V2 V1 k V1V2 由V1 ,V2 (0, ), 得VV 1 2 0;
第二步:作差 第三步:变形
由V1 V2 , 得V2 V1 0. 又k 0, 于是p(V1 ) p(V2 ) 0
即
第四步:判断 p(V1) p(V2 ) k 所以,函数p ,V (0, )是减函数. V 第五步 :结论 也就是说,当体积V 减小时, 压强p增大 .
怎么办呢?
回答几个问 题吧!
k 1. p (k是常数)是函数吗 ? V k 2.你能画出p (k是常数)的图象吗? V k 3.能过图象观察函数p (k是常数)是否 V 具有单调性 ? 你能作出猜想吗 ? 4.如果具有单调性, 你能用单调性的定义加以证明吗?
证明 : 根据函数单调性的定义, 设V1,V2是定义域(0, )上的任意两个实数, 且V1 V2 , 则 k k 第一步:设值 p(V1 ) p(V2 ) V1 V2
思考: 类比上面的结论, 对于函数y x , 我们能得到怎样的结论呢?
2
函数y x 是增函数?减函数?
2
y
函数y x2在区间(0, )上是增函数! 函数y x 在区间(,0]上是减函数!
2
f ( x)
O O
x
y x2
结合下面的函数的图象, 你能给增函数
下一个严格的定义吗?
当x1 0时, y1 0;
3
所以, f ( x) x 3x是减函数!
当x1 0时, y1 0;
当x2 2时, y2 2; 由此可以推断 : 当x增大时, y随之增大.
3
显然0 2,0 2.
所以, f ( x) x 3x是增函数!