财务成本管理考点:布莱克-斯科尔斯期权定价模型
- 格式:docx
- 大小:12.97 KB
- 文档页数:3
布莱克—舒尔斯期权定价模型期权定价是现代金融学中一项非常重要的内容,同时也是一个比较复杂、难度较大的问题。
目前关于期权定价主要有两种方法:(1)二项式模式;(2)布莱克—舒尔斯期权定价模型(B-S 模型)。
较为适用的是布莱克—舒尔斯期权定价模型。
布莱克—舒尔斯期权定价模型是美国经济学家布莱克—舒尔斯于1973年提出来的。
这是现代金融学金融衍生工具研究领域的一个重大突破,布莱克—舒尔斯因此获得了1997年诺贝尔经济学奖。
1、 基本原理:(模型建立的基础)期权的完全套期保值功能,即期权具备完全消除股票投资组合中市场风险的套期保值功能。
2、 假设条件:(1) 市场是无摩擦的:即不计佣金费用,无交易成本,没有卖空限制,可以根据市场情况经常地调整套期保值的比率,调整期权与股票的比率。
(2) 在期权到期前,股票不支付股利。
(3) 在期权到期前,无风险利率r 和股票收益的方差2σ保持不变。
(4) 股票价格变化是连续的,不会发生突然及大的波动。
3、 基本公式:在上述原理及假设条件的基础上,布莱克—舒尔斯提出了这样一个公式:TTr X S T d d TTr X S d d N Xe d N S C rT σσσσσ)5.0()/ln()5.0()/ln()()(20122012100-+=-=++=-=-其中:其中:0C 为期权价格;0S 为股票当前的价格;)(d N 为服从于标准正态分布的随机变量小于d 的概率;即:}{)1,0(,N Y d y P -<X 为协定价格;e 为2.71828;r 为无风险利率(以连续复利计算) t 为距离到期日所剩的时间,单位为年 σ为股票收益率的标准差。
在这个公式中,)(1d N 、)(2d N 代表期权到期是处于实值的概率,也就是能够执行给投资者带来实质性收益的概率。
如果假定1)()(21==d N d N ,也就是看涨期权极其有可能被执行。
公式的解释:期权价值=内在价值+时间价值期权到期前处于三种状态,虚值—平价—实值时间价值虚值 协定 实值 价格(平价) 从这个图形可以看出,随着股价的进一步升高,期权到期被执行的可能性越来越大,相应地,期权的内在价值越来越大,其价格波动的可能性即时间价值越来越小。
Black-Scholes期权定价模型和特性Black-Scholes期权定价模型是一个广泛应用于金融市场的数学模型,它被用来计算欧式期权的价格。
该模型是由美国经济学家费希尔·布莱克(Fischer Black)和莱蒙德·斯科尔斯(Myron Scholes)于1973年开发的,并获得了1997年诺贝尔经济学奖。
Black-Scholes模型基于一些假设,包括市场无摩擦、标的资产价格服从几何布朗运动、无风险利率恒定不变、期权可以无限制地买卖等。
它利用随机微分方程和偏微分方程来描述期权价格的变化以及与标的资产价格和时间的关系。
Black-Scholes模型的公式如下:C = S*N(d1) - X*e^(-r*T)*N(d2)P = X*e^(-r*T)*N(-d2) - S*N(-d1)其中,C代表期权的买入价格,P代表期权的卖出价格,S代表标的资产的当前价格,X代表期权的行权价格,r代表无风险利率,T代表期权的时间,在期权到期日之间的年份,N(d1)和N(d2)代表标准正态分布的累积分布函数。
Black-Scholes模型的特性有以下几点:1. 理论完备性:Black-Scholes模型是一个完备的期权定价模型,可以通过输入特定的参数来计算期权的价格。
它提供了一种可行的方法,用来解决期权定价的问题。
2. 自洽性:Black-Scholes模型是自洽的,意味着如果市场满足了模型的所有假设条件,那么模型计算的期权价格将与实际市场价格一致。
3. 敏感性分析:Black-Scholes模型可以用来分析期权价格对各个因素的敏感性。
通过改变模型中的参数,例如标的资产价格、无风险利率、期权行权价格和时间等,我们可以研究它们如何影响期权的价格。
4. 适用性:Black-Scholes模型广泛适用于欧式期权的定价,包括股票期权、货币期权和商品期权等。
然而,对于美式期权和一些特殊类型的期权,Black-Scholes模型可能不适用。
(三)布莱克—斯科尔斯期权定价模型(BS模型)1.假设(1)在期权寿命期内,买方期权标的股票不发放股利,也不作其他分配;(2)股票或期权的买卖没有交易成本;(3)短期的无风险利率是已知的,并且在期权寿命期内保持不变;(4)任何证券购买者能以短期的无风险利率借得任何数量的资金;(5)允许卖空,卖空者将立即得到所卖空股票当天价格的资金;(6)看涨期权只能在到期日执行;(7)所有证券交易都是连续发生的,股票价格随机游走。
2.公式C0=S0[N(d1)]-X[N(d2)]或=S0[N(d1)]-PV(X)[N(d2)]其中:d1={ln(S0/X)+[r c+(σ2/2)]t}/σ或=ln[S0/PV(X)]/ σ+(σ/2)d2=d1-σ式中:—看涨期权的当前价值;—标的股票的当前价格;N(d)—标准正态分布中离差小于d的概率;X—期权的执行价格;e—自然对数的底数,约等于2.7183;—连续复利的年度的无风险报酬率;t—期权到期日前的时间(年);In()—的自然对数;σ2—连续复利的以年计的股票回报率的方差。
3.参数估计(1)无风险利率的估计①期限要求:无风险利率应选择与期权到期日相同的国库券利率。
如果没有相同时间的,应选择时间最接近的国库券利率。
②这里所说的国库券利率是指其市场利率(根据市场价格计算的到期收益率),而不是票面利率。
③模型中的无风险利率是按连续复利计算的利率,而不是常见的年复利。
连续复利假定利息是连续支付的,利息支付的频率比每秒1次还要频繁。
如果用F表示终值,P表示现值,表示连续复利率,t表示时间(年);则:F=PP=F即:=In(F/P)/t前【教材例7-13】沿用[例7-10]的数据,某股票当前价格50元,执行价格52.08元,期权到期日前的时间为0.5年。
每年复利一次的无风险利率4%,相当连续复利的无风险利率r c=ln(1.04)=3.9221%。
【教材例7-14】假设t=1年,F=104元,P=100元,则:r c=ln(104/100)÷1=ln(1.04)÷1=3.9221%【提示】严格来说,期权估值中使用的利率都应当是连续复利,包括二叉树模型和BS模型。
财务成本管理考点:布莱克-斯科尔斯期权定价模型财务成本管理考点:布莱克-斯科尔斯期权定价模型财务成本管理考点:布莱克-斯科尔斯期权定价模型1.假设(1)在期权寿命期内,买方期权标的股票不发放股利,也不做其他分配;(2)股票或期权的买卖没有交易成本;(3)短期的无风险利率是已知的,并且在期权寿命期内保持不变;(4)任何证券购买者能以短期的无风险利率借得任何数量的资金;(5)允许卖空,卖空者将立即得到所卖空股票当天价格的资金;(6)看涨期权只能在到期日执行;(7)所有证券交易都是连续发生的,股票价格随机游走。
3.参数估计(1)无风险利率①期限要求:无风险利率应选择与期权到期日相同的国库券利率。
如果没有相同时间的,应选择时间最接近的国库券利率。
②这里所说的国库券利率是指其市场利率(根据市场价格计算的到期收益率),而不是票面利率。
③模型中的无风险利率是按连续复利计算的利率,而不是常见的年复利。
连续复利假定利息是连续支付的,利息支付的频率比每秒1次还要频繁。
4、看涨期权—看跌期权平价定理对于欧式期权,假定看涨期权和看跌期权有相同的执行价格和到期日,则下述等式成立:看涨期权价格C-看跌期权价格P=标的资产的价格S-执行价格的现值PV(X)这种关系,被称为看涨期权-看跌期权平价定理(关系),利用该等式中的4个数据中的3个,就可以求出另外1个。
5、派发股利的期权定价考虑派发股利的期权定价公式如下:在期权股价时要从股价中扣除期权到期日前所派发的全部股利的现值。
6、美式期权估价(1)美式期权在到期前的任意时间都可以执行,除享有欧式期权的全部权力之外,还有提前执行的优势。
因此,美式期权的价值应当至少等于相应欧式期权的价值,在某种情况下比欧式期权的价值更大。
(2)对于不派发股利的美式看涨期权,可以直接使用布莱克-斯科尔斯模型进行估价。
(3)理论上不适合派发股利的美式看跌期权估价。
但是BS模型有参考价值,误差不大。
考点练习:多选题利用布莱克-斯科尔斯期权定价模型估算期权价值时,下列表述正确的有()。
财务成本管理考点:布莱克-斯科尔斯期权定价模
型
财务成本管理考点:布莱克-斯科尔斯期权定价模型
1.假设
(1)在期权寿命期内,买方期权标的股票不发放股利,也不做其
他分配;
(2)股票或期权的买卖没有交易成本;
(3)短期的无风险利率是已知的,并且在期权寿命期内保持不变;
(4)任何证券购买者能以短期的无风险利率借得任何数量的资金;
(5)允许卖空,卖空者将立即得到所卖空股票当天价格的资金;
(6)看涨期权只能在到期日执行;
(7)所有证券交易都是连续发生的,股票价格随机游走。
3.参数估计
(1)无风险利率
①期限要求:无风险利率应选择与期权到期日相同的国库券利率。
如果没有相同时间的,应选择时间最接近的国库券利率。
②这里所说的国库券利率是指其市场利率(根据市场价格计算的
到期收益率),而不是票面利率。
③模型中的无风险利率是按连续复利计算的利率,而不是常见的年复利。
连续复利假定利息是连续支付的,利息支付的频率比每秒1次还要频繁。
4、看涨期权—看跌期权平价定理
对于欧式期权,假定看涨期权和看跌期权有相同的执行价格和到期日,则下述等式成立:
看涨期权价格C-看跌期权价格P=标的资产的价格S-执行价格的现值PV(X)
这种关系,被称为看涨期权-看跌期权平价定理(关系),利用该等式中的4个数据中的3个,就可以求出另外1个。
5、派发股利的期权定价
考虑派发股利的期权定价公式如下:
在期权股价时要从股价中扣除期权到期日前所派发的全部股利的现值。
6、美式期权估价
(1)美式期权在到期前的任意时间都可以执行,除享有欧式期权的全部权力之外,还有提前执行的优势。
因此,美式期权的价值应当至少等于相应欧式期权的价值,在某种情况下比欧式期权的价值更大。
(2)对于不派发股利的美式看涨期权,可以直接使用布莱克-斯科尔斯模型进行估价。
(3)理论上不适合派发股利的美式看跌期权估价。
但是BS模型有参考价值,误差不大。
考点练习:多选题
利用布莱克-斯科尔斯期权定价模型估算期权价值时,下列表述正确的有()。
A、在标的股票派发股利的情况下对期权估价时,要从估价中扣除期权未来所派发的全部股利的现值
B、在标的股票派发股利的情况下对期权估价时,要从估价中扣
除期权到期日前所派发的全部股利的现值
C、模型中的无风险报酬率应采用国库券按连续复利计算的到期
报酬率
D、美式期权的价值低于欧式期权
【答案】BC
【解析】在标的股票派发股利的情况下对期权估价时,要从估价中扣除期权到期日前所派发的全部股利的现值。
所以选项A是错误的,选项B是正确的。
模型中的无风险报酬率应采用国库券按连续
复利计算的到期报酬率。
选项B是正确的。
美式期权的价值至少应
当等于相应欧式期权的价值,在某种情况下比欧式期权的价值更大。
所以选项D是错误的。