2018年广西梧州中考数学试卷及答案(word解析版)
- 格式:doc
- 大小:1.27 MB
- 文档页数:7
2018-2020年广西中考数学试题分类(9)——四边形一.多边形(共1小题)1.(2019•百色)四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.二.多边形内角与外角(共1小题)2.(2019•梧州)正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°三.平行四边形的性质(共5小题)3.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5√2B.6√2C.4√5D.5√54.(2019•柳州)如图,在▱ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对5.(2019•梧州)如图,▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.6.(2018•百色)平行四边形ABCD中,∠A=60°,AB=2AD,BD的中垂线分别交AB,CD于点E,F,垂足为O.(1)求证:OE=OF;(2)若AD=6,求tan∠ABD的值.7.(2018•梧州)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.四.平行四边形的判定(共3小题)8.(2019•河池)如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF9.(2018•玉林)在四边形ABCD 中:▱AB ∥CD ▱AD ∥BC ▱AB =CD ▱AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有( )A .3种B .4种C .5种D .6种10.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD 中,AB =CD ,AD =BC .求证:四边形ABCD 是平行四边形.证明:五.平行四边形的判定与性质(共1小题)11.(2020•玉林)已知:点D ,E 分别是△ABC 的边AB ,AC 的中点,如图所示.求证:DE ∥BC ,且DE =12BC . 证明:延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF ,又AE =EC ,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程:▱∴DF ∥=BC ;▱∴CF ∥=AD .即CF ∥=BD ;▱∴四边形DBCF 是平行四边形;▱∴DE ∥BC ,且DE =12BC . 则正确的证明顺序应是:( )A .▱→▱→▱→▱B .▱→▱→▱→▱C .▱→▱→▱→▱D .▱→▱→▱→▱六.菱形的性质(共5小题)12.(2020•河池)如图,菱形ABCD 的周长为16,AC ,BD 交于点O ,点E 在BC 上,OE ∥AB ,则OE 的长是 .13.(2019•广西)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO =4,S菱形ABCD=24,则AH=.14.(2020•桂林)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=√3,∠C=60°,求菱形ABCD的面积.15.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.16.(2018•柳州)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.七.菱形的判定(共1小题)17.(2018•河池)如图,要判定▱ABCD是菱形,需要添加的条件是()A.AB=AC B.BC=BD C.AC=BD D.AB=BC18.(2020•玉林)如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 菱形(填“是”或“不是”).19.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB 交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=34,求BC的长.20.(2018•南宁)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.九.矩形的性质(共2小题)21.(2019•玉林)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB边的碰撞次数是.22.(2019•贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.23.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.一十一.正方形的性质(共5小题)24.(2019•河池)如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A.1B.2C.3D.425.(2019•贵港)如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=35 26.(2018•梧州)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)27.(2018•河池)如图,四边形OABC为正方形,点D(3,1)在AB上,把△CBD绕点C顺时针旋转90°,则点D旋转后的对应点D′的坐标是.28.(2019•玉林)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F 点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2√2,EB=4,tan∠GEH=2√3,求四边形EHFG的周长.2018-2020年广西中考数学试题分类(9)——四边形参考答案与试题解析一.多边形(共1小题)1.【解答】解:∵S平行四边形S′S′S′S′=12S矩形SSSS,∴平行四边形A'B'C'D'的底边A′D′边上的高等于A′B′的一半,∴∠A'=30°.故答案为:30°二.多边形内角与外角(共1小题)2.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°9=140°.故选:D.三.平行四边形的性质(共5小题)3.【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE=√SS2+SS2=√42+82=4√5.故选:C.4.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);▱同理可得出△AOB≌△COD(SAS);▱∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);▱同理可得:△ACD≌△CAB(SSS).▱因此本题共有4对全等三角形.故选:C.5.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵∠ADC=119°,DF⊥BC,∴∠ADF=90°,则∠EDH=29°,∵BE⊥DC,∴∠DEH=90°,∴∠DHE=∠BHF=90°﹣29°=61°.故答案为:61.6.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠1=∠2,∵EF是BD的中垂线,∴OD =OB ,∠3=∠4=90°,∴△DOF ≌△BOE ,∴OE =OF ;(2)作DG ⊥AB ,垂足为G ,∵∠A =60°,AD =6,∴∠ADG =30°,∴AG =12AD =3,∴DG =√62−32=3√3,∵AB =2AD ,∴AB =2×6=12,BG =AB ﹣AG =12﹣3=9,∴tan ∠ABD =SS SS =3√39=√33 7.【解答】证明:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,AD ∥BC ,∴∠EAC =∠FCO ,在△AOE 和△COF 中 {∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOE ≌△COF (ASA ),∴AE =CF .四.平行四边形的判定(共3小题)8.【解答】解:∵在△ABC 中,D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥12AC 且DE =12AC ,A 、根据∠B =∠F 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B 、根据∠B =∠BCF 可以判定CF ∥AB ,即CF ∥AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C 、根据AC =CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D 、根据AD =CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误.故选:B .9.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:▱▱、▱▱、▱▱、▱▱. 故选:B .10.【解答】证明:连接AC ,如图所示:在△ABC 和△CDA 中,{SS =SS SS =SS SS =SS ,∴△ABC ≌△CDA (SSS ),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形.五.平行四边形的判定与性质(共1小题)11.【解答】证明:延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF , ∵点D ,E 分别是△ABC 的边AB ,AC 的中点,∴AD =BD ,AE =EC ,∴四边形ADCF 是平行四边形,∴CF ∥=AD .即CF ∥=BD ,∴四边形DBCF 是平行四边形,∴DF ∥=BC , ∴DE ∥BC ,且DE =12BC . ∴正确的证明顺序是▱→▱→▱→▱,故选:A .六.菱形的性质(共5小题)12.【解答】解:∵菱形ABCD 的周长为16,∴AB =BC =CD =AD =4,OA =OC ,∵OE ∥AB ,∴BE =CE ,∴OE 是△ABC 的中位线,∴OE =12AB =2,故答案为:2.13.【解答】解:∵四边形ABCD 是菱形,∴BO =DO =4,AO =CO ,AC ⊥BD ,∴BD =8,∵S 菱形ABCD =12AC ×BD =24,∴AC =6,∴OC =12AC =3,∴BC =√SS 2+SS 2=5,∵S 菱形ABCD =BC ×AH =24,∴AH =245; 故答案为:245.14.【解答】(1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∵点E ,F 分别是边AD ,AB 的中点,∴AF =AE ,在△ABE 和△ADF 中,{SS =SSSS =SS SS =SS ,∴△ABE ≌△ADF (SAS );(2)解:连接BD ,如图:∵四边形ABCD 是菱形,∴AB =AD ,∠A =∠C =60°,∴△ABD 是等边三角形,∵点E 是边AD 的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=tan30°BE=√33BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×√3=2√3.15.【解答】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=216.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=√SS2−SS2=√22−12=√3,∴BD=2√3七.菱形的判定(共1小题)17.【解答】解:根据邻边相等的平行四边形是菱形,可知选项D正确,故选:D.八.菱形的判定与性质(共3小题)18.【解答】解:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,作AE⊥BC于点E,AF⊥DC于点F,∵两张等宽的长方形纸条交叉叠放在一起,∴AE=AF,∴S平行四边形ABCD=BC•AE=DC•AF,∴BC=DC,∴▱ABCD是菱形.故答案为:是.19.【解答】(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO =∠ECO ,在△AOD 和△COE 中,{∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOD ≌△COE (ASA ),∴AD =CE ,∵CE ∥AB ,∴四边形AECD 是平行四边形,又∵CD 是Rt △ABC 斜边AB 上的中线,∴CD =AD ,∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形,∴AC ⊥ED ,在Rt △AOD 中,tan ∠DAO =SS SS =SSSSSSS =34,设OD =3x ,OA =4x ,则ED =2OD =6x ,AC =2OA =8x ,由题意可得:12×6S ×8S =24,解得:x =1,∴OD =3,∵O ,D 分别是AC ,AB 的中点,∴OD 是△ABC 的中位线,∴BC =2OD =6.20.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∵BE =DF ,∴△AEB ≌△AFD∴AB =AD ,∴四边形ABCD 是菱形.(2)连接BD 交AC 于O .∵四边形ABCD 是菱形,AC =6,∴AC ⊥BD ,AO =OC =12AC =12×6=3,∵AB =5,AO =3,∴BO =√SS 2−SS 2=√52−32=4,∴BD =2BO =8,∴S 平行四边形ABCD =12×AC ×BD =24. 九.矩形的性质(共2小题)21.【解答】解:如图以AB 为x 轴,AD 为y 轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB 边的碰撞有2次,∵2019÷6=336…3,当点P 第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P 的坐标为(6,4)∴它与AB 边的碰撞次数是=336×2+1=673次故答案为67322.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB =CD ,AD =BC ,AD ∥BC ,在Rt △ABE 和Rt △CDF 中,{SS =SS SS =SS , ∴Rt △ABE ≌Rt △CDF (HL );(2)解:当AC ⊥EF 时,四边形AECF 是菱形,理由如下:∵△ABE ≌△CDF ,∴BE =DF ,∵BC =AD ,∴CE =AF ,∵CE ∥AF ,∴四边形AECF 是平行四边形,又∵AC ⊥EF ,∴四边形AECF 是菱形.一十.矩形的判定与性质(共1小题)23.【解答】解:(1)证明:过点E 、F 分别作AD 、BC 的垂线,垂足分别是G 、H .∵∠3=∠4,∠1=∠2,EG ⊥AD ,EM ⊥CD ,EM ′⊥AB∴EG =ME ,EG =EM ′∴EG =ME =M ′E =12MM ′同理可证:FH =NF =N ′F =12NN ′ ∵CD ∥AB ,MM ′⊥CD ,NN ′⊥CD ,∴MM ′=NN ′∴ME =NF =EG =FH又∵MM ′∥NN ′,MM ′⊥CD∴四边形EFNM 是矩形.(2)∵DC ∥AB ,∴∠CDA +∠DAB =180°,∵∠3=12SSSS ,∠2=12∠DAB∴∠3+∠2=90°在Rt △DEA ,∵AE =4,DE =3,∴AD =√3+4=5.∵四边形ABCD 是平行四边形,∴∠DAB =∠DCB ,又∵∠2=12∠DAB ,∠5=12∠DCB ,∴∠2=∠5由(1)知GE =NF在Rt △GEA 和Rt △CNF 中 {∠2=∠5SSSS =SSSS =90°SS =SS∴△GEA ≌△CNF∴AG =CN在Rt △DME 和Rt △DGE 中∵DE =DE ,ME =EG∴△DME ≌△DGE∴DG =DM∴DM +CN =DG +AG =AD =5∴MN =CD ﹣DM ﹣CN =9﹣5=4.∵四边形EFNM 是矩形.∴EF =MN =4一十一.正方形的性质(共5小题)24.【解答】证明:∵四边形ABCD 是正方形,∴AB ∥CD ,AD ∥BC ,AB =BC ,∠ABE =∠BCF =90°,在△ABE 和△BCF 中,{SS =SS SSSS =SSSS SS =SS ,∴△ABE ≌△BCF (SAS ),∴∠BFC =∠AEB ,∵AD ∥BC ,AB ∥CD ,∴∠DAE =∠AEB ,∠BFC =∠ABF ,故图中与∠AEB 相等的角的个数是3.故选:C .25.【解答】解:∵正方形ABCD ,DPMN 的面积分别为S 1,S 2,∴S 1=CD 2,S 2=PD 2,在Rt △PCD 中,PC 2=CD 2+PD 2,∴S 1+S 2=CP 2,故A 结论正确;连接CF ,∵点H 与B 关于CE 对称,∴CH =CB ,∠BCE =∠ECH ,在△BCE 和△HCE 中,{SS =SS SSSS =SSSS SS =SS∴△BCE ≌△HCE (SAS ),∴BE =EH ,∠EHC =∠B =90°,∠BEC =∠HEC ,∴CH =CD ,在Rt △FCH 和Rt △FCD 中{SS =SS SS =SS ∴Rt △FCH ≌Rt △FCD (HL ),∴∠FCH =∠FCD ,FH =FD ,∴∠ECH +∠FCH =12∠BCD =45°,即∠ECF =45°,作FG ⊥EC 于G ,∴△CFG 是等腰直角三角形,∴FG =CG ,∵∠BEC =∠HEC ,∠B =∠FGE =90°,∴△FEG ∽△CEB ,∴SS SS =SS SS =12, ∴FG =2EG ,设EG =x ,则FG =2x ,∴CG =2x ,CF =2√2x ,∴EC =3x ,∵EB 2+BC 2=EC 2,∴54BC 2=9x 2,∴BC 2=365x 2, ∴BC =6√55x , 在Rt △FDC 中,FD =√SS 2−SS 2=√(2√2S )2−365S 2=2√55x , ∴3FD =AD ,∴AF =2FD ,故B 结论正确;∵AB ∥CN ,∴SS SS =SS SS =12, ∵PD =ND ,AE =12CD , ∴CD =4PD ,故C 结论正确;∵EG =x ,FG =2x ,∴EF =√5x ,∵FH =FD =2√55x , ∵BC =6√55x ,∴AE =3√55x ,作HQ ⊥AD 于Q ,HS ⊥CD 于S ,∴HQ ∥AB ,∴SS SS =SS SS ,即3√55S =2√55S √5S ,∴HQ =6√525x , ∴CS =CD ﹣HQ =6√55x −6√525x =24√525x∴cos ∠HCD =SS SS =24√525S 655S=45,故结论D 错误, 故选:D .26.【解答】解:∵在正方形ABCD 中,A 、B 、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D (﹣3,2),∴将正方形ABCD 向右平移3个单位,则平移后点D 的坐标是(0,2),故选:B .27.【解答】解:△CBD 绕点C 顺时针旋转90°得到的图形如上图所示.∵D 的坐标为(3,1),∴OA =3,AD =1∵在正方形OABC 中,OA =AB ,∴AB =3,∴BD =AB ﹣AD =2,∴OD '=BD =2,∴D '的坐标为(﹣2,0),故答案为(﹣2,0).28.【解答】解:(1)∵四边形ABCD 是正方形,∴AB =CD ,AB ∥CD ,∴∠DCA =∠BAC ,∵DF ∥BE ,∴∠CFD =∠BEA ,∵∠BAC =∠BEA +∠ABE ,∠DCA =∠CFD +∠CDF ,∴∠ABE =∠CDF ,在△ABE 和△CDF 中,∵{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△ABE ≌△CDF (AAS ),∴BE =DF ,∵BH =DG ,∴BE +BH =DF +DG ,即EH =GF ,∵EH ∥GF ,∴四边形EHFG 是平行四边形;(2)如图,连接BD ,交EF 于O ,∵四边形ABCD 是正方形,∴BD ⊥AC ,∴∠AOB =90°,∵AB =2√2,∴OA =OB =2,Rt △BOE 中,EB =4,∴∠OEB =30°,∴EO =2√3,∵OD =OB ,∠EOB =∠DOF ,∵DF ∥EB ,∴∠DFC =∠BEA ,∴△DOF ≌△BOE (AAS ),∴OF =OE =2√3,∴EF =4√3,∴FM =2√3,EM =6,过F 作FM ⊥EH 于M ,交EH 的延长线于M , ∵EG ∥FH ,∴∠FHM =∠GEH ,∵tan ∠GEH =tan ∠FHM =SS SS =2√3, ∴2√3SS =2√3,∴HM =1,∴EH =EM ﹣HM =6﹣1=5,FH =√SS 2+SS 2=√(2√3)2+12=√13, ∴四边形EHFG 的周长=2EH +2FH =2×5+2√13=10+2√13.。
2018年广西省中考数学真题试卷4套(含答案及详细解析)2018年广西贵港市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3分)﹣8的倒数是()A.8B.﹣8C.D.2.(3分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3分)下列运算正确的是()A.2a﹣a=1B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.(3分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5B.﹣3C.3D.16.(3分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3B.1C.﹣1D.﹣37.(3分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥38.(3分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16B.18C.20D.2411.(3分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.512.(3分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若分式的值不存在,则x的值为.14.(3分)因式分解:ax2﹣a=.15.(3分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM 是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.D【解析】﹣8的倒数是﹣.故选:D.2.A【解析】将数据2180000用科学记数法表示为2.18×106.故选:A.3.D【解析】A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.C【解析】∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.D【解析】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.D【解析】∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,7.A【解析】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.C【解析】A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.A【解析】∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.B【解析】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,故选:B.11.C【解析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.B【解析】∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣1【解析】若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.14.a(x+1)(x﹣1)【解析】原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).15.5.5【解析】∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是(5+6)=5.5,故答案为:5.5.16.70°【解析】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.17.4π【解析】∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.18.2n﹣1,0【解析】∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.20.解:如图所示,△ABC为所求作21.解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.22.解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°×=86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.23.解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.24.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.25.解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析是为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析是为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,P(,﹣2﹣1).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,n2﹣2n﹣3=1﹣2﹣3=﹣4,P(1,﹣4);综上所述:P(1,﹣4)或(,﹣2﹣1).26.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,B D=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=32018年广西桂林市中考数学真题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(3分)2018的相反数是()A.2018B.﹣2018C.D.2.(3分)下列图形是轴对称图形的是()A.B.C.D.3.(3分)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°4.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)6.(3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×10117.(3分)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=28.(3分)一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和69.(3分)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.10.(3分)若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.11.(3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.12.(3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)比较大小:﹣30.(填“<”,“=”,“>”)14.(3分)因式分解:x2﹣4=.15.(3分)某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.(3分)如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的.值是第1列第2列第3列第4列列行第1行1234第2行8765第3行9101112第4行16151413……………第n行…………三、解答题:本大题共8小题,共66分.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别月生活支出x(单位:元)频数(人数)频率第一组x<30040.10第二组300≤x<35020.05第三组350≤x<40016n第四组400≤x<450m0.30第五组450≤x<50040.10第六组x≥50020.05请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.(10分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD 的长.26.(12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【参考答案】一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.B【解析】2018的相反数是:﹣2018.故选:B.2.A【解析】A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.3.B【解析】∵直线被直线a、b被直线c所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.4.C【解析】从正面看下面是一个长方形,如图所示:故C选项符合题意,故选:C.5.B【解析】a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.6.A【解析】将128 000 000 000 000用科学记数法表示为:1.28×1014.故选:A.7.C【解析】A,2x﹣x=x,错误;B,x(﹣x)=﹣x2,错误;C,(x2)3=x6,正确;D,x2+x=x2+x,错误;故选:C.8.D【解析】将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.9.A【解析】∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.10.D【解析】由题意可知:解得:故选:D.11.C【解析】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.12.B【解析】如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△P AB与△NCA中,,∴△P AB∽△NCA,∴=,设P A=x,则NA=PN﹣P A=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.13.<【解析】﹣3<0,故答案为:<.14.(x+2)(x﹣2)【解析】x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).15.84【解析】(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.16.3【解析】∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:317.3【解析】如图,作EM⊥x轴于点M,则EM=1.∵△ODE的面积是,∴OD•EM=,∴OD=.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y=(k>0)的图象过点E,∴k=3×1=3.故答案为3.18.(505,2)【解析】由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).三、解答题:本大题共8小题,共66分.19.解:原式=3+1﹣6×+2=3+1﹣3+2=3.20.解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:21.(1)证明:∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)解:由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°22.解:(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率;23.解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时24.解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.25.(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)解:连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠F AC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)解:过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.26.解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).2018年广西柳州市中考数学真题一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3分)计算:0+(﹣2)=()A.﹣2B.2C.0D.﹣202.(3分)如图,这是一个机械模具,则它的主视图是()A.B.C.D.3.(3分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1B.C.D.5.(3分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个7.(3分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sin B==()A.B.C.D.8.(3分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°9.(3分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7%B.13.3%C.26.7%D.53.3%11.(3分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3分)如图,a∥b,若∠1=46°,则∠2=°.14.(3分)如图,在平面直角坐标系中,点A的坐标是.15.(3分)不等式x+1≥0的解集是.16.(3分)一元二次方程x2﹣9=0的解是.17.(3分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6分)计算:2+3.20.(6分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.22.(8分)解方程=.23.(8分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG 的长.26.(10分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x 轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【参考答案】一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.A【解析】0+(﹣2)=﹣2.故选:A.2.C【解析】主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.3.B【解析】A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.4.B【解析】∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.5.C【解析】7000000000=7×109.故选:C.6.C【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.7.A【解析】∵∠C=90°,BC=4,AC=3,∴AB=5,∴sin B==,故选:A.8.D【分析】直接利用圆周角定理即可得出答案.【解析】∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.9.A【解析】根据题意知,买一斤需要付费0.8a元,故选:A.10.D【解析】由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.11.B【解析】(2a)•(ab)=2a2b.故选:B.12.C【解析】由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共18分)13.46°【解析】∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.14.(﹣2,3)【解析】由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).15.x≥﹣1【解析】移项得:x≥﹣1.故答案为:x≥﹣1.16.x1=3,x2=﹣3【解析】∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.17.【解析】设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.18.5【解析】过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,。
概率一.选择题1. (2018·广西梧州·3分)小燕一家三口在商场参加抽奖活动、每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个、这些球除颜色外无其他差别、从箱子中随机摸出1个球、然后放回箱子中轮到下一个人摸球、三人摸到球的颜色都不相同的概率是()A.B.C.D.【分析】画出树状图、利用概率公式计算即可.【解答】解:如图、一共有27种可能、三人摸到球的颜色都不相同有6种可能、∴P(三人摸到球的颜色都不相同)==.故选:D.【点评】本题考查列表法与树状图、解题的关键是学会利用树状图解决概率问题.2.(2018·四川省攀枝花·3分)布袋中装有除颜色外没有其他区别的1个红球和2个白球、搅匀后从中摸出一个球、放回搅匀、再摸出第二个球、两次都摸出白球的概率是()A.B.C.D.解:画树状图得:则共有9种等可能的结果、两次都摸到白球的有4种情况、∴两次都摸到白球的概率为.故选A.3.(2018·辽宁省沈阳市)(2.00分)下列事件中、是必然事件的是()A.任意买一张电影票、座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口、遇到红灯D.明天一定会下雨【分析】必然事件就是一定发生的事件、依据定义即可判断.【解答】解:A.“任意买一张电影票、座位号是2的倍数”是随机事件、故此选项错误;B.“13个人中至少有两个人生肖相同”是必然事件、故此选项正确;C.“车辆随机到达一个路口、遇到红灯”是随机事件、故此选项错误;D.“明天一定会下雨”是随机事件、故此选项错误;故选:B.【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下、一定不发生的事件.不确定事件即随机事件是指在一定条件下、可能发生也可能不发生的事件.4.(2018·辽宁省阜新市)如图所示、阴影是两个相同菱形的重合部分、假设可以随机在图中取点、那么这个点取在阴影部分的概率是()A.B.C.D.【解答】解:设阴影部分的面积是x、则整个图形的面积是7x、则这个点取在阴影部分的概率是=.故选C.5. (2018•呼和浩特•3分)(3.00分)某学习小组做“用频率估计概率”的实验时、统计了某一结果出现的频率、绘制了如下折线统计图、则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球、从中随机取一个、取到红球B.掷一枚质地均匀的正六面体骰子、向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币、两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子、两次向上的面的点数之和是7或超过9解:A.袋中装有大小和质地都相同的3个红球和2个黄球、从中随机取一个、取到红球的概率为、不符合题意;B.掷一枚质地均匀的正六面体骰子、向上的面的点数是偶数的概率为、不符合题意;C.先后两次掷一枚质地均匀的硬币、两次都出现反面的概率为、不符合题意;D.先后两次掷一枚质地均匀的正六面体骰子、两次向上的面的点数之和是7或超过9的概率为、符合题意;故选:D.6.(2018·辽宁大连·3分)一个不透明的袋子中有三个完全相同的小球、把它们分别标号为1、2、3、随机摸出一个小球、记下标号后放回、再随机摸出一个小球并记下标号、两次摸出的小球标号的和是偶数的概率是()A.B.C.D.解:列表得:所有等可能的情况数有9种、它们出现的可能性相同、其中两次摸出的小球标号的和是偶数的有5种结果、所以两次摸出的小球标号的和是偶数的概率为.故选D.7.(2018·江苏镇江·3分)小明将如图所示的转盘分成n(n是正整数)个扇形、并使得各个扇形的面积都相等、然后他在这些扇形区域内分别标连接偶数数字2、4、6、…、2n(每个区域内标注1个数字、且各区域内标注的数字互不相同)、转动转盘1次、当转盘停止转动时、若事件“指针所落区域标注的数字大于8”的概率是、则n的取值为()A.36 B.30 C.24 D.18【解答】解:∵“指针所落区域标注的数字大于8”的概率是、∴=、解得:n=24、故选:C.二.填空题1. (2018·广西贺州·3分)从﹣1.0、、π、5.1.7这6个数中随机抽取一个数、抽到无理数的概率是.【解答】解:∵在﹣1.0、、π、5.1.7这6个数中无理数有、π这2个、∴抽到无理数的概率是=、故答案为:.2. (2018·湖北江汉·3分)在“Wish you success”中、任选一个字母、这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母、这个字母为“s”的概率为:=、故答案为:.3.(2018·浙江省台州·5分)一个不透明的口袋中有三个完全相同的小球、把它们分别标号为1、2、3.随机摸出一个小球然后放回、再随机摸出一个小球、则两次摸出的小球标号相同的概率是.【分析】首先根据题意画出树状图、然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况、再利用概率公式即可求得答案.【解答】解:根据题意、画树状图如下:共有9种等可能结果、其中两次摸出的小球标号相同的有3种结果、所以两次摸出的小球标号相同的概率是=、故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.(2018·辽宁省葫芦岛市) 有四张看上去无差别的卡片、正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称、将它们背面朝上、从中随机一张卡片正面写有“葫芦山庄”的概率是.【解答】解:∵在这4张无差别的卡片上、只有1张写有“葫芦山庄”、∴从中随机一张卡片正面写有“葫芦山庄”的概率是.故答案为:.5.(2018·辽宁省盘锦市)如图、正六边形内接于⊙O、小明向圆内投掷飞镖一次、则飞镖落在阴影部分的概率是.【解答】解:如图所示:连接OA.∵正六边形内接于⊙O、∴△OAB、△OBC都是等边三角形、∴∠AOB=∠OBC=60°、∴OC∥AB、∴S△ABC=S△OBC、∴S阴=S扇形OBC、则飞镖落在阴影部分的概率是;故答案为:.6.(2018·辽宁省抚顺市)(3.00分)一个不透明布袋里有3个红球、4个白球和m个黄球、这些球除颜色外其余都相同、若从中随机摸出1个球是红球的概率为、则m的值为 2 .【分析】根据题目中的数据可以计算出总的球的个数、从而可以求得m的值.【解答】解:由题意可得、m=3÷﹣3﹣4=9﹣3﹣4=2、故答案为:2.【点评】本题考查概率公式、解答本题的关键是明确题意、求出相应的m的值.7. (2018•呼和浩特•3分)已知函数y=(2k﹣1)x+4(k为常数)、若从﹣3≤k≤3中任取k值、则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为.解:当2k﹣1>0时、解得:k>、则<k≤3时、y随x增加而增加、故﹣3≤k<时、y随x增加而减小、则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为:=.故答案为:.8.(2018·江苏常州·2分)中华文化源远流长、如图是中国古代文化符号的太极图、圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点、则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等、根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称、∴圆中的黑色部分和白色部分面积相等、∴在圆内随机取一点、则此点取黑色部分的概率是、故答案为:.【点评】本题考查的是概率公式、中心对称图形、掌握概率公式是解题的关键.9.(2018·湖北咸宁·3分)一个不透明的口袋中有三个完全相同的小球、把它们分别标号为1、2、3.随机摸出一个小球然后放回、再随机摸出一个小球、则两次摸出的小球标号相同的概率是_________。
2018年广西省中考数学真题试卷4套(含答案及详细解析)2018年广西贵港市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3分)﹣8的倒数是()A.8B.﹣8C.D.2.(3分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3分)下列运算正确的是()A.2a﹣a=1B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.(3分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5B.﹣3C.3D.16.(3分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3B.1C.﹣1D.﹣37.(3分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥38.(3分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16B.18C.20D.2411.(3分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.512.(3分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若分式的值不存在,则x的值为.14.(3分)因式分解:ax2﹣a=.15.(3分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM 是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.D【解析】﹣8的倒数是﹣.故选:D.2.A【解析】将数据2180000用科学记数法表示为2.18×106.故选:A.3.D【解析】A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.C【解析】∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.D【解析】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.D【解析】∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,7.A【解析】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.C【解析】A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.A【解析】∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.B【解析】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,故选:B.11.C【解析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.B【解析】∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣1【解析】若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.14.a(x+1)(x﹣1)【解析】原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).15.5.5【解析】∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是(5+6)=5.5,故答案为:5.5.16.70°【解析】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.17.4π【解析】∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.18.2n﹣1,0【解析】∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.20.解:如图所示,△ABC为所求作21.解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.22.解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°×=86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.23.解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.24.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.25.解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析是为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析是为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,P(,﹣2﹣1).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,n2﹣2n﹣3=1﹣2﹣3=﹣4,P(1,﹣4);综上所述:P(1,﹣4)或(,﹣2﹣1).26.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,B D=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=32018年广西桂林市中考数学真题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(3分)2018的相反数是()A.2018B.﹣2018C.D.2.(3分)下列图形是轴对称图形的是()A.B.C.D.3.(3分)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°4.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)6.(3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×10117.(3分)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=28.(3分)一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和69.(3分)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.10.(3分)若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.11.(3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.12.(3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)比较大小:﹣30.(填“<”,“=”,“>”)14.(3分)因式分解:x2﹣4=.15.(3分)某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.(3分)如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的.值是第1列第2列第3列第4列列行第1行1234第2行8765第3行9101112第4行16151413……………第n行…………三、解答题:本大题共8小题,共66分.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别月生活支出x(单位:元)频数(人数)频率第一组x<30040.10第二组300≤x<35020.05第三组350≤x<40016n第四组400≤x<450m0.30第五组450≤x<50040.10第六组x≥50020.05请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)。
广西省2018-2020年中考数学试题分类(12)——概率与统计一.选择题(共24小题) 1.(2020•桂林)下列调查中,最适宜采用全面调查(普查)的是( ) A .调查一批灯泡的使用寿命 B .调查漓江流域水质情况C .调查桂林电视台某栏目的收视率D .调查全班同学的身高 2.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是( ) A .85,85 B .85,88 C .88,85 D .88,88 3.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .124.(2020•广西)以下调查中,最适合采用全面调查的是( ) A .检测长征运载火箭的零部件质量情况 B .了解全国中小学生课外阅读情况 C .调查某批次汽车的抗撞击能力 D .检测某城市的空气质量 5.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s 2=(2−x )2+(3−x )2+(3−x )2+(4−x )2x,由公式提供的信息,则下列说法错误的是( )A .样本的容量是4B .样本的中位数是3C .样本的众数是3D .样本的平均数是3.5 6.(2019•百色)一组数据2,6,4,10,8,12的中位数是( ) A .6 B .7 C .8 D .9 7.(2019•百色)小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是( )A .小黄的成绩比小韦的成绩更稳定B .两人成绩的众数相同C .小韦的成绩比小黄的成绩更稳定D .两人的平均成绩不相同 8.(2019•梧州)某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93 9.(2019•柳州)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A .1325B .1225C .425D .1210.(2019•桂林)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A .12B .13C .14D .1611.(2019•河池)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是( ) A .53,53 B .53,56 C .56,53 D .56,56 12.(2019•贺州)一组数据2,3,4,x ,6的平均数是4,则x 是( ) A .2 B .3 C .4 D .5 13.(2019•广西)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .2914.(2019•广西)下列事件为必然事件的是( ) A .打开电视机,正在播放新闻B .任意画一个三角形,其内角和是180°C .买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上 15.(2019•贵港)若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是( ) A .9,9 B .10,9 C .9,9.5 D .11,10 16.(2018•河池)下列调查中,最适合采用全面调查的是( ) A .端午节期间市场上粽子质量 B .某校九年级三班学生的视力 C .央视春节联欢晚会的收视率 D .某品牌手机的防水性能 17.(2018•百色)某校开设了艺术、体育、劳动、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有( )A .12名B .13名C .15名D .50名18.(2018•百色)某同学记录了自己一周每天的零花钱(单位:元),分别如下: 5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是( ) A .5和5.5B .5和5C .5和17D .17和5.519.(2018•梧州)九年级一班同学根据兴趣分成A 、B 、C 、D 、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D 小组的人数是( )A .10人B .11人C .12人D .15人 20.(2018•梧州)一组数据:3,4,5,x ,8的众数是5,则这组数据的方差是( ) A .2 B .2.4 C .2.8 D .3 21.(2018•梧州)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A .127B .13C .19D .2922.(2018•贺州)若一组数据:1、2、x 、4、5的众数为5,则这组数据的中位数是( ) A .1 B .2 C .4 D .5 23.(2018•柳州)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x )的扇形统计图,由图可知,学生的数学平均成绩在60≤x <70之间的国家占( )A .6.7%B .13.3%C .26.7%D .53.3% 24.(2018•贵港)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( ) A .110B .15C .310D .25二.填空题(共14小题) 25.(2020•桂林)一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是 .26.(2020•河池)不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是 . 27.(2020•广西)某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数 15 33 78 158 321 801 “射中9环以上”的频率(结果保留小数点后两位)0.750.830.780.790.800.80根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是 (结果保留小数点后一位). 28.(2020•玉林)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是 . 29.(2019•百色)编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是 . 30.(2019•桂林)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况: 组别 一 二 三 四 五 六 七 八得分 90 95 90 88 90 92 85 90 这组数据的众数是 .31.(2019•柳州)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的试验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n30 75 130 210 480 856 1250 2300 发芽数m 28 72 125 200 457 814 1187 2185 发芽频率xx0.93330.96000.96150.95240.95210.95090.94960.9500依据上面的数据可以估计,这种植物种子在该试验条件下发芽的概率约是 (结果精确到0.01).32.(2019•玉林)我市博览馆有A ,B ,C 三个入口和D ,E 两个出口,小明入馆游览,他从A 口进E 口出的概率是 . 33.(2019•玉林)样本数据﹣2,0,3,4,﹣1的中位数是 . 34.(2019•柳州)已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是 . 35.(2019•贺州)调查我市一批药品的质量是否符合国家标准.采用 方式更合适.(填“全面调查”或“抽样调查”) 36.(2019•河池)掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是 . 37.(2019•广西)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是 .(填“甲”或“乙”) 38.(2019•贵港)若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是 . 三.解答题(共12小题) 39.(2020•桂林)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.40.(2020•河池)某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分):75,63,76,87,69,78,82,75,63,71.频数分布表组别分数段划记频数A60<x≤70正B70<x≤80正正C80<x≤90正正正正D90<x≤100正(1)在频数分布表中补全各组划记和频数;(2)求扇形统计图中B组所对应的圆心角的度数;(3)该校有2000名学生参加此次知识竞赛,估计成绩在80<x≤100的学生有多少人?41.(2020•玉林)在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图图①和图①两个尚不完整的统计图中.(1)种植B品种果树苗有棵;(2)请你将图①的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?42.(2020•广西)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<8585≤x<9090≤x<9595≤x≤10034a8分析数据:平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.43.(2019•百色)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:编号一二三四五人数a152010b已知前面两个小组的人数之比是1:5.解答下列问题:(1)a+b=.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)44.(2019•柳州)据公开报道,2017年全国教育经费总投入为42557亿元,比上年增长9.43%,其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题.(1)在2017年全国教育经费总投入中,义务教育段的经费总投入应该是多少亿元?(2)2016年全国教育经费总投入约为多少亿元?(精确到0.1)45.(2019•桂林)某校在以“青春心向党,建功新时代”为主题的校园文化艺术节期间,举办了A合唱,B 群舞,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?扇形统计图中“D”部分的圆心角度数是多少?(2)请将条形统计图补充完整;(3)若全校共有1800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?46.(2019•玉林)某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当α=108°时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.47.(2019•贺州)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.48.(2019•河池)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:兴趣班人数百分比美术1010%书法30a体育b40%音乐20c根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?49.(2019•贵港)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x 分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题: 分数段(分) 频数(人) 频率51≤x <61 a 0.1 61≤x <71 18 0.18 71≤x <81 b n 81≤x <91 35 0.35 91≤x <101120.12合计100 1 (1)填空:a = ,b = ,n = ; (2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x ≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.50.(2019•广西)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下: 1班:90,70,80,80,80,80,80,90,80,100; 2班:70,80,80,80,60,90,90,90,100,90; 3班:90,60,70,80,80,80,80,90,100,100. 整理数据:分数人数 班级60 70 80 90 100 1班 0 1 6 2 1 2班 1 1 3 a 1 3班 11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?广西省2018-2020年中考数学试题分类(12)——概率与统计一.选择题(共24小题) 1.(2020•桂林)下列调查中,最适宜采用全面调查(普查)的是( ) A .调查一批灯泡的使用寿命 B .调查漓江流域水质情况C .调查桂林电视台某栏目的收视率D .调查全班同学的身高 【答案】D【解答】解:A 、调查一批灯泡的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项不合题意; B 、调查漓江流域水质情况,应当采用抽样调查的方式,故本选项不合题意;C 、调查桂林电视台某栏目的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项不合题意.D 、调查全班同学的身高,应当采用全面调查,故本选项符合题意. 故选:D . 2.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是( ) A .85,85 B .85,88 C .88,85 D .88,88 【答案】B【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98, 故这组数据的众数是85,中位数是88, 故选:B . 3.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .12【答案】C【解答】解:由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:第一次选择,它有3种路径;第二次选择,每次又都有2种路径; 两次共6种等可能结果,其中获得食物的有2种结果, ∴获得食物的概率是26=13,故选:C . 4.(2020•广西)以下调查中,最适合采用全面调查的是( ) A .检测长征运载火箭的零部件质量情况 B .了解全国中小学生课外阅读情况 C .调查某批次汽车的抗撞击能力 D .检测某城市的空气质量 【答案】A【解答】解:检测长征运载火箭的零部件质量情况适合用全面调查, 而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查, 故选:A . 5.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s 2=(2−x )2+(3−x )2+(3−x )2+(4−x )2x,由公式提供的信息,则下列说法错误的是( )A .样本的容量是4B .样本的中位数是3C .样本的众数是3D .样本的平均数是3.5 【答案】D【解答】解:由题意知,这组数据为2、3、3、4, 所以这组数据的样本容量为4,中位数为3+32=3,众数为3,平均数为2+3+3+44=3,故选:D . 6.(2019•百色)一组数据2,6,4,10,8,12的中位数是( ) A .6 B .7 C .8 D .9 【答案】B【解答】解:将数据重新排列为2、4、6、8、10、12, 所以这组数据的中位数为6+82=7,故选:B . 7.(2019•百色)小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是( )A .小黄的成绩比小韦的成绩更稳定B .两人成绩的众数相同C .小韦的成绩比小黄的成绩更稳定D .两人的平均成绩不相同 【答案】A【解答】解:A ,由折线统计图知,小黄的成绩波动幅度小,成绩更稳定,此选项正确,C 选项错误; B .小韦成绩的众数为10环,小黄成绩的众数为9环,此选项错误; D .小韦成绩的平均数为6+7×2+10×36=253,小黄的平均成绩为7+8×2+9×36=253,此选项错误;故选:A . 8.(2019•梧州)某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93 【答案】D【解答】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为102+1082=105,平均数为82+96+102+108+108+1106=101,方差为16[(82﹣101)2+(96﹣101)2+(102﹣101)2+(108﹣101)2+(108﹣101)2+(110﹣101)2]≈94.3≠93; 故选:D . 9.(2019•柳州)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A .1325B .1225C .425D .12【答案】A【解答】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个, ∴小李获胜的概率为1325; 故选:A .10.(2019•桂林)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A .12B .13C .14D .16【答案】D【解答】解:当转盘停止转动时,指针指向阴影部分的概率是16,故选:D . 11.(2019•河池)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是( ) A .53,53 B .53,56 C .56,53 D .56,56 【答案】D【解答】解:将数据重新排列为51,53,53,56,56,56,58, 所以这组数据的中位数为56,众数为56, 故选:D . 12.(2019•贺州)一组数据2,3,4,x ,6的平均数是4,则x 是( ) A .2 B .3 C .4 D .5 【答案】D【解答】解:∵数据2,3,4,x ,6的平均数是4, ∴2+3+4+x +65=4,解得:x =5, 故选:D . 13.(2019•广西)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .29【答案】A【解答】解:画树状图为:(用A 、B 、C 分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率=39=13. 故选:A . 14.(2019•广西)下列事件为必然事件的是( ) A .打开电视机,正在播放新闻B .任意画一个三角形,其内角和是180°C .买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上 【答案】B【解答】解:∵A ,C ,D 选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B ,任意画一个三角形,其内角和是180°,是必然事件,符合题意. 故选:B . 15.(2019•贵港)若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是( ) A .9,9 B .10,9 C .9,9.5 D .11,10 【答案】C【解答】解:将数据重新排列为8,9,9,9,10,10,11,11, ∴这组数据的众数为9,中位数为9+102=9.5,故选:C . 16.(2018•河池)下列调查中,最适合采用全面调查的是( ) A .端午节期间市场上粽子质量 B .某校九年级三班学生的视力 C .央视春节联欢晚会的收视率 D .某品牌手机的防水性能 【答案】B【解答】解:A .调查端午节期间市场上粽子质量适合抽样调查; B .某校九年级三班学生的视力适合全面调查; C .央视春节联欢晚会的收视率适合抽样调查; D .某品牌手机的防水性能适合抽样调查; 故选:B . 17.(2018•百色)某校开设了艺术、体育、劳动、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有( )A .12名B .13名C .15名D .50名 【答案】A【解答】解:选书法课的人数有50﹣13﹣15﹣10=12, 故选:A . 18.(2018•百色)某同学记录了自己一周每天的零花钱(单位:元),分别如下: 5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是( ) A .5和5.5B .5和5C .5和17D .17和5.5【答案】B【解答】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5.故选:B . 19.(2018•梧州)九年级一班同学根据兴趣分成A 、B 、C 、D 、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D 小组的人数是( )A .10人B .11人C .12人D .15人【答案】C【解答】解:总人数=510%=50(人) D 小组的人数=50×86.4360=12(人).故选:C . 20.(2018•梧州)一组数据:3,4,5,x ,8的众数是5,则这组数据的方差是( ) A .2 B .2.4 C .2.8 D .3 【答案】C【解答】解:∵一组数据3,4,5,x ,8的众数是5, ∴x =5, ∴这组数据的平均数为15×(3+4+5+5+8)=5,则这组数据的方差为15×[(3﹣5)2+(4﹣5)2+2×(5﹣4)2+(8﹣5)2]=2.8.故选:C . 21.(2018•梧州)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A .127B .13C .19D .29【答案】D【解答】解:如图,一共有27种可能,三人摸到球的颜色都不相同有6种可能, ∴P (三人摸到球的颜色都不相同)=627=29.故选:D . 22.(2018•贺州)若一组数据:1、2、x 、4、5的众数为5,则这组数据的中位数是( ) A .1 B .2 C .4 D .5 【答案】C【解答】解:∵数据1、2、x 、4、5的众数为5, ∴x =5,将数据从小到大重新排列为1、2、4、5、5, 所以中位数为4, 故选:C . 23.(2018•柳州)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x )的扇形统计图,由图可知,学生的数学平均成绩在60≤x <70之间的国家占( )A .6.7%B .13.3%C .26.7%D .53.3% 【答案】D【解答】解:由图可知,学生的数学平均成绩在60≤x <70之间的国家占53.3%. 故选:D . 24.(2018•贵港)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( ) A .110B .15C .310D .25【答案】C【解答】解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况, ∴抽到编号是3的倍数的概率是310, 故选:C .二.填空题(共14小题)25.(2020•桂林)一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是 13.【答案】13.【解答】解:∵共有六个字,“我”字有2个, ∴P (“我”)=26=13. 故答案为:13.26.(2020•河池)不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是 12 . 【答案】12.【解答】解:画树状图为:共有4种等可能的结果,其中两次都摸到相同颜色的小球的结果数为2, 所以两次都摸到相同颜色的小球的概率=24=12. 故答案为12.27.(2020•广西)某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数153378158321801“射中9环以上”的频率(结果保留小数点后两位)0.75 0.83 0.78 0.79 0.80 0.80 根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是 0.8 (结果保留小数点后一位).【答案】0.8.【解答】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8. 故答案为:0.8. 28.(2020•玉林)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是 34 . 【答案】见试题解答内容 【解答】解:画树状图如下:由树状图知,共有4种等可能结果,其中至少有一辆向左转的有3种等可能结果, 所以至少有一辆向左转的概率为34, 故答案为:34.29.(2019•百色)编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是 35 .【答案】见试题解答内容【解答】解:在这5个乒乓球中,编号是偶数的有3个, 所以编号是偶数的概率为35, 故答案为:35.30.(2019•桂林)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况: 组别 一 二 三 四 五 六 七 八得分90 95 90 88 90 92 85 90 这组数据的众数是 90 . 【答案】见试题解答内容【解答】解:90出现了4次,出现的次数最多,则众数是90; 故答案为:90 31.(2019•柳州)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的试验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n30 75 130 210 480 856 1250 2300 发芽数m 28 72 125 200 457 814 1187 2185 发芽频率x x0.93330.96000.96150.95240.95210.95090.94960.9500依据上面的数据可以估计,这种植物种子在该试验条件下发芽的概率约是 0.95 (结果精确到0.01).。
一、选择题1.(2018南宁)(3分)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N 是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4B.5C.6D.72.(2018来宾)(3分)如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,﹣1) B.(2,3) C.(0,1) D.(4,1)3.(2018钦州)(3分)下列图形中,是轴对称图形的是()A.B.C.D.4.(2018钦州)(3分)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)5.( 2018梧州)(3分)在下列图形中,是轴对称图形的是()A.B.C.D.6.(2018玉林防城港)(3分)如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则AEEB等于()A B.2C.1.5D7.(2018北海)(3分)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A 与点D重合,OD与BC交于点E,则点D的坐标是()A.(4,8) B.(5,8) C.(245,325) D.(225,365)8.(2018贵港)(3分)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限。
广西梧州市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018七上·商水期末) 下列各数中,与互为相反数的是()A . 2B . ﹣2C .D . -2. (2分) (2020七下·长沙期末) 2020年长沙市城区有初中毕业生39583人,除直升生2560人外,共有约37000人参考,参考人数37000用科学记数法表示为()A . 3.7×104B . 0.37×105C . 0.37×104D . 3.7×1053. (2分)圆锥的主视图是边长为4cm的等边三角形,则该圆锥俯视图的面积是()A . 4πcm2B . 8πcm2C . 12πcm2D . 16πcm24. (2分)(2016·包头) 不等式﹣≤1的解集是()A . x≤4B . x≥4C . x≤﹣1D . x≥﹣15. (2分)(2016·泉州) 一组数据:2,5,4,3,2的中位数是()A . 4B . 3.2C . 3D . 26. (2分) (2019八上·新疆期中) 如图,在△ABC中,∠A∶∠B∶∠C=3∶5∶10,又△MNC≌△ABC,则∠BCM∶∠BCN等于()A . 1∶2B . 1∶3C . 2∶3D . 1∶47. (2分) (2019九上·东源期中) 如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A . 1B .C . 2D .8. (2分) (2019九上·松北期末) 方程解是()A . x=B . x=4C . x=3D . x=-49. (2分)(2013·温州) 已知点P(1,﹣3)在反比例函数y= (k≠0)的图象上,则k的值是()A . 3B . ﹣3C .D . ﹣10. (2分) (2016九上·太原期末) 如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A . 15°B . 18°C . 20°D . 22°11. (2分)(2016·陕西) 如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A . 7B . 8C . 9D . 1012. (2分) (2020八下·南海期末) 如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P , DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A . 3B . 4C . 5D . 6二、填空题 (共4题;共4分)13. (1分)(2017·淮安) 分解因式:ab﹣b2=________.14. (1分)(2012·扬州) 如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,如果∠ACB=70°,那么∠P的度数是________.15. (1分)如图,CD与BE互相垂直平分,AD⊥DB,交BE延长线于点A,连接AC,已知∠BDE=70°,则∠CAD=________°16. (1分) (2018八上·昌图月考) 如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y 轴的正半轴上,且OA1= A1A2=1.以OA2为直角边作第二个等腰直角三角形OA2A3 ,以OA3为直角边作第三个等腰直角三角形OA3A4……依次规律得到等腰直角三角形OA2015A2016 ,则点A2015的坐标为 ________.三、解答题 (共6题;共49分)17. (10分)(2019·遂宁) 计算:18. (5分) (2020七下·博兴期中) 甲、乙两个拖拉机厂,按计划每月共生产拖拉机460台,由于两厂都改进了技术,本月甲厂完成计划的110%,乙厂本月完成计划的115%,两厂共生产拖拉机519台,本月两厂各超额生产拖拉机多少台?19. (3分)(2019·呼和浩特模拟) 九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确,条形统计图也只有乙组成绩统计有一处不正确:(1)指出条形统计图中存在的不正确,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?20. (6分) (2017七下·扬州月考) 如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.21. (15分) (2019九上·上海月考) 如图1,AD、BD分别是的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:;(2)如图2,如果AE=AB,且BD:DE=2:3,求BC:AB的值;(3)如果∠ABC是锐角,且与相似,求∠ABC的度数,并直接写出的值.22. (10分) (2019九上·长兴月考) 如图,在平面直角坐标系xOy中,抛物线y=ax2+8ax(a>0)与x轴交于O,A两点,顶点为M,对称轴与x轴交于H,与过O,A,M三点的⊙Q交于点B,⊙Q的半径为5,点C从点B出发,沿着圆周顺时针向点M运动,射线MC与x轴交于D,与抛物线交于E,过点E作ME的垂线交抛物线的对称轴于点F。
2018年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。
)1.(3分)(2018•梧州)﹣8的相反数是()A.﹣8 B.8 C.−18D.182.(3分)(2018•梧州)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣63.(3分)(2018•梧州)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF ⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.64.(3分)(2018•梧州)已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°5.(3分)(2018•梧州)下列各式计算正确的是()A.a+2a=3a B.x4•x3=x12C.(1x)﹣1=﹣1xD.(x2)3=x56.(3分)(2018•梧州)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2) C.(2,0) D.(2,2)7.(3分)(2018•梧州)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°8.(3分)(2018•梧州)一组数据:3,4,5,x,8的众数是5,则这组数据的方差是()A.2 B.2.4 C.2.8 D.39.(3分)(2018•梧州)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.127B.13C.19D.2910.(3分)(2018•梧州)九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.l1人C.12人D.15人11.(3分)(2018•梧州)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:512.(3分)(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999 B.10000 C.10001 D.10002二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2018•梧州)式子√x−3在实数范围内有意义,则x的取值范围是.14.(3分)(2018•梧州)如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.15.(3分)(2018•梧州)已知直线y=ax(a≠0)与反比例函数y=kx(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是.16.(3分)(2018•梧州)如图,已知在⊙O中,半径OA=√2,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=度.17.(3分)(2018•梧州)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.18.(3分)(2018•梧州)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则EGBG的值为.三、解答题(本大题共8小题,满分66分,)19.(6分)(2018•梧州)计算:√9﹣25÷23+|﹣1|×5﹣(π﹣3.14)0 20.(6分)(2018•梧州)解方程:2x2﹣4x﹣30=0.21.(6分)(2018•梧州)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)(2018•梧州)解不等式组{3x −6≤x 4x+510<x+12,并求出它的整数解,再化简代数式x+3x −2x+1•(x x+3﹣x−3x −9),从上述整数解中选择一个合适的数,求此代数式的值.23.(8分)(2018•梧州)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D 点处测得瀑布顶端A 点的仰角是30°,测得瀑布底端B 点的俯角是10°,AB 与水平面垂直.又在瀑布下的水平面测得CG=27m ,GF=17.6m (注:C 、G 、F 三点在同一直线上,CF ⊥AB 于点F ).斜坡CD=20m ,坡角∠ECD=40°.求瀑布AB 的高度.(参考数据:√3≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)24.(10分)(2018•梧州)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B 两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?25.(10分)(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC ⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.26.(12分)(2018•梧州)如图,抛物线y=ax2+bx﹣92与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.(1)求此抛物线的解析式;(2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为S△ADO S△AEF =19,求出点E的坐标;(3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.2018年广西梧州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。
2018年梧州市初中毕业升学考试学科说明数学一、命题的基本思路(一)注重导向性。
试题有利于全面实施素质教育,推进城乡公平教育,促进教育均衡发展;有利于继续推进基础教育课程改革,促进教师转变教学方式和学生转变学习方式;有利于培养学生正确的人生观和价值观;有利于初高中教学的衔接,为学生在高中阶段的学习打好基础。
(二)注重科学性。
考查内容依据《义务教育课程标准(2011年)》,结合考生目前使用的教材,做到考试内容和形式科学,符合其年龄特征和认知水平,保持试题具有较高的信度、效度和良好的区分度。
(三)注重基础性。
试题要在指导学生掌握必要的基础知识的同时,加强考查学生对知识与技能及数学思想方法的理解和掌握情况,特别是考查运算能力和综合运用所学知识分析和解决问题的能力。
(四)体现公平性。
考试内容及试题素材的选用体现公平性。
试卷的构成关注不同层次学生已有的数学活动经验,试题背景来源于学生所能理解的生活现实,给他们提供适当的机会来表现自己的数学才能。
(五)体现教育性。
发挥试题的教育功能,有机渗透科学精神和人文精神,关注人与自然、社会的协调发展。
对学生的学习过程、学习方法,及其对事物、生活、人生的情感、态度和价值观进行考查,以更好地培养学生的基本素养、科学和人文精神,促进全面发展。
二、考试范围根据《义务教育课程标准(2011年)》版教科书(上海科学技术出版社)七~九年级(除阅读材料、选学内容外)的全部内容。
三、考试内容及要求数学学科考试在知识与技能、过程与方法、情感与态度、数学思想、解决问题能力等方面对学生进行全面的考查。
重视对能力的考查,特别是考查运算能力,分析问题能力,逻辑思维能力;重点考查数学的基础知识、基本技能,以及基本的数学思想和方法,基本的数学活动经验;关注考查学生的数感、符号感、空间观念、统计观念,以及运用一般图表、图象处理数据信息的能力,适当设置一些起讨论性、开放性、探索性的问题,考查学生的创新意识和实践能力。
2018年梧州市中考试题 数学 (满分120分,考试时间120分钟) 一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均的零分) 1.(2018广西梧州,1, 3分)=( ) A.6 B.7 C.8 D.10 【答案】A. 2. (2018广西梧州,2, 3分)化简:a+a=( ) A.2 B.a2 C.2a2 D.2a 【答案】D. 3. (2018广西梧州,3, 3分)sin300=( )
A.0 B.1 C. D. 【答案】C. 4. (2018广西梧州,4, 3分)如图1,直线AB∥CD,AB、CD与直线BE分别交与点B、E,∠BED=( ) A.1100 B.500 C.600 D.700 【答案】D.
5. (2018广西梧州,5, 3分)如图2,⊿ABC以点O位旋转中心,旋转1800后得到⊿A’B’C’.ED是⊿ABC的中位线,经旋转后为线段E’D’.已知BC=4,则E’D’=( ) A.2 B. 3 C.4 D.1.5 【答案】A 6. (2018广西梧州,6, 3分)如图3,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是( )
【答案】D 7. (2018广西梧州,7, 3分)如图4,在菱形ABCD 中,已知∠A=600,AB=5,则⊿ABD的周长是( ) A.10 B.12 C.15 D.20 【答案】C.
8. (2018广西梧州,8, 3分)以下列各组线段的长为边,能组成三角形的是( ) A.2cm,m,4cm B. 2cm,m,5cm C. 2cm,5cm,10cm D. 8cm,4cm,4cm 【答案】A. 9. (2018广西梧州,9, 3分)如图5,把矩形ABCD沿直线EF折叠,若∠1=200,则∠2=( ) A. 800 B. 700 C. 400 D. 200 【答案】B. 10. (2018广西梧州,10, 3分)小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( )
A. B. C. D. 【答案】B. 11. (2018广西梧州,11, 3分)如图6,AB是⊙O的直径,AB垂直于弦CD,∠BOC=700,则∠ABD=( ) A. 200 B. 460 C. 550 D. 700 【答案】C.
12. (2018广西梧州,12, 3分)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( ) A.1.1v B.1.2v C.1.3v D.1.4v 【答案】B.
二、填空题(本大题共6小题,每小题3分,共18分) 13. (2018广西梧州,13, 3分)计算:0-7= . 【答案】-7. 14. (2018广西梧州,14, 3分)若反比例函数kyx的图象经过点(2,4),则k的值为 . 【答案】8. 15. (2018广西梧州,15, 3分)若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的 倍. 【答案】5. 16. (2018广西梧州,16, 3分)因式分解:ax2-9a= . 【答案】a(x+3)(x-3) 17. (2018广西梧州,17, 3分)若一条直线经过点(-1,1)和点(1,5),则这条直线与x轴的交点坐标为 . 【答案】(-1.5,3) 18. (2018广西梧州,18, 3分)如图7,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;
以点C为圆心,BC为半径作»AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是 .
【答案】-
三、解答题(本大题共8分,满分66分.) 19. (2018广西梧州,19, 6分)解方程:xxx.
【答案】解:xxx xx x ∴ x 20. (2018广西梧州,20, 6分)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形.
【答案】证明:∵BE⊥AD,∴∠AEB=∠DFC=900, ∵AB∥CD,∴∠A=∠D=, 又∵AE=DF,∴⊿AEB≌⊿DFC,∴BE=CF. ∵BE⊥AD,∴∠AEF=∠DFE=900, ∴BE∥CF. ∴四边形BECF是平行四边形. 21. (2018广西梧州,21, 6分)某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能 与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下: (1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人 将被录取. (2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取. 【答案】解:(1)甲; (2)甲的平均成绩为:(85×6+92×4)÷10=87.8(分) 乙的平均成绩为:(91×6+85×4)÷10=88.6(分) 病的平均成绩为:(80×6+90×4)÷10=84(分) 显然,乙的平均分数最高,所以乙将被录取. 22. (2018广西梧州,22, 8分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需的时间相同,现在每天生产多少台机器? 【答案】解:设现在每天生产x台机器,则原计划每天生产(x-50)台机器.依题意,得:
xx 解之,得:x=200 经检验:x=200是所列方程的解. 答:现在每天生产200台机器. 23. (2018广西梧州,23, 8分)海上有一小岛,为了测量小岛两端A、B的距离,测量人员设计了一种测量方法,如图所示,已知B点是CD的中点,E是BA延长线上的一点,测得AE=8.3
海里,DE=30海里,且DE⊥EC,cos∠D=. (1)求小岛两端A、B的距离; (2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值.
【答案】解:(1)在Rt⊿CED中,∠CED=900,DE=30海里, ∴cos∠D=DECD,∴CE=40(海里),CD=50(海里). ∵B点是CD的中点,∴BE=CD=25(海里) ∴AB=BE-AE=25-8.3=16.7(海里). 答:小岛两端A、B的距离为16.7海里. (2)设BF=x海里. 在Rt⊿CFB中,∠CFB=900,∴CF2=AB2-BF2=252-x2=625-x2. 在Rt⊿CFE中,∠CFE=900,∴CF2+EF2=CE2,即625-x2+(25+x)2=1600.
解之,得x=7. ∴sin∠BCFBFBC. 24. (2018广西梧州,24, 10分)我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元. (1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式. (2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元? (3)“五·一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?
【答案】解:(1)y=(20-15)x+(45-35)(100-x)=-5x+1000 (2)15x+35(100-x)≤3000,解之,得x≥25. 当x=25时,y=-5×25+1000=875(元) ∴至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元. (3)设购买甲种商品m件,购买乙种商品n件. ①当打折前一次性购物总金额不超过400时,购物总金额为324÷0.9=360(元).
则20m+45n=360,mn,∴n.∵n是4的倍数,∴n=4.∴m=9. 此时的利润为:324-(15×9+35×4)=49(元). ②当打折前一次性购物总金额超过400时,购物总金额为324÷0.8=405(元).
则20m+45n=405,-nm,∴n.∵m、n均是正整数,∴m=9, n=5或m=18, n=1. 当m=9, n=5的利润为:324-(9×15+5×35)= 14(元); 当m=18, n=1的利润为:324-(18×15+1×35)= 19(元). 综上所述,商家可获得的最小利润是14元,最大利润各是49元. 25. (2018广西梧州,25, 10分)已知,点C在以AB为直径的半圆上,∠CAB的平分线AD交BC于点D,⊙O经过A、D两点,且圆心O在AB上. (1)求证:BD是⊙O的切线.
(2)若ACAB,BC,求⊙O的面积. 【答案】解:(1)连接OD. ∵AB为直径,∴∠ACB=900, ∵OA=OD,∴∠ODA=∠OAD, ∵AD平分∠CAB,∴∠OAD=∠CAD, ∴∠ODA=∠CAD,∴OD∥AC,∴∠ODB=∠ACB=900,∴BD是⊙O的切线.
(2)∵ACAB,∴AB=4AC,
∵BC2=AB2-AC2,∴15AC2=80,∴AC=,∴AB=4. ∴⊙O的面积为=. 26. (2018广西梧州,26, 12分)如图,抛物线y=a(x-h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点C. (1)求此抛物线的解析式. (2)在第一象限内的抛物线上求点P,使得⊿ACP是以AC为底的等腰三角形,请求出此时点P的坐标. (3)上述点是否是第一象限内次抛物线上与AC距离最远的点,若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.
【答案】解:(1)∵抛物线y=a(x-h)2+k顶点坐标为B(1,2),∴y=a(x-1)2+2, ∵抛物线经过点A(0,1),∴a(0-1)2+2=1,∴a=-1,∴y=- (x-1)2+2=-x2+2x+1. (2)设点P的坐标为(x,-x2+2x+1), ∵PA=PC,∴x2+(-x2+2x+1-1)2=(x-1)2+(-x2+2x+1)2,
解之,得x,-=x(舍)
当+=x时,y.∴点P的坐标为(,).