没有任何无风险套利机会;
7、证券交易是持续的;
8、投资者可以以无风险利率借贷。
(三)布莱克-斯科尔斯期权定价模型(BS模型)1.假设(1)在期权寿命期内,买方期权标的股票不发放股利,也不做其他分配;(2)股票或期权的买卖没有交易成本;(3)短期的无风险利率是已知的,并且在期权寿命期内保持不变;(4)任何证券购买者能以短期的无风险利率借得任何数量的资金;(5)允许卖空,卖空者将立即得到所卖空股票当天价格的资金;(6)看涨期权只能在到期日执行;(7)所有证券交易都是连续发生的,股票价格随机游走。
2.公式C0=S0[N(d1)]-X[N(d2)]或=S0[N(d1)]-PV(X)[N(d2)]其中:d1={ln(S0/X)+[]t}/或=ln[S0/PV(X)]/+(/2)d2=d1-式中:C0-看涨期权的当前价值;S0-标的股票的当前价格;N(d)-标准正态分布中离差小于d的概率;X-期权的执行价格;e-自然对数的底数,约等于2.7183;r c-连续复利的年度的无风险报酬率;t-期权到期日前的时间(年);In(S0÷X)-的自然对数;-连续复利的以年计的股票回报率的方差。
【手写板】3.参数估计(1)无风险利率的估计①期限要求:无风险利率应选择与期权到期日相同的国库券利率。
如果没有相同时间的,应选择时间最接近的国库券利率。
②这里所说的国库券利率是指其市场利率(根据市场价格计算的到期收益率),而不是票面利率。
③模型中的无风险利率是按连续复利计算的利率,而不是常见的年复利。
连续复利假定利息是连续支付的,利息支付的频率比每秒1次还要频繁。
【手写板】如果用F表示终值,P表示现值,r c表示连续复利率,t表示时间(年);则:【手写板】前【教材例7-13】沿用[例7-10]的数据,某股票当前价格50元,执行价格52.08元,期权到期日前的时间为0.5年。
每年复利一次的无风险利率4%,相当连续复利的无风险利率r c=ln(1.04)=3.9221%。
【教材例7-14】假设t=1年,F=104元,P=100元,则:r c=ln(104/100)÷1=ln(1.04)÷1=3.9221%【提示】严格来说,期权估值中使用的利率都应当是连续复利,包括二叉树模型和BS模型。
bs模型应用方法全文共四篇示例,供读者参考第一篇示例:BS模型是一种在金融领域广泛应用的定价模型,也被称为布莱克-斯科尔斯模型。
它是由费雪-布莱克-斯科尔斯三位学者于20世纪70年代提出的,被认为是期权定价理论的里程碑之一。
BS模型基于随机微分方程和对冲的思想,通过对资产价格的随机性建模,实现对期权价格的准确估计。
BS模型的应用范围广泛,可以用于股票、期权、债券等各种金融资产的定价和风险管理。
BS模型的核心思想是对冲,即通过在风险资产和无风险资产之间建立对冲组合,消除风险从而获得无风险收益。
BS模型通过建立对冲组合来合成一个复制品来估计期权价格,具有非常高的准确性。
在BS模型中,价格的波动被建模为布朗运动,通过这种方式,可以对未来价格的概率分布进行估计。
模型中的参数包括标的资产价格、期权行权价、无风险利率、资产价格的波动率和期限等,通过这些参数的组合,可以计算出期权的理论价格。
BS模型在金融实践中有着广泛的应用,比如在期权交易中通过估计期权价格进行交易决策。
投资者可以根据BS模型计算出的期权价格,进行买入或卖出操作,以实现风险对冲或套利。
BS模型还可以应用于股票、债券等金融资产的风险管理,帮助投资者更好地控制风险,并提高投资收益。
除了期权定价之外,BS模型还可以用于其他金融领域的问题,比如风险管理和投资组合优化。
通过对资产价格的波动性进行建模,可以更好地评估不同投资工具的风险和回报,从而帮助投资者做出更明智的投资决策。
在实际应用中,BS模型需要对参数进行估计,比如波动率可以通过历史数据进行计算得出。
模型还需要不断调整参数来适应市场的变化,以保持模型的准确性。
还需要对模型的假设进行检验,确保模型的有效性和适用性。
BS模型是一种非常有用的金融工具,可以帮助投资者更好地理解金融市场并做出明智的投资决策。
随着金融市场的不断发展和变化,BS模型也在不断演进和完善,为投资者提供更准确的定价和风险管理工具。
熟练掌握BS模型的应用方法对于金融从业者来说非常重要,可以帮助他们在市场竞争中脱颖而出。
布莱克斯科尔斯模型中无风险利率在研究布莱克斯科尔斯模型中无风险利率的过程中,我们需要深入了解该模型的基本原理和应用场景。
本文将从三个方面进行探讨:1.1 无风险利率的概念与计算;2.1 无风险利率的影响因素;2.2 无风险利率的应用。
我们将对这些内容进行总结,以呼应文章的主题。
我们来了解一下什么是无风险利率。
简单来说,无风险利率是指在没有任何风险的情况下,投资者可以获得的收益率。
这个收益率是市场上所有投资项目中最高的,因为没有任何风险意味着投资者不需要承担任何损失。
通常,无风险利率是由央行设定的,用来引导市场利率水平和经济活动。
接下来,我们来探讨一下影响无风险利率的因素。
实际上,影响无风险利率的因素有很多,主要包括以下几个方面:1.1 中央银行的政策利率中央银行通过调整政策利率来影响市场利率水平。
当中央银行降低政策利率时,市场利率会下降,从而使借款成本降低,刺激经济增长。
相反,当中央银行提高政策利率时,市场利率会上升,从而使借款成本增加,抑制经济增长。
因此,中央银行的政策利率是影响无风险利率的一个重要因素。
1.2 通货膨胀预期通货膨胀预期是指市场参与者对未来一段时间内物价水平上涨的预期。
通货膨胀预期会影响投资者对未来收益的预期,从而影响无风险利率。
当市场普遍预期未来通货膨胀率较高时,投资者会要求更高的收益率来补偿通货膨胀带来的损失,因此无风险利率会上升。
反之,当市场预期未来通货膨胀率较低时,投资者会要求较低的收益率,因此无风险利率会下降。
1.3 全球经济环境全球经济环境对无风险利率的影响主要体现在国际资本流动和国际贸易方面。
当全球经济增长较快时,各国之间的资本流动会增加,从而导致国内市场的资金供应增加,无风险利率下降。
相反,当全球经济增长放缓时,资本流动减少,国内市场的资金供应减少,无风险利率上升。
国际贸易状况也会影响无风险利率。
当国际贸易顺差较大时,国内市场的资金供应充足,无风险利率下降;反之,当国际贸易逆差较大时,国内市场的资金供应紧张,无风险利率上升。
(三)布莱克—斯科尔斯期权定价模型(BS模型)1.假设(1)在期权寿命期内,买方期权标的股票不发放股利,也不作其他分配;(2)股票或期权的买卖没有交易成本;(3)短期的无风险利率是已知的,并且在期权寿命期内保持不变;(4)任何证券购买者能以短期的无风险利率借得任何数量的资金;(5)允许卖空,卖空者将立即得到所卖空股票当天价格的资金;(6)看涨期权只能在到期日执行;(7)所有证券交易都是连续发生的,股票价格随机游走。
2.公式C0=S0[N(d1)]-X[N(d2)]或=S0[N(d1)]-PV(X)[N(d2)]其中:d1={ln(S0/X)+[r c+(σ2/2)]t}/σ或=ln[S0/PV(X)]/ σ+(σ/2)d2=d1-σ式中:—看涨期权的当前价值;—标的股票的当前价格;N(d)—标准正态分布中离差小于d的概率;X—期权的执行价格;e—自然对数的底数,约等于2.7183;—连续复利的年度的无风险报酬率;t—期权到期日前的时间(年);In()—的自然对数;σ2—连续复利的以年计的股票回报率的方差。
3.参数估计(1)无风险利率的估计①期限要求:无风险利率应选择与期权到期日相同的国库券利率。
如果没有相同时间的,应选择时间最接近的国库券利率。
②这里所说的国库券利率是指其市场利率(根据市场价格计算的到期收益率),而不是票面利率。
③模型中的无风险利率是按连续复利计算的利率,而不是常见的年复利。
连续复利假定利息是连续支付的,利息支付的频率比每秒1次还要频繁。
如果用F表示终值,P表示现值,表示连续复利率,t表示时间(年);则:F=PP=F即:=In(F/P)/t前【教材例7-13】沿用[例7-10]的数据,某股票当前价格50元,执行价格52.08元,期权到期日前的时间为0.5年。
每年复利一次的无风险利率4%,相当连续复利的无风险利率r c=ln(1.04)=3.9221%。
【教材例7-14】假设t=1年,F=104元,P=100元,则:r c=ln(104/100)÷1=ln(1.04)÷1=3.9221%【提示】严格来说,期权估值中使用的利率都应当是连续复利,包括二叉树模型和BS模型。
布莱克斯科尔斯模型公式一、什么是布莱克斯科尔斯模型?说到“布莱克斯科尔斯模型”,可能很多人都觉得这像是某种复杂的金融工具,听起来就让人头疼对吧?不急,咱们慢慢来。
其实这模型就像是一个预测未来价格的小魔法,专门用来计算期权的定价。
你知道,期权就是那种你可以选择买或者卖某种股票、资产的合约,但又不一定要执行,挺有趣是不是?布莱克斯科尔斯模型是由两个聪明的大佬——费舍尔·布莱克和麦伦·斯科尔斯——在20世纪70年代提出的。
它的出现,可以说是金融界的一次“革命”,让投资者不再依赖传统的“拍脑袋”式决策,而是有了一个更为科学的方法来估算期权的价值。
简单点说,布莱克斯科尔斯模型就像是给你提供了一个穿越未来的“时光机”,让你提前知道期权未来可能的价值。
是不是很神奇?二、布莱克斯科尔斯模型公式:别怕,咱们一步步来接下来最让人胆寒的部分——公式。
别着急,咱们分解一下,别让那些复杂的字母把你吓跑。
布莱克斯科尔斯模型的核心公式看起来其实也没有那么恐怖:C=S_0N(d_1)Xe^{rTN(d_2)哇,看起来是不是有点晕?放心,咱们一个个字母来解释,慢慢就能搞清楚了。
(C)代表期权的价格,就是你想知道的那个东西,咱们要算的目标。
然后,(S_0)是当前股票的价格,也就是你现在可以买到那只股票的价格。
(N(d_1))和(N(d_2))是标准正态分布的函数,嗯,听起来很高大上,但其实它们就是帮你把“未来可能性”计算出来的神奇函数。
这个就像是你的“幸运星”,指引你去走出一条最可能的道路。
再来看(X),这个是期权的行权价格,也就是说,如果你决定执行这个期权,股票的价格就是这个数。
(r)是无风险利率,嗯,这个就是你可以无忧无虑投资得到的回报率。
(T)是期权到期的时间,简单来说,就是期权合约结束的时间点。
说白了,公式就是通过一堆数学运算,把你当前的股票价格、期权的行权价、时间等因素都考虑进去,从而给出一个合理的期权定价。
Black-Scholes期权定价模型Black-Scholes期权定价模型是一种能用来计算股票期权价格的数学模型。
它是由费希尔·布莱克和默顿·斯科尔斯于20世纪70年代初提出的,因此得名。
该模型的基本假设是市场条件持续稳定,且不存在利率和股票价格变动的趋势。
此外,它还假设股票价格服从几何布朗运动,即价格的波动是随机的。
根据这些假设,Black-Scholes模型将股票价格与利率、期权行权价、到期时间以及波动率等因素联系起来,以计算期权的合理价格。
Black-Scholes模型的公式为:C = S_0 * N(d1) - X * e^(-r * T) * N(d2)其中,C为期权的价格,S_0为股票的当前价格,N(d1)和N(d2)分别为标准正态分布函数的值,X为期权的行权价,r为无风险利率,T为期权的到期时间。
d1和d2是通过一系列数学计算得出的。
利用Black-Scholes模型,投资者可以根据个人的风险偏好和市场条件来评估一个期权的合理价格。
它对市场参与者来说是一种有用的工具,因为它能够帮助他们理解和衡量期权的价值。
然而,Black-Scholes模型也存在一些局限性。
首先,它假设市场条件持续稳定,而实际上市场是非常复杂和动态的。
其次,它假设股票价格服从几何布朗运动,这在现实中并不总是成立。
另外,模型中的波动率是一个固定的参数,而实际上波动率是随着时间和市场条件的变化而变化的。
因此,在使用Black-Scholes模型时,投资者需要慎重考虑其局限性,并结合其他因素和分析来作出投资决策。
此外,人们也一直在尝试改进这个模型,以更好地适应实际市场的复杂性和动态性。
Black-Scholes期权定价模型是金融领域中最著名的定价模型之一。
它提供了一个基于几何布朗运动的股票价格模型,可以计算欧式期权的合理价格。
该模型的公式给出了欧式期权的理论价格,而不考虑市场上的任何其他因素。
Black-Scholes模型的創始人费希尔·布莱克和默顿·斯科尔斯在1973年发布了这一模型,并以此获得了1997年诺贝尔经济学奖。
bs模型计算公式BS模型又称为布莱克-斯科尔斯模型(Black-Scholes model),是一种用于计算欧洲期权价格的数学模型。
它是由费希尔·布莱克(Fischer Black)、默顿·斯科尔斯(Myron Scholes)和罗伯特·马顿(Robert Merton)于1970年提出。
BS模型基于一些假设,如市场效率、股票价格的几何布朗运动、无风险利率等,通过对期权和股票组合进行对冲交易,从而得出期权的正确定价。
BS模型的计算公式如下:C=S*N(d1)-X*e^(-r*T)*N(d2)P=X*e^(-r*T)*N(-d2)-S*N(-d1)其中,C表示期权的看涨定价,P表示期权的看跌定价。
S表示标的资产的现价,X表示期权的执行价格,r表示无风险利率,T表示期权到期时间。
N(代表标准正态分布的累积分布函数。
d1和d2的计算公式如下:d1 = (ln(S/X) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T)) d2 = d1 - sigma * sqrt(T)其中,sigma表示标的资产的波动率。
波动率是BS模型中的一个重要参数,通常需要根据历史数据或市场预期进行估计。
用于计算d1和d2的sigma应该是年化波动率。
BS模型的核心思想是对冲交易,即构建一个期权和标的资产的组合,使其不受市场波动的影响,从而消除了市场风险,只保留了无风险利率的影响。
通过对冲交易,可以使用风险中性的概率测度,将未来的现金流折现到当前时刻,得到期权的正确定价。
BS模型在计算期权价格时使用了一些理论前提和假设,比如市场效率、收益率的对数正态分布等。
这些假设可能与实际情况有所偏差,因此BS模型的应用也存在一定的局限性。
在实际应用中,需要根据具体情况对模型进行调整和修正,以提高对期权价格的准确度和可靠性。
总之,BS模型是一种用于计算欧洲期权价格的数学模型,通过对期权和标的资产的对冲交易,消除了市场风险,保留了无风险利率的影响,从而得出期权的正确定价。
期权定价理论期权定价理论是衡量期权合约价格的数学模型。
它基于一系列假设和推导出的公式,通过评估期权的相关因素来确定其合理的市场价格。
这些因素包括标的资产价格、期权执行价格、期限、波动率以及无风险利率等。
期权的定价理论中最著名的模型是布莱克-斯科尔斯模型(Black-Scholes Model)。
该模型基于以下假设:市场无摩擦,即不存在交易费用和税收;标的资产价格服从连续时间的几何布朗运动;期权可以在任意时间点以市场价格进行买卖。
布莱克-斯科尔斯模型通过以下公式计算欧式期权的价格:C = S0 * N(d1) - X * e^(-r * T) * N(d2)其中,C是期权的市场价格,S0是标的资产的当前价格,N()是标准正态分布函数,d1和d2分别是两个维度上的标准正态分布变量,X是期权的行权价格,r是无风险利率,T是期权剩余时间。
布莱克-斯科尔斯模型的原理是通过构建组合,使得期权价格与标的资产价格的变动相对冲,从而消除风险。
通过调整组合中的权重,可以确定合理的期权价格。
这一模型在市场上得到广泛应用,被视为期权定价的标准模型之一。
除了布莱克-斯科尔斯模型外,还有其他一些期权定价模型,如考虑股息的期权定价模型、跳跃扩散模型等。
这些模型在不同情况下,可以更准确地预测期权价格。
需要注意的是,期权定价理论是基于一系列假设和前提条件建立的。
市场实际情况中可能存在不符合这些假设的情况,因此实际期权价格可能与模型计算结果存在一定的差异。
此外,期权定价也受到市场供求关系、交易量以及市场情绪等因素的影响。
总之,期权定价理论是一种基于数学模型的方法,用于评估期权合约的合理价格。
布莱克-斯科尔斯模型是最著名的期权定价模型之一,通过构建相对冲抗风险的组合来确定期权价格。
然而,需要注意实际市场中的差异和其他影响因素。
期权定价理论是金融衍生品定价的核心理论之一,它对金融市场的有效运行和风险管理起着重要作用。
期权是一种约定,赋予期权持有人在未来某个特定时间以特定价格买入或卖出某个标的资产的权利,而不是义务。
最著名的金融公式——布莱克-斯科尔斯公式布莱克-斯科尔斯模型是一种模拟金融衍生工具市场动态的数学模型。
自1973年提出并于70年代和80年代加以完善以来,该模型已成为估算股票期权价格的标准。
该模型背后的关键思想是,通过以正确的方式买卖基础资产(如股票)来对冲投资组合中的期权,从而消除风险。
这种方法后来在金融界被称为“不断修订的三角洲对冲”,并被世界上许多最重要的投资银行和对冲基金采用。
本文的目的是解释布莱克-斯科尔斯方程的数学基础,基本的假设和含义。
布莱克-斯科尔斯模型布莱克-斯科尔斯模型是一种模拟金融市场动态的数学模型,其中包含了期权、期货、远期合约和互换合约等衍生金融工具。
该模型的关键性质在于,它表明了一个期权,无论其标的证券的风险和预期收益如何,其价格都是唯一的。
该模型建立在偏微分方程的基础上,即所谓的布莱克-斯科尔斯方程,从中可以推导出布莱克-斯科尔斯公式,该公式从理论上对欧洲股票期权的正确价格进行了估计。
假设条件最初的布莱克-斯科尔斯模型基于一个核心假设,即市场由至少一种风险资产(如股票)和一种(本质上)无风险资产(如货币市场基金、现金或政府债券)组成。
此外,它假定了两种资产的三种属性,以及市场本身的四种属性:对市场资产的假设为:1:无风险资产的收益率是恒定的(因此实际上表现为利率);2:根据几何布朗运动,假定风险资产价格的瞬时对数收益表现为具有恒定漂移和波动的无穷小随机游动;3:风险资产不支付股息。
对市场本身的假设是:1:不存在套利(无风险利润)机会;2:可以以与无风险资产利率相同的利率借入和借出任何数量的现金;3:可以买卖任何数量的股票(包括卖空);4:市场上没有交易成本(即没有买卖证券或衍生工具的佣金)。
在对原有模型的后续扩展中,对这些假设进行了修正,以适应无风险资产的动态利率、买卖交易成本和风险资产的股息支出。
在本文中,假设我们使用的是原始模型,除非另有说明。
布莱克-斯科尔斯方程打开看点快报,查看高清大图图1所示,欧洲看涨期权价格相对于执行价格和股票价格的可视化表示,使用布莱克-斯科尔斯公式方程计算。
布莱克斯克尔斯期权定价模型汇报人:日期:目录CATALOGUE•引言•布莱克斯克尔斯模型原理•模型应用•模型优势与局限•布莱克斯克尔斯模型与其他模型的比较•未来展望与研究方向01 CATALOGUE引言1背景介绍23布莱克斯克尔斯模型起源于1973年,由费雪·布莱克斯克尔斯(Fischer Black)和迈伦·斯科尔斯(Myron Scholes)提出。
当时,该模型是为了解决金融衍生品,特别是期权定价的问题而建立的。
金融衍生品是一种金融合约,其价值取决于其他金融资产或指标。
模型发展历程布莱克斯克尔斯模型的发展得益于许多重要的突破,其中包括无套利原则:模型利用无套利原则,这意味着在市场上不能通过买卖资产来赚取无风险利润。
欧式期权定价:该模型适用于欧式期权,即只能在到期日行使的期权。
随机过程:模型运用随机过程来描述股票价格的变化。
模型应用领域布莱克斯克尔斯模型被广泛应用于金融衍生品市场,包括期权:该模型用于定价欧式和美式期权。
互换:该模型用于定价利率互换和其他类型的互换合约。
其他衍生品:该模型还可用于定价其他金融衍生品,如期货、认股权证等。
02CATALOGUE布莱克斯克尔斯模型原理基础概念布莱克斯克尔斯模型是一种用于定价欧式期权的数学模型,该模型基于随机过程,并使用偏微分方程来描述。
在该模型中,期权价格被表示为时间t和股票价格S的函数,用C(t,S)表示。
股票价格服从几何布朗运动,即dS = μSdt + σSdwt,其中μ是股票的预期收益率,σ是股票的波动率,wt是威纳过程。
布莱克斯克尔斯模型的期权定价公式为:C(t, S) = SN(d1) - Ke^(-r)(T-t)N(d2),其中N是正态分布函数,d1和d2是由模型参数确定的公式。
d2 = d1 - σ√(T - t)K 是期权的执行价格,r 是无风险利率,T 是到期时间,t 是当前时间,σ是股票的波动率。
d1 = (ln(S/K) + (r + 0.5σ^2)(T - t)) / (σ√(T - t))期权定价公式参数确定方法参数σ(波动率)通常由历史数据估计得出,也可以使用市场波动率作为其近似值。