人教版数学必修一函数的单调性与最大值
- 格式:doc
- 大小:260.50 KB
- 文档页数:9
人教版数学必修一函数的单调性与最大值-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、函数的单调性1.增函数和减函数一般地,设函数f(x)的定义域为I如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1< x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1< x2时,都有f(x1) >f(x2),那么就说函数f(x)在区间D上是减函数2.函数的单调性与单调区间如果函数y=f(x)在区间D上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有单调性,区间D叫做y=f(x)的单调区间(1)在某个区间具有单调性:①这个区间可以是整个定义域.如:y=x在整个定义域R上是增函数,②这个区间也可以是定义域的真子集,如:y=x²在定义域(-∞,+∞)上不具有单调性,但在(-∞,0 ] 上是减函数,在 [ 0,+∞)上是增函数(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2有以下几个特征:一是任意性,,即“任意取x1,x2”,“任意”两字不能丢;二是有大小,通常规定x1<x2;三是属于同一单调区间(3)单调性能使自变量取值之间的不等关系和函数值得不等关系正逆互推,即由f(x)是增函数且f(x1)<f(x2)↔x1<x2(4)有的函数不具有单调性,如函数y={1,x为有理数0,x为无理数,它的定义域为R,但不具有单调性,函数y=x+1,x∈Z它的定义域不是区间,也不能说它在其定义域上具有单调性(5)如果函数f(x)在其定义域内的两个区间A,B 上都是增(减)函数,一般不能认为f(x)在A∪B上是增(减)函数,例如f(x)=1x在(-∞,0)上是减函数,在(0,+∞)上是减函数,但是不能说其在(-∞,0)∪(0,+∞)上是减函数,在这里,正确的写法应为:“(-∞,0),(0,+∞)”或“(-∞,0)和(0,+∞)”(6)图像特征:在某区间上,单调递增的函数f(x),从左向右看,其图像时上升的,单调递减的函数f(x),从左向右看,其图像时下降的(7)函数在某一点处的单调性无意义例1:如图,是定义在[-5,5]上的函数y=f(x)的图像,根据图像写出单调区间,以及在每一个区间上函数y=f(x)的单调性3.判断函数单调性的方法定义法:①取值:在指定区间内任取x1,x2,且令x1<x2②做差变形:将f(x1)-f(x2)进行化简变形,变形后判断f(x1)-f(x2)的正负③定号:确定f(x1)-f(x2)的符号,若不能直接确定差值的符号,可以考虑分类讨论④判断:根据增减函数的定义做出结论例2:用单调性的定义求函数f(x)=2x²+4x在[-1,+∞)上的单调性例3:利用函数单调性的定义证明函数f(x)=1x2在(-∞,0)上是增函数4.函数的最大(小)值(1)函数最大值的概念一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) =M那么我们称M是函数y=f(x)的最大值(2)最值的求法①做出函数图象,尤其是分段函数或解析式含有军队之的函数,从图像中直接观察可得最值②求函数的值域,其边界即为最值,此时要注意边界值是否能取到(即最值是否存在)③利用函数单调性求最值:若函数在[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a).最小值为f(b)若函数在[a,b]上是增函数,则f(x)在[a,b]上的最大值为f(b).最小值为f(a)例4:如图为函数y=f(x),x∈[-4,7]的图像,指出它的最大值、最小值例5:已知2x²-3x≤0,则函数f(x)=x²+x+1的最小值为________最大值为________5.复合函数单调性以复合函数y=f(g(x))为例,其单调性可简记为“同增异减”,即内外函数的单调性相同时递增,相异时递减求复合函数单调区间的步骤:①确定函数的定义域②将符合函数分解成基本初等函数:y=f(u),u=g(x)③分别确定这两个函数的单调区间④若这两个函数同增或同减,则y=f(g(x)) 为增函数,若一增一减,则y=f(g(x)) 为减函数例6:已知函数f(x)=2x∈[2,6],试判断函数f(x)在x∈[2,6]上的单调性,x−1并求出函数f(x)在x∈[2,6]上的最大值和最小值的单调性例7:讨论函数f(x)=1x²−x−20练习:1.判断函数f(x)=1x²−1在区间(1,+∞)上的单调性,并用单调性的定义证明2.已知二次函数f(x)=ax ²+2ax+1在区间[-2,3]上的最大值为6,则a 的值为________1.若函数y=f(x)的图像如图所示,则其函数解析式为__________2.已知f(x)= {求函数f(x)的定义域和值域3.设函数f(x)={x +2,x >01,x =0−x ,x <0,则满足f(x)≥1的取值范围是_________4.已知函数f(x)={3x +5,x ≤0x +5,0<x ≤1−2x +8,x >1(1)求f(32),f(1π),f(-1)的值(2)求f(x)的最大值5.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=__________6.已知函数f(x)=x²-2(a-1)x+2,x∈[-5.5](1)求实数a的取值范围,是函数f(x)在区间[-5,5]上是单调函数(2)求f(x)的最小值。
高中数学-必修一5.2.2函数单调性和最值-知识点1、函数单调性的定义:对于某区间内任意给定的两个自变量x1和x2,当x1<x2时,都有f(x1)≤f(x2) ,则f(x)在该区间上是增函数;而如果总有f(x1)≥f(x2) ,则f(x)在该区间上是减函数;特别地,如果总有f(x1)<f(x2) ,则f(x)在该区间上是严格增函数;如果总有f(x1)>f(x2) ,则f(x)在该区间上是严格减函数。
2、奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反。
3、利用定义证明函数单调性的步骤:①取值x1和x2,并令x1<x2;②做差f(x1)-f(x2) 并变形,通过因式分解/通分/配方/分母有理化等方法,向有利于判断差的符号的方向(即因式相乘/除的形式)变形;③判断f(x1)-f(x2)符号,有参数时,需要分类讨论;④得出结论。
4、判断含参数的函数的单调性时,注意对参数进行分类讨论。
函数的单调区间可以直接由图像判断,从左到右是上升的,则是单调递增区间,从左到右是下降的,则是单调递减区间。
5、复合函数的单调性:同增异减。
即对于复合函数y=f[g(x)],如果y=f[u]和u=g(x)的单调性相同,则y=f[g(x)]是增函数,如果y=f[u]和u=g(x)的单调性相异,则y=f[g(x)]是减函数。
6、基础函数的单调性:①一次函数y=kx+b,k>0时是增函数,k<0时是减函数。
②反比例函数y=k/x,当k>0时,y在(-∞,0)和(0,+∞)上都是减函数,k<0时,y在(-∞,0)和(0,+∞)上都是增函数。
③二次函数y=ax2+bx+c,当a>0时开口向上,对称轴左侧是减函数,右侧是增函数,当a<0时开口向下,对称轴左侧是增函数,右侧是减函数。
④幂函数y=x a,a>0时,在第一象限是增函数,a<0时,在第一象限是减函数,其他象限的情况根据奇偶性来判断。
⑤指数函数y=a x,0<a<1时,是减函数,a>1时,是增函数。
函数单调性与最大(小)值(第一课时)一、二、教材分析:《函数单调性》是高中数学新教材必修一第二章第三节的内容。
在此之前,学生已经学习了函数的概念、定义域、值域、表示法以及在初中学习了一次函数、二次函数、反比例函数等常见函数,也了解了一些函数的增减性,只是当时的研究较为粗略,未明确给出有关函数单调性的定义,对于函数单调性的判断也主要根据图像观察得到,而本小节内容,正是对初中有关内容的一个深化和提高,给出了具体的函数在某个区间上是增函数还是减函数的定义,并明确指出函数的单调性是相对于那个区间的,还介绍了判断函数单调性的两种方法,做到将图像与定义证明结合在一起的思想。
函数的单调性是体现了函数研究的一般方法。
这就是加强“数”与“形”的结合,由直观到抽象;由特殊到一般。
首先借助对函数图像的观察、分析和归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数学特征,从而进一步用数学语言刻画。
这对研究函数的其他性质,如奇偶性等有借鉴作用。
二、学情分析:学生已经学习了函数的概念、定义域和值域,因此他们具有了一定的抽象概括、类比归纳,符号表达的能力,在此基础上进一步研究函数的性质,对于他们来说不是太难。
但由于函数的图像是发现函数性质的直观载体,因此,在本次教学时,要充分使用信息技术创设教学情境,这样有利于学生更好地观察和探究函数的单调性、最值等性质,同时还要特别注意让学生经历这些概念形成的过程。
三、教学目标:1、知识与技能:理解增减函数、单调性、单调区间四个概念:能用自己的语言说出定义,并认识它们是如何得出来的。
掌握函数增减性的证明:掌握判断简单函数的单调区间及证明简单函数在给定区间上的单调性的方法和步骤。
2、过程与方法:能从具体实例中得出增函数、减函数的定义,培养观察能力和抽象概括能力。
通过知识的获得提高和发展学生自我学习和自我学习和自我发展能力。
3、情感态度与价值观:借助开放探究的教学方式,张扬学生个性,培养学生科学严谨乐于研究的作风。
高一数学必修一中的函数单调性与最值问题在高一数学必修一的学习中,函数的单调性与最值问题是非常重要的一部分内容。
它不仅是后续数学学习的基础,也在实际生活和其他学科中有着广泛的应用。
首先,我们来理解一下什么是函数的单调性。
简单来说,单调性就是函数值随着自变量的增大或减小而呈现出的一种变化规律。
如果函数值随着自变量的增大而增大,我们就说这个函数在某个区间上是单调递增的;反之,如果函数值随着自变量的增大而减小,那么这个函数在这个区间上就是单调递减的。
为了判断函数的单调性,我们通常会采用定义法。
假设给定函数$f(x)$,定义域为$I$,对于定义域$I$内某个区间$D$上的任意两个自变量的值$x_1$,$x_2$,当$x_1<x_2$时,如果都有$f(x_1)<f(x_2)$,那么就称函数$f(x)$在区间$D$上是单调递增的;如果都有$f(x_1)>f(x_2)$,则称函数$f(x)$在区间$D$上是单调递减的。
比如说,对于一次函数$y = 2x + 1$,我们可以任取两个自变量的值$x_1$和$x_2$,且$x_1 < x_2$。
那么$f(x_1) = 2x_1 + 1$,$f(x_2) = 2x_2 + 1$。
因为$x_1 < x_2$,所以$2x_1 < 2x_2$,从而$f(x_1)< f(x_2)$,所以这个一次函数在其定义域内是单调递增的。
再比如,二次函数$y = x^2$。
当$x < 0$时,随着$x$的增大,$y$的值逐渐减小,函数是单调递减的;当$x > 0$时,随着$x$的增大,$y$的值逐渐增大,函数是单调递增的。
除了定义法,我们还可以通过函数的导数来判断单调性。
这对于一些复杂的函数会更加方便和高效,但这是后续学习的内容,在高一阶段,我们主要还是掌握定义法。
接下来,我们谈谈函数的最值问题。
函数的最大值和最小值,简单理解就是函数在定义域内所能取到的最大和最小的函数值。
如果函数在某个区间上是单调递增的,那么在区间的左端点处取得最小值,在右端点处取得最大值;如果函数在某个区间上是单调递减的,那么在区间的右端点处取得最小值,在左端点处取得最大值。
一、函数的单调性
1.增函数和减函数
一般地,设函数f(x)的定义域为I
如果对于定义域I内某个区间D上的任意两个自变量的值,,当时,都有f()<f(),那么就说函数f(x)在区间D上是增函数
如果对于定义域I内某个区间D上的任意两个自变量的值,,当时,都有f() >f(),那么就说函数f(x)在区间D上是减函数
2.函数的单调性与单调区间
如果函数y=f(x)在区间D上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有单调性,区间D叫做y=f(x)的单调区间
(1)在某个区间具有单调性:①这个区间可以是整个定义域.如:y=x 在整个定义域R上是增函数,②这个区间也可以是定义域的真子集,如:y=x²在定义域(-∞,+∞)上不具有单调性,但在(-∞,0 ] 上是减函数,在 [ 0,+∞)上是增函数
(2)单调性是函数在某一区间上的“整体”性质,因此定义中的,有以下几个特征:一是任意性,,即“任意取,”,“任意”两字不能丢;二是有大小,通常规定;三是属于同一单调区间(3)单调性能使自变量取值之间的不等关系和函数值得不等关系正逆互推,即由f(x)是增函数且f()<
(4)有的函数不具有单调性,如函数y=,它的定义域为R,但不具有单调性,函数y=x+1,x∈Z它的定义域不是区间,也不能说它在其定义域上具有单调性
(5)如果函数f(x)在其定义域内的两个区间A,B 上都是增(减)函数,一般不能认为f(x)在A∪B上是增(减)函数,例如f(x)=在(-∞,0)上是减函数,在(0,+∞)上是减函数,但是不能说其在(-∞,0)∪(0,+∞)上是减函数,在这里,正确的写法应为:“(-∞,0),(0,+∞)”或“(-∞,0)和(0,+∞)”
(6)图像特征:在某区间上,单调递增的函数f(x),从左向右看,其图像时上升的,单调递减的函数f(x),从左向右看,其图像时下降的
(7)函数在某一点处的单调性无意义
例1:如图,是定义在[-5,5]上的函数
y=f(x)的图像,根据图像写出单调区间,以及在每一个区间上函数y=f(x)的单调性
3.判断函数单调性的方法
定义法:
①取值:在指定区间内任取,,且令<
②做差变形:将f()-进行化简变形,变形后判断f()-的正负
③定号:确定f()-的符号,若不能直接确定差值的符号,可以考虑分类讨论
④判断:根据增减函数的定义做出结论
例2:用单调性的定义求函数f(x)=2x²+4x在[-1,+∞)上的单调性
例3:利用函数单调性的定义证明函数f(x)=在(-∞,0)上是增函数
4.函数的最大(小)值
(1)函数最大值的概念
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
①对于任意的x∈I,都有f(x)≤M;
②存在∈I,使得f( =M
那么我们称M是函数y=f(x)的最大值
(2)最值的求法
①做出函数图象,尤其是分段函数或解析式含有军队之的函数,从图
像中直接观察可得最值
②求函数的值域,其边界即为最值,此时要注意边界值是否能取到(即最值是否存在)
③利用函数单调性求最值:
若函数在[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a).最小值为f(b)
若函数在[a,b]上是增函数,则f(x)在[a,b]上的最大值为f(b).最小值为f(a)
例4:如图为函数y=f(x),x∈[-4,7]
的图像,指出它的最大值、最小值
例5:已知2x²-3x≤0,则函数f(x)=x²+x+1的最小值为________最大值为________
5.复合函数单调性
以复合函数y=f(g(x))为例,其单调性可简记为“同增异减”,即内外函数的单调性相同时递增,相异时递减
求复合函数单调区间的步骤:
①确定函数的定义域
②将符合函数分解成基本初等函数:y=f(u),u=g(x)
③分别确定这两个函数的单调区间
④若这两个函数同增或同减,则y=f(g(x)) 为增函数,若一增一减,则y=f(g(x)) 为减函数
例6:已知函数f(x)= x∈[2,6],试判断函数f(x)在x∈[2,6]上的单调性,并求出函数f(x)在
x∈[2,6]上的最大值和最小值
例7:讨论函数f(x)=的单调性
练习:
1.判断函数f(x)=在区间(1,+∞)上的单调性,并用单调性的定义证明
2.已知二次函数f(x)=ax²+2ax+1在区间[-2,3]上的最大值为6,则a的值为________
1.若函数y=f(x)的图像如图所示,则其函数解析式为__________
2.已知f(x)=求函数f(x)的定义域和值域
3.设函数f(x)= ,则满足f(x)≥1的取值范围是_________
4.已知函数f(x)=
(1)求f(),f(),f(-1)的值
(2)求f(x)的最大值
5.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则
f(x)=__________
6.已知函数f(x)=x²-2(a-1)x+2,x∈[]
(1)求实数a的取值范围,是函数f(x)在区间[-5,5]上是单调函数(2)求f(x)的最小值。