2017-2018学年人教A版选修2-2 1.3.1 函数的单调性与导数 课件(60张)
- 格式:ppt
- 大小:4.10 MB
- 文档页数:60
函数的单调性和导数说课稿尊敬的各位评委老师,大家好!我是来自廊坊三河市第一中学的蔺剑,我今天给大家带来的说课题目是《函数的单调性与导数》,下面我将从教材分析、教学目标、教法学法、教学过程、教学反思等几个个方面实行说明。
首先是教材分析:本节内容是新课标人教A 版选修1第三章第3节的第一课时内容,属导数的应用范畴。
学生在之前学习了导数的概念、计算及几何意义,而下一节又要学习利用导数求函数的极值,所以本节起着承上启下的关键作用。
对于单调性的判断方法,学生在高一已经接触过图像法,定义证明法。
通过本节课的学习,应使学生体会到,用导数判断单调性要比用定义判断简便很多,而且还能完成图像法解决不了的问题,比方对于三次多项式函数,图象难以直接画出,应以导数为工具作图,更能充分展示导数解决问题的优越性。
结合着这些,我制订了本节的教学重点:探索并应用函数的单调性与导数的关系求单调区间; 和 教学难点:函数的单调性与导数正负关系的探究过程。
为此,我又从几个角度制定了本节的教学目标:(二)水平目标:在探索新知过程中,培养学生的观察、分析、概括水平, 渗透数形结合思想、化归思想。
(三)情感目标:在教学过程中引领学生多动手、多观察、勤思考、善总结,培养学生的探索精神。
(四)过程与方法:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间通过本节的学习,知识上让学生掌握用导数研究单调性的方法在探索新知过程中,培养学生的观察、分析、概括水平, 渗透数形结合思想、化归思想。
在教学过程中引领学生多动手、多观察、勤思考、善总结,培养学生的探索精神。
这样才能让学生真正动起来,成为课堂教学的主体下面是我对这节课安排的课堂结构:……………………(从有效的设问,到细致入微的观察,再实行分组讨论,从而得出结论,在此基础上,实例演练,最后实行课后反思,这样环环相扣,螺旋上升的新课改模式) 教学过程中,我采用了“问题引领式”课堂教学模式,采用启发式、讨论式的教学方法。
(完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改)的全部内容。
1.3。
1函数的单调性与导数[学习目标] 1.结合实例,直观探索并掌握函数的单调性与导数的关系。
2。
能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数的最高次数一般不超过三次).知识点一函数的单调性与其导数的关系在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)〉0单调递增f′(x)<0单调递减f′(x)=0常函数思考以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性?答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减。
知识点二利用导数求函数的单调区间利用导数确定函数的单调区间的步骤:(1)确定函数f(x)的定义域.(2)求出函数的导数f′(x).(3)解不等式f′(x)>0,得函数的单调递增区间;解不等式f′(x)<0,得函数的单调递减区间。
第三讲 利用导数求函数的单调性1.函数单调性与导数的关系在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增; 如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减; 如果恒有f ′(x )=0,那么函数y =f (x )在这个区间内是常数函数.注意:在某个区间内,()0f x '>(()0f x '<)是函数()f x 在此区间内单调递增(减)的充分条件,而不是必要条件.函数()f x 在(,)a b 内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(,)a b 内恒成立,且()f x '在(,)a b 的任意子区间内都不恒等于0. 2. 函数图象的变化趋势与导数值大小的关系如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化的快,其图象比较陡峭.即|f ′(x )|越大,则函数f (x )的切线的斜率越大,函数f (x )的变化率就越大考点一 利用导数求单调区间【例1】求下列函数的单调区间。
(1)3()23f x x x =-; (2)2()ln f x x x =-. (3)f (x )=2x -x 2.【答案】见解析【解析】(1)由题意得f(x)的定义域为R ,2()63f x x '=-. 令2()630f x x '=->,解得2x <或2x >. 当2(,)2x ∈-∞-时,函数为增函数;当2)2x ∈+∞时,函数也为增函数. 令2()630f x x '=-<,解得22x <<.当(x ∈时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,2-∞-和,)2+∞,单调递减区间为(22-.(2)函数2()ln f x x x =-的定义域为(0,)+∞.11)()2f x x x x-+'=-=.令()0f x '>,解得2x >;令()0f x '<,解得02x <<.故函数2()ln f x x x =-的单调递增区间为)2+∞,单调递减区间为(0,2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2].f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x2x -x 2>0.即⎩⎨⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1).令f ′(x )<0,则1-x2x -x 2<0,即⎩⎨⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2).1.函数()e x f x x -=的单调递减区间是 。
数学选修2-2知识点总结导数及其应用一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:s)存在函数关系2() 4.9 6.510h t t t =-++运动员在t=2s 时的瞬时速度是多少?解:根据定义0(2)(2)(2)lim 13.1x h x h v h x∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即 0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ ()y f x c ==的导数()y f x x ==的导数2()y f x x ==的导数1()y f x x==的导数 基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '= 7 若()log x a f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x '= 导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=•1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =在这个区间单调递减.极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤(1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.利用导数的知识,,求函数的最大(小)值,从而解决实际问题第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。