当前位置:文档之家› 阀门填料密封原理和检修过程控制

阀门填料密封原理和检修过程控制

阀门填料密封原理和检修过程控制
阀门填料密封原理和检修过程控制

阀门填料的密封原理和检修过程控制

1 概述

在线运行的阀门所出现的故障或缺陷中,因填料失效而引起回路内介质外漏的事件占有很高的比例。探讨填料的密封原理和选择严格的检修控制,使介质外漏的几率下降到最低限度,对于在线运行中无法隔离检修的设备有重要意义。

2 填料的密封机理

填料(PACKING)常用于阀门有转(滑)动部位的外密封,防止流动介质从相对运动部位向外界泄漏。在核电站核阀所用的填料基本上是膨胀石墨填料和石墨(或石棉)编织填料。膨胀石墨填料的润滑性和膨胀性好,但缺点是易碎,一般安装在填料函的中间部位。石墨编织填料牢固性好,抗挤压,一般安装在填料函的上/下层面。其作用是固定膨胀石墨填料,保护其完整无损和防止磨下的石墨粉掉入回路。

图1是填料安装的结构图,其右侧曲线给出了填料函内各层填料对填料压盖螺母施加的压紧力的承力分布情况。很明显6层填料只有最上1~3层在真正起着抵制介质外漏的作用。密封环承接填料压紧力传给第1道填料依次传给第2/3…道,第1道

填料受力后产生轴向变形而向阀杆和填料函内壁上挤,直至达到变形极限,消耗了一部分填料压紧力。剩下的力传给第2道填料,同时由于填料有效长度缩短过程产生的填料内壁面与阀杆/填料外表面与填料函的内壁的摩擦力,也消耗一部分填料压紧力。按此机理,越往下层填料的受力越少,变形越小,也就是密封性越差。然而在回路中带有工作压力的介质顺着填料函内壁挤压使其变形,很容易地就可以突破下端几道填料的密封防线。因此真正能阻止带压介质的只有最上面二三道填料,而这几道的密封效果取决于填料的选材/结构尺寸/阀杆和函内壁的光洁度和足够的填料压紧力。

3 填料的预压紧力

为了延长填料的使用寿命,提高阀门安全性,核电站核阀使用的是经过一定预紧压力压过的填料。经过预压后,填料密度增大,抵御受压变形的能力增加了,内部保留的预紧力能补偿机组运行其间填料被磨损而失去的填料压力。

填料的预压过程一般由生产厂家在安装前完成,在仓库放置久了,填料侧面就会出现表明预压力松弛的纹路,核阀填料闲置1年以上都要求重新预压紧。其方法是利用模具(图2),选定压力进行预压操作。

预压力P为

P = 3P n S

式中P n——阀门的工作压力(当Pn<10 MPa时,取10 MPa,P n>50 MPa 时,取50 MPa),MPa

S ——填料的承力面积,m2

S=п(R2 - r2)

4 相关部件的设计基本要求

通过图3的填料组件,给出了设计和安装要求。

(1)填料法兰应有足够的刚度,受力后应无变形。

(2)在紧定填料力矩时要经常检查其平行度并预留出下次进行紧固填料的空间。

(3)凸节设计防止密封压环掉入填料函中,且方便取出。

(4)过渡导角设计可防止填料环装入时被刮伤。

(5)密封压环与填料函之间要有少量的间隙,使导入的密封盖不被咬死。

(6)保证填料函内壁光洁度,防止承压后渗漏。

(7)加工成坡口,使填料环容易受力时挤压变形。

(8)填料函金属平面不应有损坏。

(9)填料环在填料函中的有效高度为:阀杆直径+15mm。

(10)密封压环与阀杆之间应有足够的间隙,防止划伤阀杆表面。

(11)对阀杆的要求是:经热处理过的硬表面/高光洁度(无明显缺陷,刮痕,锈迹)锐角倒钝便于各套件安装;各横截面为正圆,轴向无弯曲。

(12)填料法兰与阀杆之间也应有足够的间隙,防止划伤阀杆表面。

(13)检查编织填料内径与阀杆的直径或填料外径与填料函内径之差

(<0.5mm)。

(14)膨胀石墨填料内径与阀杆的直径或填料外径与填料函内径之差

(<0.20mm)。

(15)密封环和法兰的球面接触,有自找正功能,须保持结合面光滑无伤,安装时球面敷润滑油脂。

(16)如果图纸或者厂家提供有填料压紧力矩值的,照给定的力矩执行;如力矩值没有给出,可以采用计算方法得出其结果。

M = 1.2×μ×d×F

式中:M——每一螺杆的填料压紧力矩,N?m

μ ——摩擦系数(新填料μ=0.1;磨损后的填料μ=0.2)

d ——螺杆直径,mm

1.2——用于简化公式的倍增系数

F ——每一螺杆的填料压紧力,N

F=P/n

n ——螺栓的根数

填料力矩(N.m)=倍增系数×摩擦系数×螺杆直径×填料预紧力/螺栓的根数(17)密封压环插入填料函深度一般为5mm。

5 检修的要求和注意事项

在检修和更换填料前,应了解填料的密封原理,掌握填料和相关部件的检查标准、切口方法和安装要求。虽然填料只有最上2~3层真正起密封作用,但考滤到阀门使用安全性,因此对阀门填料应全套更换。

安装前,首先要熟悉以下设备:校验盘根环的切割机、校验扭矩扳手或扳手、安全帽、内外卡钳、紧固器的润滑剂、反光镜、盘根取出器、切盘根的刀具、游标卡尺等。

(1)开工前向有关厂家了解阀门使用时期,填料有无泄漏历史和报告。

(2)在取出旧填料时一般使用高压喷水器进行清除,当用填料钩掏旧填料时,不可以伤及阀杆和填料函表面,函底要清理干净。

(3)如解体更换填料,检查阀杆与填料接触的表面和填料函的内壁应光滑无伤,能感觉到的拉痕、麻坑、脱皮或腐蚀等缺陷,都要报告准备工程师。

(4)阀杆的弯曲度超过0.20mm,均须向准备工程师报告。

(5)新填料应完整,无损坏,无变色,无松弛(预压过的填料)。用新填料在阀杆和填料函试装一下,检查填料外形是否符合要求。

(6)检查新填料备件与拆下的旧填料条数是否相同,如果数量不一致,应向准备工程师报告并查证。

(7)膨胀石墨填料尽可能的不用切口型(图4),采用解体阀门套装为好,若采用切口方式,应避免出现介质流向的贯穿通道。

(8)填料组件装入填料函中时应一层一层装入,并保证每层都装到底,使用一种专用对开环可以达到此目的(图5),对有切口的填料,原则上层与层间的切口错位90o,禁止采取把填料组装入整体下压的行为。

(9)用力矩扳手紧固压紧填料时,根据给定的力矩应对称和分段施力,随时观察填料法兰的平行度和中心孔与阀杆的对中性,最后达到规定的力矩。

(10)更换填料后,阀门需要进行手动(气动或电动)试验,检查填料是否过紧,有无异响或抖动等现象。

(11)清理现场,完成维修。

阀门填料密封知识

阀门填料密封知识 填料是动密封的填充材料,用来填充填料室空间,以防止介质经由阀杆和填料室空间泄露。填料密封是阀门产品的关键部位之一,要想达到好的密封效果,方面是填料自身的材质,结构要适应介质工况的需要,另方面则是合理的填料安装方法和从填料函的结构上考虑来保证可靠的密封。 一、对填料自身的要求 1、减少填料对阀杆的摩擦力; 2、防止填料对阀杆和填料函的腐蚀; 3、适应介质工况的需要。 二、常用填料品种 因为资料介绍用于各种工况条件下的品种达40 余种,而通用阀门中最常用的不过几种或十几种 1、盘根型 A 、橡胶石棉盘根:XS250FXS350FXS450FXS550F ; B 、油禁石棉盘根:YS450FYS350FYS450F ; C、浸聚四氟乙烯石棉盘根; D、柔性石墨编织填料:根据增强材料的不同可分别耐温300 C 450 C 600 C 65 0 C; E、聚四氟乙烯编织填料; F、半金属编织填料,以夹有不锈钢丝、铜丝的石棉做为芯子。外表用夹铜丝、不 锈钢丝、蒙乃尔丝、固康镍尔丝的石棉线编织起来。根据用途其表面用石墨、云母、硫化钼润滑剂处理。也有的以石棉为芯,用润滑的涂石墨的铜铂扭制而成。 2 、成型填料成型填料即压制成型的填料其品种有 A、橡胶 B、尼龙 C 、聚四氟乙烯

D、填充聚四氟乙烯(增强聚四氟乙烯)增强材料为玻璃纤维,一般为8?15 %玻璃纤维。 E、柔性石墨环 三、注意事项 1 、盘根型填料切断时用45 。切口,安装时每圈切口相错180 ; 2、在高压下使用聚四氟乙烯成型填料时要注意其冷流特性; 3、柔性石墨环单独使用密封效果不好,应与柔性石墨编织填料或YS450 (看温度 情况)组合使用,填料函中间装柔性石墨环,两端装编织填料,也可隔层装配即一层柔性石墨一层编织填料,也可在填料函中间放隔环,隔环上下分别成两组组合装配的填料; 4、石墨对阀杆填料函隔有腐蚀使用中应选择加缓腐蚀剂的盘根; 5、柔性石墨在王水、浓硫酸、浓硝酸等介质中不适用; 6、填料函的尺寸精度表面粗糙度,阀杆尺寸精度和表面粗糙度是影响成型填料密封性的关键;

塔设备-填料的结构、作用及分类

填料塔 一、填料塔的原理 在圆筒形塔体内部,分段装有若干段填料。填料堆积于支撑装置上,液体由塔顶入口管进入分布器,均匀喷淋在填料表面上并在重力作用下向下流动,气体在压强差的推动下,由支承板下方气体入口管进入塔内,通过填料间的空隙由塔的顶部排出。填料塔内气液两相呈逆流流动,气体和液体在填料表面上进行传质和传热,两相的组成沿塔高连续变化。

二、填料塔的结构 填料塔填料塔主要由塔体、填料、喷淋装置、液体分布器、填料支承结构、支座等组成。 三、常见的填料 填料是填料塔的核心内件,它为气-液两相充分接触进行传热传质提供了表面积。可分为散装填料和规整填料两大类。

1、散装填料 散装填料是指以乱堆为主的填料,这种填料是具有一定外形的颗粒体,又称之为颗粒填料,根据外形分以下三种。 (1)环形填料:拉西环填料、鲍尔环填料、阶梯环填料。 (2)鞍形填料:弧鞍填料、矩鞍填料、改进矩鞍填料。 (3)金属鞍环填料。 2、规整填料 在乱堆的散装填料塔内,气液两相的流动路线是随机的,加之填料填装时难

以做到各处均匀如一,因而容易产生沟流等不良情况,从而降低塔的效率。 规整填料是一种在塔内按均匀的几何图形规则、整齐堆砌的填料,空隙大,故生产能力大,压降小,且因流道规则,所以只要液体初始分布均匀,则在全塔中分布也均匀,因此规整填料几乎无放大效应,通常具有很高的传质效率。 造价较高,易堵塞难清洗,因此工业上一般用于较难分离或分离要求很高的情况。 规整填料的种类按照结构可分为丝网波纹填料和板波纹填料。使用时根据填料塔的结构尺寸,叠成圆筒形整块放入塔内或分块拼成圆筒形在塔内砌装。 四、填料塔的特点 结构简单、压力降小、填料种类多、具有良好的耐腐蚀性能,特别是在处理容易产生泡沫的物料和真空操作时,有其独特的优越性。 五、填料塔的应用 1、直径较小的塔。 2、处理有腐蚀性物料。 3、处理热敏性物料的真空蒸馏。 填料塔会发生液泛现象,应绝对避免。

机械密封原理及维护

机械密封技术 摘要: 石油化工行业因其高危险性,密封技术越来越受到重视。其不仅可以减少资源浪费,保护了环境,也保障了安全生产。在其发展过程中衍生了种类繁多的密封技术。当前采用新材料和工艺的各种机械密封的新技术,进展较快。本文则对密封技术中最为常见的机械密封技术从结构、原理、安装、维护等方面进行简单的分析和论述。 关键词:机械密封;旋转环;静止环;冲洗 1、机械密封的工作原理 机械密封又称端面密封,是一种旋转机械的轴封装置。由于传动轴与设备之间有一圈间隙,当设备内介质压力与外界大气压力有差量时,会出现介质外泄或空气渗入。轴封的作用就在于消除此现象,以保证设备正常工作。机械密封作为轴封的一种,因其泄露量小、使用寿命长、无须经常维修等优点故被普遍采用。 机械密封是靠一对或几对垂直于轴线的端面在流体压力和补偿机构的弹力作用下保持接合并相对滑动配以辅助密封而达到的阻漏的轴封装置。 2、机械密封与软填料密封对比 优点: (1)密封性能高,泄露量很小,对于长期运转的设备也能保证良好的密封效果。 (2)使用寿命长,在化工介质中一般能工作半年以上。 (3)摩擦功率消耗小,减小了轴功率的损耗,其摩擦功率约为软填料密封的10%~50%。 (4)维修周期长,补偿装置可再端面磨损后做微量的压紧,一般情况下不需经常维修。 (5)抗振性能好,对转动轴的振动以及轴的偏斜不敏感。 (6)适用范围广,机械密封能用于高温、低温、高压、真空工况,以及各种腐蚀介质和含磨粒介质。

缺点: (1)结构较复杂,对加工精度和质量要求较高。 (2)因其复杂结构安装、拆卸不便。 (3)一次维修和保养成本较高。 (4)单件价格较高。 3、机械密封组成 (1)由旋转环和静止环组成的密封端面,又称摩擦副。 (2)由弹簧元件组成的补偿机构。 (3)辅助密封圈,包括动环密封圈和静环密封圈。 (4)使旋转环随轴一起旋转的传动元件。 4、机械密封的密封实现形式 轴带动旋转环转动,静止环固定在压盖上。两者间的密封面通过介质压力和补偿机构紧密结合,达到防止介质泄露和空气渗入的目的。为了防止介质通过旋转环和轴之间泄露出来,故安装动环密封圈,而静环密封圈则阻止了介质通过静止环与压盖之间泄露的可能。 静止环与压盖、压盖与壳体之间的密封,二者均属静密封。当端面摩擦磨损后,旋转环仅能沿轴向作微量的移动,因此旋转环与轴之间的密封实际上也是一个静密封。这些泄漏通道比较容易封堵。静密封元件常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,则采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。 旋转环与静止环的端面则是做着相当运动的动密封。因此它是整个机械密封装置中的主密封,同时也决定密封效果和机械密封的寿命。机械密封在工作过程中,由于旋转环和静止环两个密封端面紧密配合,使密封端面之间形成一道微小间隙,当介质通过此间隙时,形成极薄的液膜,产生阻力,阻止介质泄漏,同时液膜也起到润滑和冷却的作用,使机械密封的寿命增长。为了保证密封端面间必需的液膜,必须严格控制端面上的压力,若压力过大,则不易形成稳定的润滑液膜,从而导致端面的快速磨损;若压力过小,则影响密封效果导致泄漏量增加。 5、机械密封冲洗方案及其特点 机械密封的冲洗是一种控制机械密封温度、延长机械密封寿命的有效措施。冲洗的目的在于带走热量、保持和改善润滑、防止液膜气化、防止杂质集积、防止气囊形成等。 根据冲洗形式可分为内冲洗和外冲洗,其中内冲洗时利用输送介质进行冲洗,而外冲洗则是通过引入外界物质进行冲洗。

填料塔的原理

填料塔的原理 填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。为了强化生产,提高气流速度,使在乳化状态下操作时,称乳化填料塔或乳化塔(emulsifyingtower)。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。 填料塔结构示意图 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。 填料的上方安装填料压板,以防被上升气流吹动。 液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。 气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。 壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。 因此,当填料层较高时,需要进行分段,中间设置再分布装置。

液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

填料塔结构示意图

填料塔结构示意图 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

填料塔的结构及其工作原理 填料塔的作用是起到吸收作用,是化工、石油化工和炼油生产中最重要的设备之一。 以下讲一下填料塔的结构特点: 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 填料的分类 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 1.散装填料 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。现介绍几种较为典型的散装填料: 拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料 (1)拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。 (2)鲍尔环填料是对拉西环的改进,在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭。鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。与拉西环相比,鲍尔环的气体通量可增加50%以上,传质效率提高30%左右。鲍尔环是一种应用较广的填料。 (3)阶梯环填料是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。

填料密封简介、填料密封改机械密封

第10章填料密封简介、填料密封改机械密封 1、填料密封简介,填料密封是一种最古老的密封方式,在中国已有上千年的历史。它最早是以棉、麻等纤维填塞在泄漏通道内来阻止液流泄漏,主要用作提水机械的密封。国外迟至1782年才使用填料,当时作为蒸汽机的轴封,用与压力在0.05mpa的蒸汽。由于填料来源很广,加工容易,价格低廉,密封可靠,填料密封操作简单,所以沿用至今。 由于密封填料有了很大的发展,在材料、结构型式及各种特性方面都有极大的改善,所以在机械行业中,填料密封应用很广。填料密封主要用作动密封。它广泛用作离心泵、压缩机、真空泵、搅拌等转轴密封,往复式压缩机、制冷机的往复运动轴封,以及各种阀门阀杆的旋动密封等。为了适应上述设备的工作条件,填料密封必需具备下列条件: ⑴有一定的塑性,在压紧力作用下能产生一定的径向力并紧密与轴接触。 ⑵有足够的化学稳定性,不污染介质,填料不被介质泡胀,填料中的浸渍剂不被介质溶解,填料本身不腐蚀密封面。 ⑶自润滑性能良好,耐磨,摩擦因数小。 ⑷轴存在少量偏心时,填料应有足够的浮动弹性。 ⑸制造简单,填装方便。

填料的种类很多,可以从其功用方面、构造方面和材料方面分类,最常用的有下列四类: 绞合填料、编结填料、塑性填料、金属填料。 2、填料密封的机理 填料装入填料腔以后,经压盖对它作轴向压缩当轴与填料有相对运动时,由于填料的塑性,使它产生径向力,并与轴紧密接触。与此同时,填料中浸渍的润滑剂被挤出,在接触面之间形成油膜。由于接触状态并不是特别均匀的,接触部位便出现“边界润滑”状态,称为“轴承效应”;而未接触的凹部形成小油槽,有较厚的油膜,接触部位与非接触部位组成一道不规则的迷宫,起阻止液流泄漏的作用,此称“迷宫效应”。这就是填料密封的机理。显然,良好的密封在于维持“轴承效应”和“迷宫效应”。也就是说,要保持良好的润滑和适当的压紧。若润滑不良,或压得过紧都会使油膜中断,造成填料与轴之间出现干摩擦,最后导致烧轴和出现严重磨损。为此,需要经常对填料的压紧程度进行调整,以便填料中的润滑剂在运行一段时间流失之后,再挤出一些润滑剂,同时补偿填料因体积变化所造成的压紧力松弛。显然,这样经常挤压填料,最终将使浸渍剂枯竭,所以定期更换填料是必要的。此外,为了维持液膜和带走摩擦热,有意让填料处有少量泄漏也是必要的。 3、填料密封的种类、要求及其使用条件

填料塔的结构及其工作原理

填料塔的结构及其工作原理 填料塔的作用是起到吸收作用,是化工、石油化工和炼油生产中最重要的设备之一。 以下讲一下填料塔的结构特点: 填料塔是以塔的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 填料的分类 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 1.散装填料 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。现介绍几种较为典型的散装填料: 拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料 (1)拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。

阀门填料密封知识精编版

阀门填料密封知识公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-

阀门填料密封知识 填料是动密封的填充材料,用来填充填料室空间,以防止介质经由阀杆和填料室空间泄露。填料密封是产品的关键部位之一,要想达到好的密封效果,一方面是填料自身的材质,结构要适应介质工况的需要,另方面则是合理的填料安装方法和从填料函的结构上考虑来保证可靠的密封。 一、对填料自身的要求 1、减少填料对杆的摩擦力; 2、防止填料对阀杆和填料函的腐蚀; 3、适应介质工况的需要。 二、常用填料品种 因为资料介绍用于各种工况条件下的品种达40余种,而通用阀门中最常用的不过几种或十几种 1、盘根型 A、橡胶石棉盘根:XS250FXS350FXS450FXS550F; B、油禁石棉盘根:YS450FYS350FYS450F; C、浸聚四氟乙烯石棉盘根;

D、柔性石墨编织填料:根据增强材料的不同可分别耐温300℃450℃60 0℃650℃; E、聚四氟乙烯编织填料; F、半金属编织填料,以夹有不锈钢丝、铜丝的石棉做为芯子。外表用夹铜丝、不锈钢丝、蒙乃尔丝、固康镍尔丝的石棉线编织起来。根据用途其表面用石墨、云母、二硫化钼润滑剂处理。也有的以石棉为芯,用润滑的涂石墨的铜铂扭制而成。 2、成型填料 成型填料即压制成型的填料其品种有 A、橡胶 B、尼龙 C、聚四氟乙烯 D、填充聚四氟乙烯(增强聚四氟乙烯)增强材料为玻璃纤维,一般为8~15%玻璃纤维。 E、柔性石墨环 三、注意事项 1、盘根型填料切断时用45。切口,安装时每圈切口相错180; 2、在高压下使用聚四氟乙烯成型填料时要注意其冷流特性;

调节阀填料密封的原理与实际应用 李庆

调节阀填料密封的原理与实际应用李庆 发表时间:2019-06-21T16:10:29.920Z 来源:《建筑细部》2018年第25期作者:李庆 [导读] 为用户解决了现场危险隐患,同时也为公司挽回了一定的经济损失,给今后的阀门设计、制造以及产品具有稳定的使用性能奠定了基础。 摘要:调节阀在石油化工等行业生产中占有十分重要的地位。调节阀的填料是装在调节阀上阀盖的填料函中,其作用是利用填料的弹性,阻止工艺介质因阀杆的往复运动而在阀杆处引起的泄露。可是在生产,由于种种原因,致使阀杆填料密封泄露。在每年的调节阀故障处理中,阀杆填料密封的泄露占相当大矜比例。阀杆填料密封的泄漏,使介质外漏,如果有易燃易爆或者有毒的有害介质的泄漏,则容易发生火灾、爆炸、中毒和人身伤亡事故,外漏的介质污染环境,给人们的身体健康和生命安全造成危害。泄漏对安全生产有着严重的威胁,甚至造成装置非计划停车,影响企业的经济效益。因此,研究调节阀阀杆填料密封泄漏有着重要的意义。为了解决这一问题,根据对阀杆填料密封的理论分析,找出了影响阀杆调料密封泄漏的原因,提出了提高调节阀填料密封性方法。 关键词:调节阀填料;密封原理;实际应用 1 概述 调节阀作为管道系统中的一个重要组成部分,应保证安全可靠的执行管道系统对阀门提出的使用要求。密封填料是调节阀阀杆动密封的主要密封部件,用来填充填料箱空间,以防介质经由阀杆和填料箱空间泄露。填料密封是调节阀产品的关键部位之一。要想达到良好的密封效果,一方面是填料自身的材质,结构要适应介质工况的需要;另一方面是密封填料要有良好的弹性及光洁度,具备了以上两点要求,填料才能有良好的密封性能。 调节阀在常温介质中一般都选用四氟材料,来加工密封填料。公司有一批调节阀是常温介质,使用四氟材质的密封填料在使用中出现了填料函处介质外漏现象,给用户现场造成了很多麻烦。为了解决现场介质外漏问题及为了使密封填料获得更好的密封性能,结合现场出现阀杆处介质外漏问题,进行了密封填料结构的改进,有效地解决了现场介质外漏问题,为公司挽回了信誉,同时也得到了用户的好评。 2 分析 2.1 密封填料的作用阀门的密封分为两种,即外部密封和内部密封,对于控制阀的外部密封,即填料密封,结合相关资料及现场的使用反馈,对其结构进行分析,从而进行结构改进来满足调节阀现场使用性能。 调节阀部分由阀门的内件和阀体组成,阀的内件包括阀芯、阀杆、填料函和上阀盖等,其中填料函部件用于对阀杆的密封,是用弹性方法防止工艺介质通过往复式运动而在阀杆表面产生泄漏,它是阀体不可分割的一部门。阀门的阀杆密封几乎都是利用填料函来实现的。 2.2 常用四氟填料结构介绍四氟密封填料在阀门的使用中是非常重要的动密封组件,常见的结构有以下几种结构形式: 四氟盘根组合填料结构:此种结构的密封填料,在使用中经常出现阀杆摩擦力大,阀杆出现爬行现象,从而影响阀门的调节性能,进而对阀门的使用性能产生不良影响。 V型组合填料结构:此种结构的填料由于是由四氟棒料车削而成,零件的光洁度相对于四氟盘根填料来说有所提高,其对阀杆产生的摩擦也小,因此对阀杆的爬行现象有所改善。但由于是车削加工,由于四氟材料受温度的影响比较大,所以车削过程中产生的热对零件的尺寸公差产生影响,从而使得零件的尺寸不稳定进而影响V型组合填料在使用中的密封性能,阀门在现场使用中经常会出现介质外漏现场,给用户造成很不好的影响。 2.3 密封填料理论计算分析密封填料按其结构和作用分为5个部分:填料压板、填料压盖、V型填料、垫片和弹簧。填料内唇边内径小于阀杆外径,外唇边外径大于填料腔内径,当填料和阀杆一起装入填料腔后便有一定变形,当在内压的作用下唇尖向阀杆和填料腔壁挤压,形成较高的接触压力,这样介质便难以通过,即使通过了第一道填料层,内压损失也会很大,通过第二、三个填料层时,内压已经损失殆尽,这就是填料的密封作用。 3 改进 针对以上对密封填料结构介绍分析及理论计算公式为依据,为了使填料获得更稳定的使用性能及密封性能,对现有填料函密封结构、填料结构及填料成型工艺进行了以下改进。 3.1 填料函结构改进结合现场的实际工况及理论计算分析,将填料函结构形式有原来的压入式填料函结构改为旋入式填料函结构。改进后的填料函结构使得填料所承受的压紧力均匀,不会因为填料局部受力过大而产生的变形,从而造成阀杆摩擦力大而产生的爬行现象或填料拉伤而产生的介质外漏现象。同时压盖上的防尘圈可以有效地防止外界的灰尘或杂质进入填料函,破坏填料与阀杆间的密封面,从而造成的介质外漏。压盖密封套合理的长度设计,保证填料函始终清洁,使得密封性能更加稳定。 3.2 填料结构的改进普通的V形四氟填料开口角度为90°,在使用中出现了现场介质外漏的现象,为了保证密封填料在不断变化的工况下具有更好的密封性能,在V形填料的下端V字口处增设U形槽,并将V形开口角由原来的90°改为79°。经过工厂实验及现场实际使用验证,改进结构后的填料弹性更好,更有利于密封。 3.3 零件成型工艺的改进为了使填料取得更加稳定、可靠的密封性能,结合四氟材料自身的性能,针对密封填料零件的成型工艺进行了改进,由原来的四氟棒料车削成型改进为聚四氟乙烯粉模压―烧结―成品零件,此种成型工艺使得零件的尺寸稳定、光洁度也得到了提高,更有利于填料的密封。 4 在实际中减少填料泄漏的方法 4.1填料结构的改进 大多数阀杆填料泄漏的解决办法是调整填料压盖。由于传统的填料是压实的并且随着时间而磨损,而且没有足够的弹性来补偿,因此,必须调整调料压盖。 采用弹簧加载来补偿填料的应力松弛可使阀杆密封更加持久。如果没有弹簧加载,随着填料在使用过程中被压实,作用在填料上的压缩载荷迅速降低,这是因为在填料掩盖螺栓中贮存的应变能很小。采用弹簧加载后,储存在弹簧中的总应变能可达到前者的20-25倍。因

填料塔的结构及其工作原理

填料塔得结构及其工作原理 填料塔得作用就是起到吸收作用,就是化工、石油化工与炼油生产中最重要得设备之一。 以下讲一下填料塔得结构特点: 填料塔就是以塔内得填料作为气液两相间接触构件得传质设备。填料塔得塔身就是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌得方式放置在支承板上。填料得上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层得空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中得趋势,使得塔壁附近得液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器与液体再分布器两部分,上层填料流下得液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合得物料;对侧线进料与出料等复杂精馏不太适合等。 填料得分类 填料得种类很多,根据装填方式得不同,可分为散装填料与规整填料。 1.散装填料 散装填料就是一个个具有一定几何形状与尺寸得颗粒体,一般以随机得方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。现介绍几种较为典型得散装填料: 拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料 (1)拉西环填料于1914年由拉西(F、 Rashching)发明,为外径与高度相等得圆环。拉西环填料得气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。

第18课 机械密封的结构及原理

第十课 机械密封的基础知识 一、适用范围 适用于旋转轴用机械密封安装,以卧式离心泵用机械密封安装为基准,机械密封为内装、接触式,转速不超过5000转/分或端面速度≤25米/秒,密封工作温度在-40℃~260℃或介质温度低于400℃,其它设备用机械密封安装可参考使用。 二、安全建议 安装机械密封前,必须保证相关设备、系统均已停用和处于非工作状态,并且已达到环境温度,有压部分已泄到常压,保证机械密封安装过程中人身安全。 三、安装步骤: 1. 准备好所要安装的密封后,查阅密封工作图,注意拆泵时各件拆装顺序。拆泵, 将旧的填料或机封拆除。 2. 检查泵上与轴套、压盖相接触的金属件表面是否完好。 3. 为了避免非金属元件(如"○"圈)的损伤,应在有非金属元件滑过的所有台肩部 位加工出2x30°倒角,所有尖角倒圆并修光滑(如图一),在键槽或沉孔处倒掉所有棱角,有密封圈滑移的直径处金属表面粗糙度Ra 应小于0.8μm ,静密封圈处的金属表 面粗糙度Ra 应小于3.2μm 。 4. 5. 6. 安装使用指导 心泵用机械密封安装为基准,机械密封为内装、接触式,密封工作温度在-40℃~260℃或介质温度低于400℃,其它 统均已停用和处于非工作状态,并且已达到环境温度,有人身安全。 面是否完好。 应在有非金属元件滑过的 面粗糙度Ra 应小于3.2μm 损伤痕迹。 与机械密封工作图相符。 向跳动,。(如图四) 或端面速度≤25米/秒,参考使用。 证机械密封安装过程中人身安全。 的填料或机封拆除。 压盖相接触的金属件表面是否完好。 件(如"○"出2x30,静密封圈处的金属表面粗糙度Ra 检查各安装表面是否有损伤痕迹。 转件及静止件的轴向及径向跳动,

软填料密封

软填料密封 —《过程装备密封技术》 姓名:+++++++ 学号:20020108 班级:装控1班 日期:2016年1月3日 一、简介 软填料密封是轴封的最古老形式,它既适应于各种旋转运动、往复运动的轴、杆密封,也适应于低速螺旋运动。尽管多数回转机械的轴密封已被机械密封所代

替,但应用现代新型填料的软填料密封仍获得广泛应用,尤其是在高温、强腐蚀和含固相颗粒介质工况下应用更为广泛。软填料密封尽管结构简单、应用广泛,并且对其软填料的开发研究、密封性能研究、结构设计理论等进行了许多卓有成效的工作,但对软填料密封的密封机理并没有完全弄清楚,甚至一些有关密封机理的概念有待进一步澄清。 填料密封又称压盖填料密封,俗称盘根,主要用于过程机械和设备运动的密封,如离心泵、真空泵、搅拌机、反应釜等的转轴和往复泵、往复压缩机的柱塞或活塞杆,以及做螺旋运动的阀门的阀杆与固定机体之间的密封。他是最古老的一种密封结构,中国古代的提水机械,就是运用填塞棉花的方式堵住泄漏的。世界上最早出现的蒸汽机也是采用这种密封方式。而19世纪石油和天然气开采技术的产生与发展,使填料密封的材料有了新的发展。到了20世纪,填料密封因其结构较为简单、价格不贵、来源广泛而获得许多工业部门的青睐。然而,随着工业现代化,尤其是宇航、核电、大型石油化工等工业的发展,对密封的要求越来越高,在许多苛刻的工况下,填料密封被其他密封形式所代替。尽管如此,由于填料密封本身固有的特点,至今在较多的场合仍是普遍使用的密封形式,特别是近年来许多新材料和结构的出现,赋予了填料密封新的生机,获得了新的发展。填料密封以其采用的密封填料的形式分成软填料密封和硬填料密封,后者主要用于高压、高温、高速下工作的机械或设备。因软填料密封构造简单并容易更换,应用十分普遍,也可作为预密密封与硬质材料密封、迷宫密封或机械密封联合使用。软填料密封用来密封轴或壳体孔、由一些可变形的密封圈或长绳状的材料沿轴或杆缠绕而成。填料压盖将软质密封填料轴向压紧,使其产生径向弹塑性变形堵塞间隙而实现密封。 软填料密封良好的润滑性能是保证密封长周期运行的必要条件,同时使密封具有较低的摩擦功耗和磨损速率。为了保证良好的润滑条件,软填料密封通常允许少量的泄漏存在。对于一般的填料(不包括具有自润滑性能的填料)只是对流体的流泄起节流作用而不是将其完全阻止或封闭填料中浸渍润滑剂或提高填料本身的自润滑能力就是为保证填料具有良好的润滑性能。下图是简单填料箱

阀门密封及性能等各种试验方法

阀门密封及性能等各种试验方法 1.阀门在总装完成后必须进行性能试验,以检查产品是否符合设计要求和是否达到国家所规定的质量标准。阀门的材料、毛坯、热处理、机加工和装配的缺陷一般都能在试验过程中暴露出来。 常规试验有壳体强度试验、密封试验、低压密封试验、动作试验等,并且根据需要,依次序逐项试验合格后进行下一项试验。 2.强度试验: 阀门可看成是受压容器,故需满足承受介质压力而不渗漏的要求,故阀体、阀盖等零件的毛坯不应存在影响强度的裂纹、疏松气孔、夹渣等缺陷。阀门制造厂除对毛坯进行外表及内在质量的严格检验外,还应逐台进行强度试验,以保证阀门的使用性能。 强度试验一般是在总装后进行。毛坯质量不稳定或补焊后必须热处理的零件,为避免和减少因试验不合格而造成的各种浪费,可在零件粗加工后进行中间强度试验(常称为毛泵)。经中间强度试验的零件总装后,如用户未提出要求,阀门可不再进行强度试验。苏阀为了保证质量,在中间强度试验后,阀门都全部最后再进行强度试验。 试验通常在常温下进行,为确保使用安全,试验压力P一般为公称压力PN的1.25~1.5倍。试验时阀门处于开启状态,一端封闭,从另一端注入介质并施加压力。检查壳体(体、盖)外露表面,要求在规定的试验持续时间(一般不小于10分钟)内无渗漏,才可认为该阀门强度试验合格。为保证试验的可靠性,强度试验应在阀门涂漆前进行,以水为介质时应将内腔的空气排净。 渗漏的阀门,如技术条件允许补焊的可按技术规范进行补焊,但补焊后必须重新进行强度试验,并适当延长试验持续时间。 3.密封试验: 除节流阀外,无论是切断用阀还是调节用阀,均应具有一定的关闭密封性,故阀门出厂前需逐台进行密封试验,带上密封的阀门还要进行上密封试验。 试验通常是在常温下以公称压力PN进行的,苏阀一般是在1.1倍PN压力下进行的。以水为试验介质时,易使阀门产生锈蚀,通常要根据技术要求控制水质,并在试验后将残水吹干或烘干。 闸阀和球阀由于有两个密封副,故需进行双向密封试验。试验时,先将阀门开启,把通道一端封堵住,压力从另一端引入,待压力升高到规定值时将阀门关闭,然后将封堵端的压力逐渐卸去,并进行检查。另一端也重复上述试验。闸阀的另一种试验方法是在体腔内保持试验压力,从通道两端同时检查阀门的双密封

填料塔设计

xxxxx 大学 化工原理课程设计任务书 专业: 班级: 组长: 成员: 设计日期: 设计题目: 空气丙酮填料塔的吸收 设计条件: 空气-丙酮体系 ●混合气:丙酮蒸气和空气 ●吸收剂:清水(25℃) ●处理量:1500m3/h(标准状态) ●相对湿度:70% ●温度:20O℃ ●含量:进塔混合气中含丙酮:1.82%(V%)

●要求:丙酮回收率:90% ●操作条件:常压操作 ●厂址地区:任选 ●设备型式:自选 设计内容:相关说明 1.设计方案的选择及流程说明 2.工艺计算 3.主要设备工艺尺寸设计 (1)塔径的确定 (2)填料层高度计算 (3)总塔高、总压降及接管尺寸的确定 4.辅助设备选型与计算 5.设计结果汇总 6.工艺流程图及换热器工艺条件 指导教师: xxxx 目录 第一节概述------------------------------------------4

1.1吸收技术概况------------------------------------------4 1.2吸收设备的发展------------------------------------------4 1.3吸收过程在工业生产中的应用------------------------------------------5 1.4丙酮的相关资料------------------------------------------6 第二节设计方案的确定-----------------------------------------7 2.1吸收剂的选择--------------------------------------------7 2.2吸收流程的选择----------------------------------------8 2.3吸收塔设备及填料的选择-------------------------------------------------9 2.4操作参数的选择------------------------------------------9 2.5设计模型图------------------------------------------10 第三节吸收塔的工艺计算----------------------------------------11 3.1基础性数据--------------------------------------------11 3.2物料计算-------------------------------11 3.3填料塔工艺尺寸的计算--------------------------------------------12 第四节设计后的感想-------------------------------------------------18 4.1对设计过程的评述和有关问题的讨论-------------------------------------------------18 4.2设计感想-------------------------------------------------------------------------------------------18 附录:参考文献-----------------------------------------------------------------------------------20

软填料密封类型与结构特点

软填料密封类型与结构特点、泄漏率及应力特征 软填料密封类型与结构特点 填料对轴的径向应力沿填料函长度的分布规律与泄漏流体压力分布恰好相反,因此为解决这一不协调关系,对软填料密封结构提出从以下几方面进行改进的要求。 ①填料沿填料函长度方向的径向应力分布均匀,且与泄漏介质的压力分布规律一致,以减小轴的磨损及其不均匀性,并满足密封的要求。 ②根据密封介质的压力、温度和轴的速度大小,考虑冷却和润滑措施,及时带走摩擦产生的热量,延长填料的使用寿命。 ③设置及时或自动补偿填料磨损的结构;装拆方便,以能及时更换填料,缩短检修停工时间。 ④在填料函底部设置底套,以防止填料挤出;为防止含固体颗粒介质的磨蚀和腐蚀性介质的腐蚀,采用中间封液环,注入封液(自身或外来封液),起冲洗和提高密封性的作用。 ⑤采用由不同材质的填料环组合的结构,如柔性石墨和碳纤维填料环的组合,提高了填料的密封性能。 软填料的泄漏率 密封介质沿填料与轴之间的环形间隙的泄漏,可视为流体作层流流动,理想条件下的泄漏量与填料两侧的压力差、轴的直径成正比,与介质黏度、填料安装长度成反比,与半径方向间隙的三次方成正比。所以软填料泄漏不仅仅是计算问题,调节填料使其与轴紧密接触,是保证软填料密封达到允许泄漏量的关键。 一般转轴用填料密封的允许泄漏率见表4-10。与机械密封相比,后者的泄漏率 通常在1mL/h以下。实际使用中,软填料密封要达到最低的泄漏率,与设计、制造和安装的好坏有直接关系,如轴与箱体的同轴度或圆度不符要求,以及横向振动等情况,泄漏率将迅速增加。此外,由于填料本身的蠕变导致接触应力松弛,泄漏率同样会随时间推移而增加,所以软填料密封需要根据实际操作情况,定期给予压紧填料,重新调整压缩载荷。 软填料的应力特征 在预装填料的填料函中,流体可能的泄漏通道,与垫片密封相似,主要是穿过软填料材料本身的渗漏和通过填料与轴外表面,以及填料与填料函内壁表面之间的间隙的泄漏。填料材料本身的渗漏,一方面由于压缩时软填料被压实,另一方面通过改变填料材料或结构得以减少或杜绝。由于工作时填料与填料函内腔无相对运动,因此阻止填料与运动的轴(杆)之间的泄漏或逸散成为填料密封成功的关键。软填料密封依靠拧紧压盖螺栓所形成的轴向压紧力,使填料产生弹塑性变形,从而形成紧贴轴的径向接触应力(以下简称径向应力),以致流体沿轴表面的流动受阻,起到了密封作用。显然这种径向应力在填料密封过程中起到了重要作用,因此下面将分析径向应力的成因、特征和大小。

阀门相关知识

阀门分为A类,B类等是什么意思?分别代表什么意思? 在TSG特种设备安全技术规范TSG D2001-2006压力管道元件制造许可规则中: A级: A1 设计温度大于425℃,公称压力大于10MPa,且公称直径大于或者等于300mm的特殊工况阀门; A2 (1)公称压力大于或者等于6.4MPa,且公称直径大于或者等于300mm的特殊工况阀门;(2)设计温度低于-46℃,公称压力大于或者等于4MPa, 且公称直径大于或者等于300mm 的特殊工况阀门; B级: 一般工况阀门和其他特殊工况阀门。 注:①特殊工况阀门,是指专用于电站、石油天然气及化工用高温高压管道、剧毒管道、低温管道和城镇燃气管道的阀门; ②一般工况阀门,是指不属于特殊工况阀门的其他压力管道用阀门。 什么叫一片式,二片式,三片式球阀? 阀门的阀体由一片\二片\三片组成就叫一片式,二片式,三片式球阀 低温阀门材料为LCC LCB需要防锈吗?如何防锈? LCC LCB阀门需要防锈。 铸成形的阀门零件,经过抛丸清沙之后,采用喷涂环氧树脂漆的方法防锈。 32MPa以上的高压球阀密封问题 32MPa以下的球阀密封,用PTFE做阀座可以解决密封问题.但32MPa以上的高压球阀密封由于PTFE的[q](许用比压)低,故球阀密封只能用硬密封,但因摩擦系数大由此产生太大的启闭力矩使阀杆强度不够.利用介质自身的压力使阀座在球阀启闭前与球面分离,轻松启闭完毕后再与球面紧密接触,完成可靠密封.当否?可商榷. 32MPa以上的高压球阀密封问题: 1.用高分子材料PEEK做阀座可以解决密封问题. 2.如用硬密封,可以用撑开式的结构,这种结构可以避免产生太大的启闭力矩. (注:利用介质自身的压力使阀座在球阀启闭前与球面分离,轻松启闭完毕后再与球面紧密接触,完成可靠密封几乎是不可能的.即使是轨道式结构,也需借助外力.) 13%Cr是什么材质?国标,日规,美规代号是什么? 13%Cr是马氏体不锈钢。 国标代号——1Cr13; 日标——SUS 410; 美标——锻材:ASTM A182 F6a;棒材:ASTM A276 410。

机械密封的工作原理

机械密封的工作原理 机械密封 1 机械密封的工作原理 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。 图29.7-1 机械密封结构 常用机械密封结构如图29.7-1所示。由静止环(静环)1、旋转环(动环)2、弹性元件3、弹簧座4、紧定螺钉5、旋转环辅助密封圈6和静止环辅助密封圈8等元件组成,防转销7固定在压盖9上以防止静止环转动。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿还。 机械密封中流体可能泄漏的途径有如图29.7-1中的A、B、C、D四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静密封。因此,这些泄漏通道相对来说比较容易封堵。静密封元件最常用的有橡胶O形圈或聚四氟乙烯V 形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格腔制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。所以,要获得良好的密封性能又有足够寿命,在设计和安装机械密封时,一定要保证端面单位面积压力值在最适当的范围。 机械密封与软填料密封比较,有如下优点: ①密封可靠在长周期的运行中,密封状态很稳定,泄漏量很小,按粗略统计,其泄漏量一般仅为软填料密封的1/100; ②使用寿命长在油、水类介质中一般可达1~2年或更长时间,在化工介质中通常也能达半年以上;

相关主题
文本预览
相关文档 最新文档