一元一次方程竞赛试题
- 格式:doc
- 大小:119.00 KB
- 文档页数:2
计算力专训18 一元一次方程的实际应用—比赛积分类问题1.为了提升学生体育锻炼意识,七年一班进行了一次投掷实心球的测试,老师在操场上画出了A ,B ,C 三个区域,每人投掷5次,实心球落在各个区域的分值各不相同,落在C 区域得3分.甲、乙、丙三位同学投掷后其落点如图所示,已知甲同学的得分是19分.请解答下列问题:(1)设投进B 区域得x 分,则投进A 区域的得分是 (用含x 的式子表示) (2)若乙同学的得分是21分,求投进B 区域的得分及丙同学的得分. 【答案】(1)()132x -分;(2)4分,20分.【分析】(1)利用甲同学的得分和投掷落点分布图即可得;(2)结合(1)的结论,先根据乙同学的得分建立关于x 的一元一次方程,再解方程求出x 的值,然后根据丙同学的投掷落点分布图列出式子求解即可得.【详解】(1)由题意得:投进A 区域得分是19322132x x -⨯-=-(分), 故答案为:()132x -分;(2)由题意得:()21322321x x -++=, 解得4x =,则投进B 区域的得分是4分,丙同学的得分是()()2132442321384620⨯-⨯++⨯=⨯-++=(分), 答:投进B 区域的得分是4分,丙同学的得分是20分.【点睛】本题考查了列代数式、一元一次方程的实际应用等知识点,依据题意,正确列出方程是解题关键. 2.下表是某年篮球世界杯小组赛C 组积分表: 排名 国家 比赛场数 胜场 负场 总积分 1美国5510(1)由表中信息可知,胜一场积几分?你是怎样判断的?(2)m= ;n= ;(3)若删掉美国队那一行,你还能求出胜一场、负一场的积分吗?怎样求?(4)能否出现某队的胜场积分与负场积分相同的情况,为什么?【答案】(1)胜一场积2分,理由见解析;(2)m=4,n=6;(3)胜一场积2分,负一场积1分;(4)不可能,理由见解析【分析】(1)由美国5场全胜积10分,即可得到答案;(2)由比赛场数减去胜场,然后计算m、n的值;(3)由题意,设胜一场积x分,然后列出方程组,即可求出胜一场、负一场的积分;(4)由题意,列出方程,解方程即可得到答案.【详解】解:(1)根据题意,则∵美国5场全胜积10分,∴1052÷=,∴胜一场积2分;(2)由题意,514m=-=;设负一场得x分,则3228x⨯+=;∴1x=;∴12416n=⨯+⨯=;故答案为:6;4;(3)设胜一场积x分,由土耳其队积分可知负一场积分832x-,根据乌克兰队积分可列方程:8323()72xx-+=,解得:2x=,此时831 2x-=;即胜一场积2分,负一场积1分;(4)设某球队胜y场,则21(5)y y=⨯-,解得:53y=;∴不可能出现某队的胜场积分与负场积分相同的情况.【点睛】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.3.一名篮球运动员在一次比赛中20投12中得24分,投中的两分球的个数是投中三分球个数的4倍,则投中的三分球、两分球、罚球分别是几个?【答案】三分球2个,两分球8个,罚球2个【分析】设运动员三分球投中x球,则两分球投中4x球,罚球投中(12-x-4x)球,根据24分列出方程,求出方程的解即可得到结果.【详解】解:设运动员三分球投中x球,则两分球投中4x球,罚球投中(12-x-4x)球,,根据题意得:3x+2×4x+14-x-4x=24,整理得:2x+8x+14-5x=24,移项合并得:x=2,∴4x=8,12-x-4x=2,则该运动员三分球投中2球,两分球投中8球;罚球投中2球.【点睛】此题考查了一元一次方程的应用,弄清题意是解本题的关键.4.在学完“有理数的运算”后,我县某中学七年级每班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都必须回答50道题,答对一题得4分,不答或答错一题倒扣1分.(1)如果七年级一班代表队最后得分为190分,那么七年级一班代表队回答对了多少道题?(2)七年级二班代表队的最后得分有可能为142分吗?请说明理由.【答案】(1)48道;(2)不可能,理由见解析【分析】(1)由题意可得七年级一班代表队回答对了x道题,那么得分为4x分,扣分为(50-x)分.根据七年级一班代表队最后得分为190分列出方程求解;(2)设七年级二班代表队答对了y 道题,根据最后得分为142分列出方程,若结果为正整数解则能,否则不能.【详解】解:(1)设七年级一班代表队回答对了x 道题, 根据题意列方程:4x ﹣(50﹣x )=190, 解这个方程得:x=48.故七年级一班代表队回答对了48道题.(2)七年级二班代表队的最后得分不可能为142分.理由如下: 七年级二班代表队答对了y 道题, 根据题意列方程:4y ﹣(50﹣y )=142, 解这个方程得:y=3825. 因为题目个数必须是自然数,即y=3825不符合该题的实际意义, 所以此题无解.即七年级二班代表队的最后得分不可能为142.【点睛】本题考查了一元一次方程的应用,解题的关键是在解应用题时,答案必须符合实际问题的意义. 5.2019年国际泳联第十八届世界游泳锦标赛7月28日晚在韩国光州落下帷幕.中国队共获得了30枚奖牌,其中铜牌3枚,金牌比银牌多5枚,本次大赛中国队共获得了多少枚金牌? 【答案】本次大赛中国队共获得了16枚金牌【分析】设本次大赛中国队共获得了x 枚金牌,则银牌为(5x -) 枚,列方程即可求解. 【详解】设本次大赛中国队共获得了x 枚金牌. 由题意可列方程()5330x x +-+=, 解得:16x =.答:本次大赛中国队共获得了16枚金牌.【点睛】本题主要考查了一元一次方程的应用,根据已知表示出金、银牌的数量是解题的关键. 6.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问: (1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?【答案】(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.【分析】(1)设这个球队胜x场,则平(8﹣1﹣x)场,根据题意可得等量关系:胜场得分+平场得分=17分,根据等量关系列出方程,再解即可;(2)由题意得:前8场得17分,后6场全部胜,求和即可;(3)根据题意可列出不等式进行分组讨论可解答.由已知比赛8场得分17分,可知后6场比赛得分不低于12分就可以,所以胜场≥4一定可以达标,而如果胜场是3场,平场是3场,得分3×3+3×1=12刚好也行,因此在以后的比赛中至少要胜3场.【详解】(1)设这个球队胜x场,则平(8﹣1﹣x)场,依题意可得3x+(8﹣1﹣x)=17,解得x=5.答:这支球队共胜了5场;(2)打满14场最高得分17+(14﹣8)×3=35(分).答:最高能得35分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:至少胜3场.【点睛】本题考查了一元一次方程的应用、逻辑分析.根据题意准确的列出方程和不等关系,通过分析即可求解,要把所有的情况都考虑进去是解题的关键.7.某班的一次数学小测验中,共有20道选择题,每题答对得相同分数,答错或不答扣相同分数.现从中抽出了四份试卷进行分析,结果如下表:(1)此份试卷的满分是多少分?如果全部答错或者不答得多少分? (2)如果小颖得了0分,那么小颖答对了多少道题?(3)小慧说她在这次测验中得了60分,她说的对吗?为什么?【答案】(1)此份试卷满分为120分,全部答错或者不答得-40分;(2)小颖答对了5道题;(3)小慧的说法是错误的.【分析】(1)根据D 的成绩即可得到此份试卷满分为120分,从而求出答对一题所得的分数,再设答错或者不答一题扣x 分,根据A 的得分情况列出方程即可求解;(2) 设小颖答对了y 道题,根据(1)求得的数值列出方程即可求解; (3) 设小慧答对了a 道题,根据题意列出方程求出a 即可判断. 【详解】解:(1)由D 可得,此份试卷满分为120分, ∴答对一题所得的分数为:120206÷=(分), 设答错或者不答一题扣x 分, ∴176396x ⨯-= 解得x=2,∴全部答错或者不答所得的分数是:22040-⨯=-(分)答:此份试卷满分为120分,全部答错或者不答得-40分; (2)设小颖答对了y 道题,由题知:62(20)0y y --=解得5y =答:小颖答对了5道题;(3)设小慧答对了a 道题,由题知:()622060a a --=解得:252a = ∵252a =不是整数,∴小慧的说法是错误的.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系列方程.8.列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。
第三章 一元一次方程检测题 (本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( ) A. B. C. D.2.若方程2152x kx x -+=-的解为,则的值为( ) A. B. C. D.3.一个两位数的个位数字及十位数字都是,如果将个位数字及十位数字分别加2和1,所得新数比原数大12,则可列的方程是( ) A. B.C.D. 4.若方程532=+x ,则106+x 等于( )A.15B.16C.17D.345.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A.0x =B.3x =C.3x =-D.2x =6.甲、乙两人练习赛跑,甲每秒跑,乙每秒跑,甲让乙先跑,设后甲可追上乙,则下列四个方程中不正确的是( ) A. B. C. D.7.三个正整数的比是,它们的和是,那么这三个数中最大的数是( )A.56B.48C.36D.128.(2019•山东济宁中考)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元9. 已知()2135m --有最大值,则方程5432m x -=+的解是( )A. B. C.D. 10.看不清楚,被污染的方程是:,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是,于是很快就补好了这个常数,你能补出这个常数吗?它应是( )A.1B.2C.3D.4二、填空题(每小题3分,共24分)11. 如果31a +=,那么= .12.当m = __________时,方程的解为.13.已知方程的解也是方程32x b -=的解,则=_________.14.已知方程的解满足10x -=,则m ________.15.方程及方程的解相同,则m 的值为__________.16.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是____元.17.甲水池有水31吨,乙水池有水11吨,甲水池的水每小时流入乙水池2吨, x 小时后, 乙水池有水________吨,甲水池有水_______吨,________小时后,甲水池的水及乙水池的水一样多.18.日历中同一行中相邻三个数的和为63,则这三个数分别为 . (用逗号隔开)三、解答题(共46分)19.(12分)解下列方程:(1)10(1)5x -=;(2)7151322324x x x -++-=-;(3)2(2)3(41)9(1)y y y +--=-;(4)0.89 1.33511.20.20.3x x x --+-=. 20.(5分)当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2?21.(5分)(2019•湖南张家界中考)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?22.(6分)某检查团从单位出发去A处检查,在A处检查1 h后,又绕路去B处检查,在B 处停留h后返回单位,去时的速度是5 km/h,返回时的速度是4 km/h.来回共用了6.5 h,如果回来时因为绕道关系,路程比去时多2 km,求去时的路程.23.(6分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,•求这一天有几名工人加工甲种零件.24.(6分)江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.25.(6分)植树节期间,两所学校共植树棵,其中海石中学植树的数量比励东中学的倍少棵,求两校各植树多少棵.第三章一元一次方程检测题参考答案1.B 解析:中,未知数的次数是2,所以不是一元一次方程;中,有两个未知数,所以不是一元一次方程;D.是分式方程.故选B.2.C 解析:将代入中,得,解得故选C.3.D 解析:这个两位数原来是(),新数是,故成立.4.B 解析:解方程,可得将代入,可得.故选B.5.A 解析:若原方程是一元一次方程,则,所以.方程为,所以方程的解是0x .6.B 解析:后甲可追上乙,是指时,甲跑的路程等于乙跑的路程,所以可列方程:,所以A正确;将移项,合并同类项可得,所以C正确;将移项,可得,所以D正确.故选B.7.B 解析:设这三个正整数为,根据题意可得所以这三个数中最大的数是故选B.8.C 解析:设这款服装的进价为x元,由题意,得300×0.8-x=60,解得x=180,300-180=120,所以这款服装每件的标价比进价多120元.故选C.9.A 解析:由有最大值,可得,则则,解得故选A.10.C 解析:设所缺的部分为,则,把代入,可求得,故选C.11.解析:因为可解得12.5 解析:将代入方程得,解得.13.解析:由,得所以可得14.解析:由,得当时,由,得,解得;当时,由,得,解得.综上可知,15.-6 解析:方程的解为.将代入方程得,解得.16.20 解析:设原价为x 元,由题意,得0.9x -0.8x =2,解得x =20. 17. 18. 解析:设中间一个数为,则及它相邻的两个数为,根据题意可得19.解:(1), 去括号,得移项,得, 系数化为1,得(2) 7151322324x x x -++-=-, 去分母,得,去括号,得,移项,得,合并同类项,得系数化为1,得(3),去括号,得,移项,得,合并同类项,得,系数化为1,得(4),去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得20.解:方程x x m +=+135的解是, 方程的解是. 由题意可知,解关于m 的方程得73-. 故当73-时,关于x 的方程x x m +=+135的解比关于x 的方程的解 大2.21.解:设该市规定的每户每月标准用水量为x 吨,因为12×1.5=18<20,所以x <12,从而可得方程:1.5x +2.5(12-x )=20,解得x =10.答:该市规定的每户每月标准用水量为10吨.22.解:设去时的路程为,则回来时路程为2km x +(),去时路上用 h 5x ,回来时路上 用2 h 4x +, 则211 6.5542x x ++++=,解得10.x = 答:去时的路程为10 km.23.解:设这一天有名工人加工甲种零件,则这一天加工甲种零件个,乙种零件个. 根据题意,得,解得.答:这一天有6名工人加工甲种零件.24.解:设粗加工的该种山货质量为,根据题意,得,解得.答:粗加工的该种山货质量为.25.解:设励东中学植树棵.依题意,得解得.答:励东中学植树棵,海石中学植树棵.第三章 一元一次方程检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分) 1. 下列方程中,是一元一次方程的是( ) A.B. C.D. 2. 若方程2152x kx x -+=-的解为,则的值为( )A.10B.-4C.-6D.-83. 某市举行的青年歌手大奖赛今年共有人参加,比赛的人数比去年增加 20%还多3人,设去年参赛的有人,则为( ) A. B.(120%)3a ++C. D.(120%)3a +-4. 方程532=+x ,则106+x 等于() A.15 B.16 C.17 D.345. 数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是( )A.6B.7C.9D.86. 甲、乙两人练习赛跑,甲每秒跑7 m,乙每秒跑6.5 m,甲让乙先跑5 m,设s后甲可追上乙,则下列四个方程中不正确的是( ) A.7=6.5+5 B.7+5=6.5C.(7-6.5)=5D.6.5=7-5 7. 三个正整数的比是1∶2∶4,它们的和是84,那么这三个数中最大的数是( ) A.56 B.48 C.36 D .128. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定9. 已知:()2135m --有最大值,则方程5432m x -=+的解是( )A. B. C.D.10.一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x辆客车,可列方程为( )A.4432864+=+= D.3286444xx+= C.3284464xx-= B.4464328二、填空题(每小题3分,共24分)11. 如果31a+=,那么=.12. 如果关于的方程340x k+=是同解方程,则x+=及方程3418=.13. 已知方程的解也是方程32-=的解,则=_________.x b14. 已知轮船逆水航行的速度为 km/h,水流速度为 2 km/h,则轮船在静水中的速度是_______.15. 若52-+是相反数,则的值为.x+及29x16. 商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打折.17.甲水池有水31 t,乙水池有水11 t,甲水池的水每小时流入乙水池 2 t,x h后, 乙水池有水________t,甲水池有水_______t,_______h后,甲水池的水及乙水池的水一样多.18. 日历中同一竖列相邻三个数的和为63,则这三个数分别为.(用逗号隔开)三、解答题(共46分)19. (6分)解方程(1)10(1)5x -=; (2)7151322324x x x -++-=-; (3)2(2)3(41)9(1)y y y +--=-; (4)0.89 1.33511.20.20.3x x x --+-=. 20. (6分)为何值时,关于的方程4231x m x -=-的解是23x x m =-的解的2倍?21. (6分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6 h ,乙单独做需要4 h ,甲先做30 min ,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?22. (6分)有一火车要以每分钟600 m 的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5 s 时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50 m ,试求两座铁桥的长分别为多少.23. (6分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,•求这一天有几名工人加工甲种零件.24. (8分)某地区居民生活用电基本价格为每千瓦时0.4元,若每月用电量超过千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费多少元?25.(8分)1 000 g浓度为80%的酒精配成浓度为60%的酒精,某同学未经考虑先加了300 g水.⑴试通过计算说明该同学加水是否过量?⑵如果加水不过量,则应加入浓度为20%的酒精多少g?如果加水过量,则需再加入浓度为95%的酒精多少g?第三章一元一次方程检测题参考答案1.B 解析:中,未知数的次数是2,所以不是一元一次方程;中,有两个未知数,所以不是一元一次方程;D.是分式方程.故选B.2.C 解析:将代入中,得,解得故选C.3.C 解析:因为去年参赛的有人,今年比去年增加 20%还多3人,所以有,整理可得.故选C.4.B 解析:解方程,可得将代入,可得故选B.5.D 解析:设答对道题,则不答或答错的题目有道,所以可根据题意列方程:,整理方程为,可解得,所以要得到34分,必须答对8道题.故选D.6.B 解析:s后甲可追上乙,是指 s时,甲跑的路程,等于乙跑的路程,所以可列方程:,所以A正确;将移项,合并同类项可得,所以C 正确;将移项,可得,所以D正确.故选B.7.B 解析:设这三个正整数为,根据题意可得所以这三个数中最大的数是故选B.8.B 解析:设此商人赚钱的那件衣服的进价为元,则得设此商人赔钱的那件衣服进价为,则,所以他一件衣服赚了,一件衣服赔了元,所以卖这两件衣服,总共赔了(元).故选B.9.A 解析:由有最大值,可得,则则,解得故选A.10.B 解析:乘坐客车的人数为,因为每辆客车可乘坐44人,所以乘坐客车的人数又可以表示为44,所以可列方程328-64=44.通过整理可知选B.11.-2或-4 解析:因为可解得12.解析:由可得,又因为及是同解方程,13.解析:解方程,可得所以可得14.解析:轮船在静水中的速度=逆水航行的速度+水流速度.将题目中所给数据代入上式,可知答案为.解析:由题意可列方程,解得所以16.9 解析:设进价为,出售价需打折,根据题意可列方程将方程两边的约掉,可得.所以出售价需打9折.17. 518.解析:设中间一个数为,则及它相邻的两个数为,根据题意可得19.分析:根据解方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,解答各个小题. 解:(1),去括号得移项得,系数化为1得(2)7151322324x x x -++-=-,去分母得,去括号得, 移项得,合并同类项得系数化为1得(3), 去括号得, 移项得,合并同类项得,系数化为1得 (4),去分母得,去括号得,移项得,合并同类项得,系数化为1得20. 分析:可以先求得方程的解,得,所以.把代入方程即可求得的值.也可以分别求出两个方程的解,然后根据4231x m x-=-的解是23x x m=-的解的2倍求解.解:关于的方程的解为,关于的方程的解为.因为关于的方程4231x m x-=-的解是23x x m=-的解的2倍,所以,所以21. 分析:,可设甲、乙一起做还需 h才能完成工作,等量关系为:甲小时的工作量+甲乙合作小时的工作量=1,把相关数值代入求解即可.解:设甲、乙一起做还需要 h才能完成工作.根据题意,得16×12+(16+14)=1,解这个方程,得==2小时12分.答:甲、乙一起做还需要2小时12分才能完成工作. 22. 分析:等量关系为:火车过第一座铁桥的时间火车过第二座铁桥的时间,把相关数值代入求解即可.解:设第一座铁桥的长为 m ,那么第二座铁桥的长为m ,•过完第一座铁桥所需要的时间为600xmin ,过完第二座铁桥所需要的时间为min . 依题意,可列出方程600x+560= 解方程得∴答:第一座铁桥长100 m ,第二座铁桥长150 m .23. 分析:等量关系为:加工甲种零件的总利润+加工乙种零件的总利润=1440,把相关数值代入求解即可.解:设这一天有名工人加工甲种零件,则这一天加工甲种零件个,乙种零件个.根据题意,得,解得.答:这一天有6名工人加工甲种零件.24. 分析:(1)根据题中所给的关系,找到等量关系,然后列出方程求出;(2)先设九月份共用电千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出. 解:(1)由题意,得,解得(2)设九月份共用电千瓦时,则,解得所以0.36×90=32.4(元).答:九月份共用电90千瓦时,•应交电费32.4元.25.分析:溶液问题中浓度的变化有稀释(通过加溶剂或浓度低的溶液,将浓度高的溶液的浓度降低)、浓化(通过蒸发溶剂、加溶质、加浓度高的溶液,将低浓度溶液的浓度提高)两种情况.在浓度变化过程中主要需抓住溶质、溶剂两个关键量,并结合有关公式进行分析,就不难找到等量关系,从而列出方程.解:⑴加水前,原溶液1 000 g,浓度为80%,溶质(纯酒精)为1 000×80% g.设加 g水后,浓度为60%,此时溶液变为(1 000+) g,则溶质(纯酒精)为(1 000+x)×60% g.由加水前后溶质未变,有(1 000+x)×60%=1 000×80%.∴,∴该同学加水未过量.⑵设应加入浓度为20%的酒精 g,此时总溶液为g,浓度为60%,溶质(纯酒精)为.原两种溶液的溶质的质量分别为 1 000×80%、20%,由混合前后溶质的质量不变,有,∴答:应加入浓度为20%的酒精50 g.綦江县三江中学2009~2019学年度上学期一元一次方程检测试卷七年级数学(全卷共五个大题,满分150分,考试时间120分钟)总分题号一二三四五总分人得分在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
一元一次方程组20道及答案
一、题目
1.求解方程组: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
2.解方程组: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
3.求解下列方程组: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \] …
二、答案
1.第一题答案: $ x=2, y=1 $
2.第二题答案: $ x=4, y=1 $
3.第三题答案: $ x=1, y=2 $
…
三、解答
1.第一题解答:
方程组为: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
解方程可得: $ x=2, y=1 $
2.第二题解答:
方程组为: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
求解可得: $ x=4, y=1 $
3.第三题解答:
方程组为: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \]
解得: $ x=1, y=2 $
…
四、总结
通过解这20道一元一次方程组题目,我们可以加深对于方程组解的理解。
这些题目的解答过程中,可以运用代入法、消元法等数学方法来求解方程组,希望此练习对大家的数学能力有所提升。
一元一次方程题100道及过程1、某数的 3 倍比它的一半大 2,求这个数。
解:设这个数为 x,根据题意可得 3x 05x = 2,25x = 2,x = 08 。
2、一个数加上 5 的和的 3 倍等于 18,求这个数。
解:设这个数为 x,可列方程 3(x + 5) = 18,3x + 15 = 18,3x= 3,x = 1 。
3、某数的 4 倍减去 10 等于它的 2 倍加上 8,求这个数。
解:设这个数为 x,4x 10 = 2x + 8,4x 2x = 8 + 10,2x = 18,x = 9 。
4、一个数的 5 倍减去 3 与 5 的积,差是 7,求这个数。
解:设这个数为 x,5x 3×5 = 7,5x 15 = 7,5x = 22,x = 44 。
5、某数的 6 倍加上 8 等于它的 8 倍减去 6,求这个数。
解:设这个数为 x,6x + 8 = 8x 6,8 + 6 = 8x 6x,14 = 2x,x= 7 。
6、一个数减去 10 乘以 8 的积,差是 20,求这个数。
解:设这个数为 x,x 10×8 = 20,x 80 = 20,x = 100 。
7、某数的 7 倍除以 2 再减去 3 等于 10,求这个数。
解:设这个数为 x,7x÷2 3 = 10,7x÷2 = 13,7x = 26,x =26÷7 = 26/7 。
8、一个数加上 20 乘以 3 的积,和是 100,求这个数。
解:设这个数为 x,x + 20×3 = 100,x + 60 = 100,x = 40 。
9、某数的 8 倍减去 15 等于它的 5 倍加上 9,求这个数。
解:设这个数为 x,8x 15 = 5x + 9,8x 5x = 9 + 15,3x = 24,x = 8 。
10、一个数乘以 5 再加上 10 等于它的 3 倍乘以 8,求这个数。
解:设这个数为 x,5x + 10 = 3x×8,5x + 10 = 24x,10 = 19x,x = 10/19 。
一元一次方程练习题基本题型:一、选择题:1、下列各式中是一元一次方程的是( ) A. y x -=-54121 B. 835-=--C. 3+xD. 146534+=-+x x x2、方程x x 231=+-的解是( ) A.31- B. 31C. 1D. -1 3、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( )A. 10B. 8C. 10-D.8-4、下列根据等式的性质正确的是( )A. 由y x 3231=-,得y x 2= B. 由2223+=-x x ,得4=x C. 由x x 332=-,得3=x D. 由753=-x ,得573-=x5、解方程16110312=+-+x x 时,去分母后,正确结果是( )A. 111014=+-+x xB. 111024=--+x xC. 611024=--+x x C. 611024=+-+x x6、电视机售价连续两次降价10%,降价后每台电视机的售价为a元,则该电视机的原价为( )A. 0.81a 元B. 1.21a 元C. 21.1a 元D. 81.0a 元8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )A.不赚不亏B.赚8元C.亏8元D. 赚8元9、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11x x =- 10、方程212=-x 的解是( )(A );41-=x (B );4-=x (C );41=x (D ).4-=x 11、已知等式523+=b a ,则下列等式中纷歧定成立的是( )(A );253b a =- (B );6213+=+b a(C );523+=bc ac (D ).3532+=b a12、方程042=-+a x 的解是2-=x ,则a 即是( )(A );8- (B );0 (C );2 (D ).813、解方程2631x x =+-,去分母,得( )(A );331x x =-- (B );336x x =--(C );336x x =+- (D ).331x x =+-14、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x(B )方程()1523--=-x x ,去括号,得;1523--=-x x(C )方程2332=t ,未知数系数化为1,得;1=x(D )方程15.02.01=--x x 化成.63=x15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A )3年后; (B )3年前; (C )9年后; (D )不成能.16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )(A );323x x -= (B )();3253x x -=(C )();3235x x -= (D ).326x x -=17、珊瑚中学修建综合楼后,剩有一块长比宽多5m 、周长为50m 的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植本钱最低是a 元,那么种植草皮至少需用( )(A )a 25元; (B )a 50元; (C )a 150元; (D )a 250元.18、银行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最年夜,则小明的父母应该采纳( )(A )直接存一个3年期;(B )先存一个1年期的,1年后将利息和自动转存一个2年期;(C )先存一个1年期的,1年后将利息和自动转存两个1年期;(D )先存一个2年期的,2年后将利息和自动转存一个1年期.二. 填空题:1、4|2|=x ,则=x ________.2、已知0)3(|4|2=-++-y y x ,则=+y x 2__________. 3、关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.4、现有一个三位数,其个位数为a ,十位上的数字为b ,百位数上的数字为c ,则这个三位数暗示为__________________.5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.6、某数的3倍比它的一半年夜2,若设某数为y ,则列方程为____.7、当=x ___时,代数式24+x 与93-x 的值互为相反数.8、在公式()h b a s +=21中,已知4,3,16===h a s ,则=b ___.9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数 ,请用一个等式暗示d c b a ,,,之间的关系______________.10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆动身,1小时后,另有一辆慢车以48千米/时的速度从成都动身,则慢车动身__小时后两车相遇(沿途各车站的停留时间不计).13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔年夜概需要___分钟就能追上乌龟.14、一年按期存款的年利率为 1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年按期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元 15、52辆车排成两队,每辆车长a 米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a =__________.三、解方程:1、4)1(2=-x2、11)121(21=--x3、()()x x 2152831--=--4、23421=-++x x5、1)23(2151=--x x6、152+-=-x x7、1835+=-x x 8、0262921=---x x9、已知21=x 是方程32142m x m x -=--的根,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值. 四、列方程解应用题:1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点动身以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是几多?2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知自力打完同样年夜小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮手合作,他能在要求的时间打完吗?3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果㈡班代表队最后得分142分,那么㈡班代表队回答对了几多道题?⑵ ㈠班代表队的最后得分能为145分吗?请简要说明理由.4、某“希望学校”修建了一栋4层的教学年夜楼,每层楼有6间教室,进出这栋年夜楼共有3道门(两道年夜小相同的正门和一道侧门). 平安检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过几多名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 平安检查规定:在紧急情况下全年夜楼的学生应在5分钟内通过这3道门平安撤离. 假设这栋教学年夜楼每间教室最多有45名学生,问:建造的这3道门是否符合平安规定?为什么?5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求获得一等奖和二等奖的学生分别是几多人?7、一家商店将某种商品按本钱价提高40%后标价,元旦期间,欲打八折销售,以报答新老顾客对本商厦的光顾,售价为224元,这件商品的本钱价是几多元?8、甲乙两人从学校到1000米远的展览馆去观赏,甲走了5分钟后乙才动身,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?较高要求:1、已知431)119991(441=++x ,那么代数式19991999481872+⋅+x x 的值. 2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台分歧型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对进价),另一台空调调价后售出则亏本10%(相对进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).(A )既不获利也不亏本 (B )可获利1% (C )要亏本2% (D )要亏本1%3、某开发商依照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和.已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部份制成奶片,其余制成酸奶销售,并恰好4天完成;(1)你认为选择哪种方案获利最多,为什么?(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?5、两辆汽车从同一地址同时动身,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用另外油,每桶油可使一辆车前进60公里,两车都必需返回动身地址,可是可以分歧时返回,两车相互可借用对方的油.为了使其中一车尽可能地远离动身地址,另一辆车应当在离动身地址几多公里处所返回?离动身地址最远的那辆车一共行驶了几多公里?。
一元一次方程竞赛题精选
1. 题目,某商店举行促销活动,原价为x元的商品打7折后售
价为84元,求原价x是多少?
解答,根据题意,可以列出方程0.7x=84,解方程得到
x=120,所以原价为120元。
2. 题目,甲、乙两人合作种菜,甲一个人干5天能种完,乙一
个人干8天能种完,他们两人一起干需要几天?
解答,设甲、乙两人一起干x天能种完,根据工作量和时间
的关系,可以列出方程5/x+8/x=1,解方程得到x=3.33,所以他们
两人一起干需要4天。
3. 题目,一条绳子长12米,剪成两段,一段比另一段长3米,求这两段各是多长?
解答,设较长的一段为x米,则较短的一段为(x-3)米,根
据题意可以列出方程x+(x-3)=12,解方程得到x=7.5,所以两段分
别为7.5米和4.5米。
以上是一些常见的一元一次方程竞赛题精选,希望能帮助到你。
如果有其他问题,欢迎继续提问。
第四章一元一次方程及其应用第一节一元一次方程例1、在解方程的过程中,为了使得到的方程和原方程同解,可在原方程的两边()A、乘以同一个数B、乘以同一个整式C、加上同一个代数式D、都加上同一个数例2、方程甲3(x-4)=3x与方程乙x-4=4x同解,其根据是() 4A、甲方程两边都加上了同一个整式B、甲方程两边都乘以了4/3xC、甲方程两两边都乘以了4/3D、甲方程两边都乘以了3/4例3、方程1⎧1⎡1⎛1⎫⎤⎫x-1⎪-1⎥-1⎬-1=2001的根x=__________。
⎨⎢2⎩2⎣2⎝2⎭⎦⎭例4、1992+1994+1996+1998=5000- 成立,则中应当填的数是()A、5B、-900C、-1900D、-2980例5、若P、Q都是质数,以X为未知数的方程PX+5Q=97的根是1。
则P2-Q=____。
例6、有理数111xz、、8恰是下列三个方程的根,则-=________。
25yx(1)2x-110x+12x+1-=-1 (2)3(2y+1)=2(1+y)+3(y+3) 3124(3)1⎡1⎤2z-(z-1)=(z-1) ⎥2⎢2⎣⎦327例7、解方程:x-=1990的去处时,某同学误将3.57 错写成3.57,结果与正确答案例8、在计算一个正数乘以3.57相差1.4,求正确的乘积应是多少? 2829第二节列方程解应用题例1、海滩上有一堆核桃,第一天猴子吃了这堆核桃的2/5,又将4个扔到大海里;第二天猴子吃掉的核桃数加上3个就是第一天所剩核桃数的5/8。
若第二天剩下6个核桃。
问海滩上原有多少个核桃?(20个)例2、古希腊数学家丢番图的墓志铭上记载:“坟中安葬着丢番图,多幺令人惊讶,它忠实地记录了所经历的道路。
上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。
五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。
悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途。
一元一次方程计算题50道1.某班有男生30人,比女生人数的2倍少10人,求女生有多少人?2.小明买了若干本笔记本,每本5元,他付给售货员50元,找回10元,问他买了几本笔记本?3.一个数的3倍加上5等于这个数的5倍减去3,求这个数。
4.甲、乙两人从相距100千米的两地同时出发相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,经过几小时两人相遇?5.某数的4倍比这个数的6倍少8,求这个数。
6.一辆汽车以每小时60千米的速度行驶,行驶若干小时后,路程为300千米,问行驶了多少小时?7.一个数加上8的和的3倍是30,求这个数。
8.学校组织植树活动,七年级学生植树的棵数是八年级学生的一半多5棵,七年级植树35棵,求八年级植树多少棵?9.有一个数,它的一半减去3等于5,求这个数。
10.某商店把某种商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则标价是每件多少元?11.某班同学去划船,如果减少一条船,每条船正好坐9人;如果增加一条船,每条船正好坐6人。
问这个班有多少同学?12.一个数的2倍与5的差是13,求这个数。
13.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需从乙队调多少人到甲队?14.一筐苹果,先拿出140个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?15.某数的1/3比它的1/4多5,求这个数。
16.一个长方形的周长是50厘米,长比宽多5厘米,求长方形的长和宽。
17.已知甲、乙两地相距240千米,一辆汽车从甲地开往乙地,已经行驶了3小时,离乙地还有60千米,求汽车的速度。
18.某数的5倍加上6等于这个数的7倍减去2,求这个数。
19.有甲、乙两个工程队,甲队人数是乙队人数的2倍,如果从甲队调12人到乙队,则两队人数相等,求甲、乙两队原来各有多少人?20.一个数减去10后的3倍是36,求这个数。
21.小明读一本书,第一天读了全书的1/3,第二天读了全书的1/4,还剩下35页没读,这本书共有多少页?22.某数的6倍比它的8倍少16,求这个数。
一元一次方程试题1一、选择题1.下列方程中,属于一元一次方程的是( ) A.0127=+yB.082=+y xC.103=zD.0232=-+x x2.已知ax=ay ,下列等式中成立的是( ) A .x=y B.ax+1=ay-1 C .ax=-ay D.3-ax=3-ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40% B.20% C25% D.15% 4.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )A .a 米 B .(a +60)米 C .60a 米 D .(60+2a)米 5.解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是( ) A .10 B .52 C .54 D .567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ) A .x -1=5(1.5x ) B .3x +1=50(1.5x ) C .3x -1=(1.5x ) D .180x +1=150(1.5x )8.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( ) A .约700元 B .约773元 C .约736元 D .约865元 9.下午2点x 分,钟面上的时针与分针成110度的角,则有( )A . 1105.06+=x xB .1705.06+=x xC .x x 5.01806=-D .505.06+=x x10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为( ) A .15% B .17% C .22% D .80%二、填空题11.若x =-9是方程131-=+m x 的解,则m = 。
人教版七年级上册数学3.4实际问题与一元一次方程(比赛积分问题)训练一、单选题1.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是()A.2B.3C.4D.52.学校组织中国共产党第十九次全国代表大会知识问答,共设有20道选择题,各题分值相同,每题必答.下表记录了A、B、D三名参赛学生的得分情况:参赛学生答对题数答错题数得分A200100B19194D14664则参赛学生E的得分可能是()A.93B.87C.66D.40 3.学校组织一次有关世博的知识竞赛共有20道题,每小题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对的题数为()A.14B.15C.16D.174.篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2B.3C.4D.55.2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x场,则可列方程为()A.3x+(29﹣x)=67B.x+3(29﹣x)=67C.3 x+(30﹣x)=67D.x+3(30﹣x)=676.数学竞赛卷共有20道题,每答对一道题得5分,不答或答错一道题倒扣1分,要得到76分必须答对的题数是()A.17B.16C.15D.147.小刚是学校的篮球明星,在一场篮球比赛中,他一人得了23分(没有罚球得分),试卷第1页,共3页如果他投进的2分球比3分球多4个,那么他一共投进了2分球的个数是()A.3个B.7个C.4个D.8个8.阳光中学七(2)班篮球队参加比赛,胜一场得2分,负一场得1分,该队共赛了12场,共得20分,该队胜了多少场?解:设该队胜了x场,依题意得,下列方程正确的是()A.2(12﹣x)+x=20B.2(12+x)+x=20C.2x+(12﹣x)=20D.2x+(12+x)=20二、填空题9.某次足球联赛的积分规则是:若胜一场得3分,平一场得1分,负一场得0分,到目前为止某球队已经赛了8场,其中平的场数是负的场数的2倍,已得17分,该球队胜了________场球.10.某试卷由26道题组成,答对一题得8分,答错一题倒扣5分.今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有_____道.11.一支足球队参加比赛,组委会规定胜一场得3分,平一场得1分,该队开局9场保持不败,共积21分,则该队胜了_____场.12.某球队参加比赛,共赛9场,且保持不败,得分为21分,比赛规则:胜一场得3分,平一场得1分,负一场得0分,则该球队共胜的场数为________.13.一份试卷共25道选择题,规定答对一道题得4分,答错或不答一题扣1分,有人得了80分,问此人答对了___________道题.14.某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.小明考了68分,那么小明答对了________道题.15.某次七年级数学竞赛,共10题,规定答对一题得10分,答错或不答一题倒扣3分,则答对_______题才能得61分.16.在参加足球世界杯预选赛的球队中,每两个队都要进行两次比赛,一共要比赛20场.若参赛队有x支队,则可得方程______.三、解答题17.为有效落实双减工作,切实做到减负提质,很多学校高度重视学生的体育锻炼,并不定期举行体育比赛.已知在一次足球比赛中,胜一场得3分,平一场得1分,负一场得0分,某队在已赛的11场比赛中保持连续不败,共得25分,求该队获胜的场数.试卷第2页,共3页18.某电视台组织知识竞赛,共设20道选择题,每题必答,如表记录了3个参赛者的得分情况.参赛者答对题数答错题数总得分甲200100乙19194丙14664(1)参赛者小婷得76分,她答对了几道题?(2)参赛者小明说他得了80分.你认为可能吗?为什么?19.聪聪同学到某校游玩时,看到运动场的宣传栏中的部分信息(如表):校篮球赛成绩公告比赛胜场负场积分场次2212103422148362202222聪聪同学结合学习的知识设计了如下问题,请你帮忙解决:(1)从表中可以看出,负一场积分,胜一场积分;(2)某队在比完22场的前提下,胜场总积分能等于负场总积分吗?请说明理由.20.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?试卷第3页,共3页参考答案:1.C2.D3.C4.B5.A6.B7.B8.C9.510.1011.6.12.613.2114.1615.7x x-=16.()12017.7场18.(1)16道(2)不可能,19.(1)1,2;(2)不可能胜场总积分能等于负场总积分20.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.答案第4页,共1页。
(第6
题)
《一元一次方程》竞赛试题二
一、选择题:(本题共8小题,每小题4分,共32分)
1.下列方程中,是一元一次方程的是………………………………………………( )
A.21x y -=;
B.202
y +=; C.2210x x ++=; D.24y =; 2.小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是…( )
A .6,16,26
B .15,16,17
C .9,16,23
D .不确定
3.已知2是关于x 的方程30x a +=的一个解,则a 的值是…………………………( )
A.-6;
B.-3;
C.-4;
D.-5;
4.若32=-x ,则x 的值是………………………………………………………………( )
A. 1 ;
B. 1-;
C. 1-或5;
D. 以上都不对;
5.关于x 的方程616x ax =-与方程()()5227x x +=+有相同的解,则a 的值为( )
A.6;
B.2;
C.-0.5;
D.0.5;
6. 如图,宽为50cm 的矩形图案由10个相同大小的小长方形拼成,其中一个小长方形的面积为………………………………………………………………( )
A .400 cm 2;
B .500 cm 2;
C .600 cm 2;
D .4000 cm 2; 7.若()15m m x -=是一元一次方程,则m 的值为…………………………………( )
A.±1
B.-1;
C.1;
D.2;
8.完成某项工程,甲单独做10天完成,乙单独做7天完成,现在由甲先做了3天,乙再参加合作,求完成这项工程总共用去的时间,若设完成此项工程总共用x 天,则下列方程中正确的是……………………………………………………………………………( ) A.31107x x ++=; B.331107x x +-+=; C.1107x x +=; D.333110107
x x --++=; 二、填空题:(本题共8小题,每题4分,共32分) 9.当m = 时,代数式
353m +的值是2. 10.如果式子89x -与式子62x -的值互为相反数,那么x 的值是_______.
11.小明在做家庭作业时发现练习册上的一道解方程的题目中的一个数字被墨水污染了: 151232
x x +--=- ,“■”是被污染的内容,翻开书后面的答案,这道题的解是2x =,那么“■”的数字是 .
12.已知三个连续奇数的和是51,这三个数分别是 .
13.一个长方形的周长是42㎝,宽比长少3㎝,如果设长为x ㎝,则根据题意可列出方程为 .
14.某城市按以下规定收取每月煤气费:用煤气如果不超过603m ,按每立方米0.8元收费;如果超过603
m ,超过部
分按每立方米 1.2元收费.已知某用户8月份的煤气费平均每立方米0.88元,那么8月份该用户应交煤气费 元.
15.某商品按进价提高40%后标价,再打8折销售,售价为2240元,则这种电器的进价为 __________元.
16.一只轮船在A 、B 两码头间航行,从A 到B 顺流需4小时,已知A 、B 间的路程为80 ㎞,水流速度是2 ㎞/h .则从B 返回A 用 h .
三、.解方程:(本小题共6小题,每题5分,共30分)
17.()9316x x --= ; 18.
2151136x x +--=;
19.121146x x -+-=; 20. ()()1112225
x x -=-+
四、列方程解应用题
21. (本题8分)甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10 ㎞/h ,乙步行,速度为6 ㎞/h .当甲到达B 地时,乙距B 地还有8㎞,问甲走了多少时间?A 、B 两地的路程是多少?
22. (本题12分)为庆祝第29届北京奥运圣火在泉州站传递,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:
如果两所学校分别单独购买服装,一共应付5000元. (1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?
(2)甲、乙两校各有多少学生准备参加演出?
(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?。