高考数学总复习(讲+练+测): 专题8.7 立体几何中的向量方法(测)
- 格式:doc
- 大小:1.72 MB
- 文档页数:22
领略立体几何中的向量方法战前热身立体几何研究的基本对象是点、直线、平面以及由它们组成的空间图形,为了利用空间向量这个工具解决立体几何问题,◆首先要解决如何利用向量把空间中的点、直线、平面的位置表示出来。
1.直线的方向向量:是指和这条直线平行(或共线)的向量.一条直线的方向向量有 个。
2.平面的法向量:直线α⊥l ,取直线l 的方向向量,则向量叫做平面的法向量.一个平面的法向量有 个,它们的关系是 。
3.求法向量的步骤:(1)设出平面的法向量),,(z y x =;(2)找出平面内的两个不共线的向量的坐标),,(),,,(321321b b b a a a ==;(3)根据法向量的定义建立关于z y x ,,的方程组⎪⎩⎪⎨⎧=⋅=⋅00;(4)解方程组,取其中的一个解,即得一个法向量。
4.利用向量确定点、直线、平面在空间中的位置:(1)空间中的任意一点P ,可以以一定点O 作为基点,用向量 来确定; (2)空间中任意一条直线l ,可以通过l 上的一个定点A 和l 的一个方向向量来确定,即直线l 可以表示为a t AP =,其中P 是l 上任意一点;(3)空间中任意一个平面α,有两种向量表示形式:①通过α上的一个定点O 和两个不共线向量b a ,来确定,即平面α可以表示为:OP = ,其中P 是α上的任意一点;②通过α上的一个定点O 和α的法向量a 来确定,即平面α可以表示为:0=⋅a OP ,其中P 为α上的任意一点。
◆其次要解决如何结合运算,利用空间向量表示立体几何中的平行、垂直和夹角。
设直线l ,m 的方向向量分别为),,(),,,(321321b b b a a a ==,平面βα,的法向量分别为),,(),,,(321321d d d d c c c c ==,则:(1)线线平行 ⇔=⇔⇔k m l //// ; 线面平行 ⇔=⋅⇔⊥⇔0//l α ;面面平行 ⇔βα// ⇔ ⇔ 。
特别提醒:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合.(2)线线垂直 ⇔=⋅⇔⊥⇔⊥0m l ;线面垂直//l a c a kc α⊥⇔⇔=⇔r r r r; 面面垂直 ⇔⊥βα ⇔ ⇔ 。
专题8.7 立体几何中的向量方法1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.知识点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则知识点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |. 知识点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).【特别提醒】1.线面角θ的正弦值等于直线的方向向量a与平面的法向量n所成角的余弦值的绝对值,即sin θ=|cos 〈a,n〉|,不要误记为cos θ=|cos〈a,n〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n1,n2的夹角是相等,还是互补.考点一用空间向量求异面直线所成的角(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,【典例1】A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)【解析】方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.学科.网由得,所以,故.因此,直线与平面所成的角的正弦值是. 方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下: 因此 由得. 由得. 所以平面.(Ⅱ)设直线与平面所成的角为. 由(Ⅰ)可知 设平面的法向量. 由即可取. 所以.因此,直线与平面所成的角的正弦值是.【举一反三】(河北衡水中学2019届高三模拟)(1)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32 B.155 C.105 D.33(2)在三棱锥P -ABC 中,△ABC 和△PBC 均为等边三角形,且二面角P -BC -A 的大小为120°,则异面直线PB 和AC 所成角的余弦值为( )A.58B.34C.78D.14【答案】(1)C (2)A【解析】(1)法一 以B 为原点,建立如图(1)所示的空间直角坐标系.图(1) 图(2) 则B (0,0,0),B 1(0,0,1),C 1(1,0,1).又在△ABC 中,∠ABC =120°,AB =2,则A (-1,3,0). 所以AB 1→=(1,-3,1),BC 1→=(1,0,1), 则cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=(1,-3,1)·(1,0,1)5·2=25·2=105,因此,异面直线AB 1与BC 1所成角的余弦值为105. 法二 将直三棱柱ABC -A 1B 1C 1补形成直四棱柱ABCD -A 1B 1C 1D 1(如图(2)),连接AD 1,B 1D 1,则AD 1∥BC 1.则∠B 1AD 1为异面直线AB 1与BC 1所成的角(或其补角),易求得AB 1=5,BC 1=AD 1=2,B 1D 1= 3. 由余弦定理得cos ∠B 1AD 1=105. (2)法一 取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以∠POA 就是二面角P -BC -A 的平面角,即∠POA =120°,过点B 作AC 的平行线交AO 的延长线于点D ,连接PD ,则∠PBD 或其补角就是异面直线PB 和AC 所成的角.设AB =a ,则PB =BD =a ,PO=PD =32a ,所以cos ∠PBD =a 2+a 2-⎝⎛⎭⎫32a 22×a ×a=58.法二 如图,取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以BC ⊥平面PAO ,即平面PAO ⊥平面ABC .且∠POA 就是其二面角P -BC -A 的平面角,即∠POA =120°,建立空间直角坐标系如图所示.设AB =2,则A (3,0,0),C (0,-1,0),B (0,1,0),P ⎝⎛⎭⎫-32,0,32, 所以AC →=(-3,-1,0),PB →=⎝⎛⎭⎫32,1,-32,cos 〈AC →,PB →〉=-58,所以异面直线PB 与AC 所成角的余弦值为58.法三 如图所示,取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 是全等的等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以∠POA 就是二面角的平面角,设AB =2,则AC →=OC →-OA →,PB →=OB →-OP →, 故AC →·PB →=(OC →-OA →)·(OB →-OP →)=-52,所以cos 〈AC →,PB →〉=AC →·PB →|AC →|·|PB →|=-58.即异面直线PB 与AC 所成角的余弦值为58.【方法技巧】用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.【变式1】(山东济南一中2019届高三模拟)如图,在正三棱柱ABC -A 1B 1C 1中,AA 1=2AB ,E ,F 分别为BC ,BB 1的中点,M ,N 分别为AA 1,A 1C 1的中点,则直线MN 与EF 所成角的余弦值为( )A.35B.32C.12D.45【答案】C【解析】法一 如图,在原三棱柱的上方,再放一个完全一样的三棱柱,连接AC 1,CB 1,C 1B ′,易得MN ∥AC 1,EF ∥CB 1∥C 1B ′,那么∠AC 1B ′或∠AC 1B ′的补角即直线MN 与EF 所成的角.设AA 1=2AB =2a , 则AC 1=C 1B ′=3a ,连接AB ′,则AB ′=a 2+(22a )2=3a , 由余弦定理得cos ∠AC 1B ′=(3a )2+(3a )2-(3a )22(3a )·(3a )=-12.故直线MN 与EF 所成角的余弦值为12.法二 如图,连接AC 1,C 1B ,CB 1,设C 1B ,CB 1交于点O ,取AB 的中点D ,连接CD ,OD , 则MN ∥AC 1∥OD ,EF ∥CB 1,那么∠DOC 或其补角即直线MN 与EF 所成的角. 设AA 1=2AB =2a , 则AC 1=CB 1=3a , 于是OD =OC =3a 2,又CD =3a 2,于是△OCD 为正三角形, 故∠DOC =60°,cos ∠DOC =12,即直线MN 与EF 所成角的余弦值为12.法三 取AB 的中点O ,连接CO ,则CO ⊥AB ,以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过点O 且平行于CC 1的直线为z 轴建立如图所示的空间直角坐标系.设AB =2,则AA 1=22,求得M (-1,0,2),N ⎝⎛⎭⎫-12,32,22,E ⎝⎛⎭⎫12,32,0,F (1,0,2),所以MN →=⎝⎛⎭⎫12,32,2,EF →=⎝⎛⎭⎫12,-32,2,cos 〈MN →,EF →〉=MN →·EF →|MN →|·|EF →|=323×3=12.考点二 用空间向量求线面角【典例2】 (2018·全国Ⅱ卷)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值. (1)证明 因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以AB 2+BC 2=AC 2, 所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC .(2)解 如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O -xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a ,2-a ,0)(0<a ≤2),则AM →=(0,4-a ,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去),a =43,所以n =⎝⎛⎭⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【方法技巧】利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.【变式2】(广东省惠州一中2019届高三模拟)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF 是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD .(1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值. (1)证明 在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD , 从而BD 2+AD 2=AB 2,故BD ⊥AD , 所以△ABD 为直角三角形且∠ADB =π2.因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD . 又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)解 由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD ,又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3), 所以AE →=(-1,0,3),AC →=(-2,3,0). 设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AC →=0,即⎩⎨⎧-x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1),为平面AEC 的一个法向量. 因为AF →=(-1,3,3),所以cos 〈n ,AF →〉=n ·AF →|n |·|AF →|=4214,所以直线AF 与平面AEC 所成角的正弦值为4214. 考点三 用空间向量求二面角【典例3】(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2. (I )若M 为CF 的中点,N 为EG 的中点,求证:; (II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【举一反三】(山西忻州一中2019届高三质检)如图1,在高为6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,将它沿对称轴OO1折起,使平面ADO1O⊥平面BCO1O,如图2,点P为BC的中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQ∥OB.(1)证明:OD⊥平面PAQ;(2)若BE=2AE,求二面角C-BQ-A的余弦值.(1)证明法一取OO1的中点F,连接AF,PF,如图所示.∵P为BC的中点,∴PF∥OB,∵AQ∥OB,∴PF∥AQ,∴P,F,A,Q四点共面.由题图1可知OB⊥OO1,∵平面ADO1O⊥平面BCO1O,且平面ADO1O∩平面BCO1O=OO1,OB⊂平面BCO1O,∴OB⊥平面ADO1O,∴PF⊥平面ADO1O,又OD ⊂平面ADO 1O ,∴PF ⊥OD .由题意知,AO =OO 1,OF =O 1D ,∠AOF =∠OO 1D , ∴△AOF ≌△OO 1D , ∴∠FAO =∠DOO 1,∴∠FAO +∠AOD =∠DOO 1+∠AOD =90°,∴AF ⊥OD . ∵AF ∩PF =F ,且AF ⊂平面PAQ ,PF ⊂平面PAQ , ∴OD ⊥平面PAQ .法二 由题设知OA ,OB ,OO 1两两垂直,∴以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AQ 的长为m ,则O (0,0,0),A (6,0,0),B (0,6,0), C (0,3,6),D (3,0,6),Q (6,m ,0). ∵点P 为BC 的中点,∴P ⎝⎛⎭⎫0,92,3, ∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=⎝⎛⎭⎫6,m -92,-3. ∵OD →·AQ →=0,OD →·PQ →=0,∴OD →⊥AQ →,OD →⊥PQ →,又AQ →与PQ →不共线, ∴OD ⊥平面PAQ .(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3,则Q (6,3,0),∴QB →=(-6,3,0),BC →=(0,-3,6).设平面CBQ 的法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·QB →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧-6x +3y =0,-3y +6z =0,令z =1,则y =2,x =1,n 1=(1,2,1). 易得平面ABQ 的一个法向量为n 2=(0,0,1).设二面角C -BQ -A 的大小为θ,由图可知,θ为锐角, 则cos θ=⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=66, 即二面角C -BQ -A 的余弦值为66. 【方法技巧】利用空间向量计算二面角大小的常用方法:(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【变式3】(河南洛阳一中2019届高三模拟)如图,在四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AB =BC =CC 1=2CD ,E 为线段AB 的中点,F 是线段DD 1上的动点.(1)求证:EF ∥平面BCC 1B 1;(2)若∠BCD =∠C 1CD =60°,且平面D 1C 1CD ⊥平面ABCD ,求平面BCC 1B 1与平面DC 1B 1所成角(锐角)的余弦值.(1)证明 如图(1),连接DE ,D 1E .图(1)∵AB∥CD,AB=2CD,E是AB的中点,∴BE∥CD,BE=CD,∴四边形BCDE是平行四边形,∴DE∥BC.又DE⊄平面BCC1B1,BC⊂平面BCC1B1,∴DE∥平面BCC1B1.∵DD1∥CC1,DD1⊄平面BCC1B1,CC1⊂平面BCC1B1,∴D1D∥平面BCC1B1.又D1D∩DE=D,∴平面DED1∥平面BCC1B1.∵EF⊂平面DED1,∴EF∥平面BCC1B1.(2)解如图(1),连接BD.设CD=1,则AB=BC=CC1=2.∵∠BCD=60°,∴BD=BC2+CD2-2BC·CD·cos 60°= 3.∴CD2+BD2=BC2,∴BD⊥CD.同理可得,C1D⊥CD.法一∵平面D1C1CD⊥平面ABCD,平面D1C1CD∩平面ABCD=CD,C1D⊂平面D1C1CD,∴C1D⊥平面ABCD,∵BC⊂平面ABCD,∴C1D⊥BC,∴C1D⊥B1C1.在平面ABCD中,过点D作DH⊥BC,垂足为H,连接C1H,如图(1).∵C1D∩DH=D,∴BC⊥平面C1DH.∵C 1H ⊂平面C 1DH ,∴BC ⊥C 1H ,∴B 1C 1⊥C 1H , ∴∠DC 1H 为平面BCC 1B 1与平面DC 1B 1所成的角. ∵在Rt △C 1CD 中,C 1D =3, 在Rt △BCD 中,DH =CD ·sin 60°=32, ∴在Rt △C 1DH 中,C 1H =C 1D 2+DH 2=152, ∴cos ∠DC 1H =C 1D C 1H =255.∴平面BCC 1B 1与平面DC 1B 1所成的角(锐角)的余弦值为255.法二 以D 为原点,分别以DB ,DC ,DC 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图(2),图(2)则D (0,0,0),C (0,1,0),C 1(0,0,3),B (3,0,0),∴B 1C 1→=BC →=(-3,1,0),DC 1→=(0,0,3),CC 1→=(0,-1,3). 设平面BCC 1B 1的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·CC 1→=0,即⎩⎨⎧-3x 1+y 1=0,-y 1+3z 1=0.取z 1=1,则y 1=3,x 1=1,∴平面BCC 1B 1中的一个法向量为n 1=(1,3,1). 设平面DC 1B 1的法向量为n 2=(x 2,y 2,z 2).则⎩⎪⎨⎪⎧n 2·B 1C 1→=0,n 2·DC 1→=0,即⎩⎨⎧-3x 2+y 2=0,3z 2=0.令x 2=1,则y 2=3,z 2=0,∴平面DC 1B 1的一个法向量为n 2=(1,3,0).设平面BCC 1B 1与平面DC 1B 1所成的锐二面角的大小为θ, 则cos θ=|n 1·n 2||n 1||n 2|=1+31+3+1·1+3=255.∴平面BCC 1B 1与平面DC 1B 1所成的角(锐角)的余弦值为255.考点四 与线面角有关的探索性问题【典例4】(辽宁大连八中2019届高三调研)等边△ABC 的边长为3,点D ,E 分别是AB ,BC 上的点,且满足AD DB =CE EA =12(如图(1)),将△ADE 沿DE 折起到△A 1DE 的位置,使二面角A 1-DE -B 成直二面角,连接A 1B ,A 1C (如图(2)).(1)求证:A 1D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线PA 1与平面A 1BD 所成的角为60°?若存在,求出PB 的长;若不存在,请说明理由.(1)证明 题图(1)中,由已知可得: AE =2,AD =1,A =60°.从而DE =12+22-2×1×2×cos 60°= 3. 故得AD 2+DE 2=AE 2,∴AD ⊥DE ,BD ⊥DE . ∴题图(2)中,A 1D ⊥DE ,BD ⊥DE ,∴∠A 1DB 为二面角A 1-DE -B 的平面角, 又二面角A 1-DE -B 为直二面角, ∴∠A 1DB =90°,即A 1D ⊥DB , ∵DE ∩DB =D 且DE ,DB ⊂平面BCED , ∴A 1D ⊥平面BCED .(2)解 存在.由(1)知ED ⊥DB ,A 1D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、DA 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz ,如图,过P 作PH ∥DE 交BD 于点H ,设PB =2a (0≤2a ≤3),则BH =a ,PH =3a ,DH =2-a , 易知A 1(0,0,1),P (2-a ,3a ,0),E (0,3,0), 所以PA 1→=(a -2,-3a ,1). 因为ED ⊥平面A 1BD ,所以平面A 1BD 的一个法向量为DE →=(0,3,0).因为直线PA 1与平面A 1BD 所成的角为60°,所以sin 60°=|PA 1→·DE →||PA 1→||DE →|=3a 4a 2-4a +5×3=32,解得a =54. ∴PB =2a =52,满足0≤2a ≤3,符合题意.所以在线段BC 上存在点P ,使直线PA 1与平面A 1BD 所成的角为60°,此时PB =52.【方法技巧】解决此类问题的基本策略是执果索因,其结论明确需要求出使结论成立的充分条件,将题设和结论都视为已知条件即可迅速找到切入点,建立方程(组)并解方程(组),若有解,则存在并求得结论成立的条件,若无解,则不存在.【变式4】(黑龙江大庆第一中学2019届高三模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,∠ABC =45°,AD =AP =2,AB =DP =22,E 为CD 的中点,点F 在线段PB 上.(1)求证:AD ⊥PC ;(2)试确定点F 的位置,使得直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等. (1)证明 如图,在平行四边形ABCD 中,连接AC ,因为AB =22,BC =2,∠ABC =45°,由余弦定理得,AC 2=AB 2+BC 2-2·AB ·BC ·cos 45°=4,得AC =2, 所以AC 2+BC 2=AB 2, 所以∠ACB =90°,即BC ⊥AC . 又AD ∥BC ,所以AD ⊥AC , 因为AD =AP =2,DP =22, 所以AD 2+AP 2=DP 2,所以PA ⊥AD ,又AP ∩AC =A ,所以AD ⊥平面PAC ,所以AD ⊥PC .(2)解 因为侧面PAD ⊥底面ABCD ,PA ⊥AD ,所以PA ⊥底面ABCD ,所以直线AC ,AD ,AP 两两互相垂直,以A 为原点,直线AD ,AC ,AP 为坐标轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),D (-2,0,0),C (0,2,0),B (2,2,0),E (-1,1,0),P (0,0,2),所以PC →=(0,2,-2),PD →=(-2,0,-2),PB →=(2,2,-2).设PF PB=λ(λ∈[0,1]),则PF →=(2λ,2λ,-2λ),F (2λ,2λ,-2λ+2), 所以EF →=(2λ+1,2λ-1,-2λ+2),易得平面ABCD 的一个法向量为m =(0,0,1). 设平面PDC 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,得⎩⎪⎨⎪⎧2y -2z =0,-2x -2z =0,令x =1,得n =(1,-1,-1).因为直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等, 所以|cos 〈EF →,m 〉|=|cos 〈EF →,n 〉|, 即|EF →·m ||EF →||m |=|EF →·n ||EF →||n |,所以|-2λ+2|=⎪⎪⎪⎪2λ3, 即3|λ-1|=|λ|(λ∈[0,1]),解得λ=3-32,所以PF PB =3-32.即当PF PB =3-32时,直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等.考点五 与二面角有关的探索性问题【典例5】(湖南长郡中学2019届高三模拟)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面P AD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,P A =PD =2,BC =12AD =1,CD = 3.(1)求证:平面PBC ⊥平面PQB ;(2)当PM 的长为何值时,平面QMB 与平面PDC 所成的锐二面角的大小为60°? (1)证明 ∵AD ∥BC ,Q 为AD 的中点,BC =12AD ,∴BC ∥QD ,BC =QD ,∴四边形BCDQ 为平行四边形,∴BQ ∥CD . ∵∠ADC =90°,∴BC ⊥BQ . ∵P A =PD ,AQ =QD ,∴PQ ⊥AD .又∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , ∴PQ ⊥平面ABCD ,∴PQ ⊥BC . 又∵PQ ∩BQ =Q ,∴BC ⊥平面PQB . ∵BC ⊂平面PBC ,∴平面PBC ⊥平面PQB .(2)解 由(1)可知PQ ⊥平面ABCD .如图,以Q 为原点,分别以QA ,QB ,QP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则Q (0,0,0),D (-1,0,0),P (0,0,3),B (0,3,0),C (-1,3,0),∴QB →=(0,3,0),DC →=(0,3,0),DP →=(1,0,3),PC →=(-1,3,-3).设PM →=λPC →,则PM →=(-λ,3λ,-3λ),且0≤λ≤1,得M (-λ,3λ,3-3λ),∴QM →=(-λ,3λ,3(1-λ)).设平面MBQ 的法向量为m =(x ,y ,z ),则 ⎩⎪⎨⎪⎧QM →·m =0,QB →·m =0,即⎩⎨⎧-λx +3λy +3(1-λ)z =0,3y =0. 令x =3,则y =0,z =λ1-λ,∴平面MBQ 的一个法向量为m =⎝⎛⎭⎫3,0,λ1-λ.设平面PDC 的法向量为n =(x ′,y ′,z ′),则 ⎩⎪⎨⎪⎧DC →·n =0,DP →·n =0,即⎩⎨⎧3y ′=0,x ′+3z ′=0.令x ′=3,则y ′=0,z ′=-3,∴平面PDC 的一个法向量为n =(3,0,-3).∴平面QMB 与平面PDC 所成的锐二面角的大小为60°, ∴cos 60°=|n ·m ||n ||m |=⎪⎪⎪⎪33-3·λ1-λ12·3+⎝⎛⎭⎫λ1-λ2=12, ∴λ=12.∴PM =12PC =72.【方法技巧】1.解决探究性问题的基本方法是假设结论成立或对象存在,然后在这个前提下进行逻辑推理,若能推导出与条件吻合的数据或事实,则说明假设成立,即存在,并可进一步证明;否则不成立,即不存在.2.探索线段上是否存在点时,注意三点共线条件的应用.3.利用空间向量的坐标运算,可将空间中的探究性问题转化为方程是否有解的问题进行处理. 【变式5】(江苏启东中学2019届高三质检)如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠ABC =60°,AB =2BC =2CD ,四边形DCEF 是正方形,N ,G 分别是线段AB ,CE 的中点.(1)求证:NG ∥平面ADF ;(2)设二面角A -CD -F 的大小为θ⎝⎛⎭⎫π2<θ<π,当θ为何值时,二面角A -BC -E 的余弦值为1313? (1)证明 法一 如图,设DF 的中点为M ,连接AM ,GM ,因为四边形DCEF是正方形,所以MG綉CD,又四边形ABCD是梯形,且AB=2CD,AB∥CD,点N 是AB的中点,所以AN綉DC,所以MG綉AN,所以四边形ANGM是平行四边形,所以NG∥AM.又AM⊂平面ADF,NG⊄平面ADF,所以NG∥平面ADF.法二如图,连接NC,NE,因为N是AB的中点,四边形ABCD是梯形,AB=2CD,AB∥CD,所以AN綉CD,所以四边形ANCD是平行四边形,所以NC∥AD,因为AD⊂平面ADF,NC⊄平面ADF,所以NC∥平面ADF,同理可得NE∥平面ADF,又NC∩NE=N,所以平面NCE∥平面ADF,因为NG⊂平面NCE,所以NG∥平面ADF.(2)解 设CD 的中点为O ,EF 的中点为P ,连接NO ,OP ,易得NO ⊥CD ,以点O 为原点,以OC 所在直线为x 轴,以NO 所在直线为y 轴,以过点O 且与平面ABCD 垂直的直线为z 轴建立如图所示的空间直角坐标系.因为NO ⊥CD ,OP ⊥CD ,所以∠NOP 是二面角A -CD -F 的平面角, 则∠NOP =θ,所以∠POy =π-θ,设AB =4,则BC =CD =2,则P (0,2cos(π-θ),2sin(π-θ)),E (1,2cos(π-θ),2sin(π-θ)),C (1,0,0),B (2,-3,0),CE →=(0,2cos(π-θ),2sin(π-θ)),CB →=(1,-3,0), 设平面BCE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB →=0,n ·CE →=0,即⎩⎨⎧x -3y =0,2y cos (π-θ)+2z sin (π-θ)=0,因为θ∈⎝⎛⎭⎫π2,π,所以cos(π-θ)≠0,令z =1,则y =-tan(π-θ),x =-3tan(π-θ),所以n =(-3tan(π-θ),-tan(π-θ),1)为平面BCE 的一个法向量, 又易知平面ACD 的一个法向量为m =(0,0,1), 所以cos 〈m ,n 〉=m ·n |m |·|n |=14tan 2(π-θ)+1,由图可知二面角A -BC -E 为锐角, 所以14tan 2(π-θ)+1=1313,解得tan 2(π-θ)=3,又π2<θ<π,所以tan(π-θ)=3,即π-θ=π3,得θ=2π3,所以当二面角A -CD -F 的大小为2π3时,二面角A -BC -E 的余弦值为1313.考点六 与空间角有关的最值问题【典例6】(湖北武汉二中2019届高三质检)如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在平面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值. (1)证明 如图,连接AC ,交BD 于点O ,连接EO ,∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC ,易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,∴BD ⊥平面AEC , 又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt △ADC 中,由AD =3,CD =1,可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32,易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°, 即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O , ∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°,即∠DAB =60°,∴△ABD 为正三角形,∴DN ⊥AB ,又BC ⊥AB , ∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,建立如图所示的空间直角坐标系,则A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫0,32,0,E ⎝⎛⎭⎫0,0,32,M ⎝⎛⎭⎫34,0,34,D ⎝⎛⎭⎫0,-32,0,N ⎝⎛⎭⎫34,34,0, ∴AB →=⎝⎛⎭⎫-32,32,0,AE →=⎝⎛⎭⎫-32,0,32,DM →=⎝⎛⎭⎫34,32,34,MN →=⎝⎛⎭⎫0,34,-34,设平面ABE 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AB →·n =0,AE →·n =0,即⎩⎨⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3), 设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝⎛⎭⎫34,32+34λ,34-34λ,设直线DP 与平面ABE 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪n ·DP →|n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427. 故直线DP 与平面ABE 所成角的正弦值的最大值为427. 【方法技巧】解决空间角的最值问题一般是把空间角的某个三角函数值表示为某个变量的函数,利用这个函数的单调性求三角函数值的最值,求解时需要注意的是函数中自变量的取值范围对最值的决定作用.【变式6】(江西南昌二中2019届高三模拟)如图所示,P A ⊥平面ADE ,B ,C 分别是AE ,DE 的中点,AE ⊥AD ,AD =AE =AP =2.(1)求二面角A -PE -D 的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.【解析】(1)因为P A ⊥平面ADE ,AD ⊂平面ADE ,AB ⊂平面ADE ,所以P A ⊥AD ,P A ⊥AB ,又因为AB ⊥AD ,所以P A ,AD ,AB 两两垂直,以{AB →,AD →,AP →}为正交基底建立空间直角坐标系A -xyz ,则各点的坐标为A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为P A ⊥AD ,AD ⊥AE ,AE ∩P A =A ,所以AD ⊥平面P AE ,所以AD →是平面P AE 的一个法向量,且AD →=(0,2,0).易得PC →=(1,1,-2),PD →=(0,2,-2).设平面PED 的法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PED 的一个法向量,所以cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以二面角A -PE -D 的余弦值为33. (2)BP →=(-1,0,2),故可设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1). 又CB →=(0,-1,0),所以CQ →=CB →+BQ →=(-λ,-1,2λ). 又DP →=(0,-2,2),所以cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910, 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝⎛⎭⎫0,π2上是减函数, 所以当λ=25时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.。
高考数学复习:立体几何中的向量方法空间向量及其应用一般每年考一道大题,试题一般以多面体为载体,分步设问,既考查综合几何也考查向量几何,诸小问之间有一定梯度,大多模式是:诸小问依次讨论线线垂直与平行→线面垂直与平行→面面垂直与平行→异面直线所成角、线面角、二面角→体积的计算.强调作图、证明、计算相结合.考查的多面体以三棱锥、四棱锥(有一条侧棱与底面垂直的棱锥、正棱锥)、棱柱(有一侧棱或侧面与底面垂直的棱柱,或底面为特殊图形一如正三角形、正方形、矩形、菱形、直角三角形等类型的棱柱)为主.1.共线向量与共面向量(1)共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb .(2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对(x ,y ),使p =xa +yb . 2.两个向量的数量积向量a 、b 的数量积:a ·b =|a ||b |cos 〈a ,b 〉. 向量的数量积满足如下运算律: ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一有序实数组{x ,y ,z },使p =xa +yb +zc . 推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组{x ,y ,z },使OP →=xOA →+yOB →+zOC →.4.空间向量平行与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 5.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a ·a =a 21+a 22+a 23,cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23.(2)距离公式设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则 |AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(3)平面的法向量如果表示向量a 的有向线段所在的直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α. 如果a ⊥α,那么向量a 叫做平面α的法向量. 6.空间角的类型与范围 (1)异面直线所成的角θ:0<θ≤π2;(2)直线与平面所成的角θ:0≤θ≤π2;(3)二面角θ:0≤θ≤π.7.用向量求空间角与距离的方法(1)求空间角:设直线l 1、l 2的方向向量分别为a 、b ,平面α、β的法向量分别为n 、m . ①异面直线l 1与l 2所成的角为θ,则cos θ=|a ·b ||a ||b |.②直线l 1与平面α所成的角为θ,则sin θ=|a ·n ||a ||n |.③平面α与平面β所成的二面角为θ,则|cos θ|=|n ·m ||n ||m |. (2)求空间距离①直线到平面的距离,两平行平面间的距离均可转化为点到平面的距离. 点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).②设n 与异面直线a ,b 都垂直,A 是直线a 上任一点,B 是直线B 上任一点,则异面直线a 、b 的距离d =|AB →·n ||n |.高频考点一 向量法证明平行与垂直 例1、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式探究】如图所示,在底面是矩形的四棱锥P-ABCD中,P A⊥底面ABCD,E,F分别是PC,PD的中点,P A=AB=1,BC=2.(1)求证:EF∥平面P AB;(2)求证:平面P AD⊥平面PDC.【证明】以A为原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系A-xyz如图所示,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),所以E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0). (1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB .又AB ⊂平面P AB ,EF ⊄平面P AB , 所以EF ∥平面P AB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, 所以AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC . ④转化为几何结论.【变式探究】(2017·北京卷)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4. (1)求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.解析:(1)证明:如图,设AC ,BD 交于点E ,连接ME , 因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为四边形ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.(2)取AD 的中点O ,连接OP ,OE . 因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形,所以OE ⊥AD .如图,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z = 2. 于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=12.(3)由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0),MC →=⎝⎛⎭⎫3,2,-22.设直线MC 与平面BDP 所成角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269,所以直线MC 与平面BDP 所成角的正弦值为269.高频考点三 探索性问题要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由,这类问题常用“肯定顺推”的方法.例 3、如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【解析】 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面P AD ,PD ⊂平面P AD ,所以AB ⊥PD . 又因为P A ⊥PD , 所以PD ⊥平面P AB .(2)取AD 的中点O ,连接PO ,CO . 因为P A =PD ,所以PO ⊥CD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图,建立空间直角坐标系O -xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1).设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.(3)设M 是棱P A 上一点, 则存在λ∈[0,1]使得AM →=λAP →.因此点M (0,1-λ,λ), BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD 当且仅当BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0. 解得λ=14.所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.【方法技巧】空间向量最适合于解决这类立体几何中的探索性问题,它无须进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【变式探究】如图所示,已知正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,点D 为AC 的中点,点E 的线段AA 1上.(1)当AE EA1=12时,求证:DE⊥BC1;(2)是否存在点E,使二面角D-BE-A等于60°?若存在,求AE的长;若不存在,请说明理由.(2)假设存在点E满足条件,设AE=h.取A1C1的中点D1,连接DD1,则DD1⊥平面ABC,所以DD1⊥AD,DD1⊥BD.如图,分别以DA,DB,DD1所在直线为x,y,z轴建立空间直角坐标系D-xyz,则A (1,0,0),B (0,3,0),E (1,0,h ).所以DB →=(0,3,0),DE →=(1,0,h ),AB →=(-1,3,0),AE →=(0,0,h ). 设平面DBE 的一个法向量为n 1=(x 1,y 1,z 1)则⎩⎪⎨⎪⎧n 1·DB →=0,n 1·DE →=0,即⎩⎨⎧3y 1=0,x 1+hz 1=0. 令z 1=1,得n 1=(-h,0,1).同理,设平面ABE 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·AB →=0,n 2·AE →=0,即⎩⎨⎧-x 2+3y 2=0,hz 2=0.得n 2=(3,1,0). 所以|cos 〈n 1,n 2〉|=|-3h |h 2+1·2=cos60°=12.解得h =22<3,故存在点E 满足条件. 当AE =22时,二面角D -BE -A 等于60°.1. (2018年浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)【解析】方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.3. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.4. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以,因此,.设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为.5. (2018年江苏卷)在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.6. (2018年全国I卷理数)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量.设DP与平面ABFD所成角为,则.所以DP与平面ABFD所成角的正弦值为.7. (2018年全国Ⅲ卷理数)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,,所以面MAB与面MCD所成二面角的正弦值是.8. (2018年全国Ⅱ卷理数)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)见解析(2)【解析】(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.1.【2017课标1,理18】如图,在四棱锥P-ABCD中,AB//CD,且.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=A B=DC,,求二面角A-PB-C的余弦值.【答案】(1)见解析;(2)33 -.【解析】(1)由已知,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,从而AB⊥平面P AD.又AB⊂平面P AB,所以平面P AB⊥平面P AD.(2)在平面PAD内做PF AD⊥,垂足为F,由(1)可知,AB⊥平面PAD,故AB PF⊥,可得PF⊥平面ABCD.以F为坐标原点,FA的方向为x轴正方向,AB为单位长,建立如图所示的空间直角坐标系F xyz-.由(1)及已知可得,,,.所以,,,.设(),,n x y z =是平面PCB 的法向量,则,即,可取.设是平面PAB 的法向量,则,即,可取()1,0,1n =.则,所以二面角A PB C --的余弦值为33-. 2.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点.(Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.【答案】(Ⅰ).(Ⅱ)60︒.【解析】(Ⅰ)因为AP BE ⊥, AB BE ⊥,AB , AP ⊂平面ABP ,,所以BE ⊥平面ABP , 又BP ⊂平面ABP , 所以BE BP ⊥,又,因此(Ⅱ)以B 为坐标原点,分别以BE , BP , BA 所在的直线为x , y , z 轴,建立如图所示的空间直角坐标系.由题意得()0,0,3A ()2,0,0E , ()1,3,3G ,,故,,, 设是平面AEG 的一个法向量.由可得取12z =,可得平面AEG 的一个法向量.设是平面ACG 的一个法向量.由可得取22z =-,可得平面ACG 的一个法向量.所以.因此所求的角为60︒.3.【2017北京,理16】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD =6,AB=4. (I )求证:M 为PB 的中点; (II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.【答案】(Ⅰ)详见解析:(Ⅱ)3π;(Ⅲ)269【解析】(I )设,AC BD 交点为E ,连接ME .因为PD 平面MAC ,平面MAC ⋂平面PBD ME =,所以PD ME . 因为ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(II )取AD 的中点O ,连接OP , OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图建立空间直角坐标系O xyz -,则()0,0,2P , ()2,0,0D , ()2,4,0B -,,.设平面BDP 的法向量为(),,n x y z =,则,即.令1x =,则1y =, 2z =.于是.平面PAD 的法向量为()0,1,0p =,所以.由题知二面角B PD A --为锐角,所以它的大小为3π.(III )由题意知, ()2,4,0D ,.设直线MC 与平面BDP 所成角为α,则.所以直线MC 与平面BDP 所成角的正弦值为269. 4.【2017天津,理17】如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,.点D ,E ,N 分别为棱P A ,P C ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【答案】 (1)证明见解析(2)10521 (3)85 或12【解析】如图,以A 为原点,分别以AB , AC , AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(Ⅰ)证明: DE =(0,2,0),DB =(2,0, 2-).设(),,n x y z =,为平面BDE 的法向量,则,即.不妨设1z =,可得()1,0,1n =.又MN =(1,2, 1-),可得0MN n ⋅=.因为MN ⊄平面BDE ,所以MN //平面BDE .(Ⅱ)解:易知()11,0,0n =为平面CEM 的一个法向量.设为平面EMN 的法向量,则,因为,,所以.不妨设1y =,可得.因此有,于是.所以,二面角C —EM —N 的正弦值为10521. (Ⅲ)解:依题意,设AH =h (04h ≤≤),则H (0,0,h ),进而可得,.由已知,得,整理得,解得85h =,或12h =. 所以,线段AH 的长为85或12. 5.【2017江苏,22】 如图, 在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.【答案】(1)17(2)74【解析】在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA1⊥平面ABCD,所以AA1⊥AE,AA1⊥AD.如图,以为正交基底,建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=3,.则.(1),则.因此异面直线A1B与AC1所成角的余弦值为1 7 .(2)平面A1DA的一个法向量为. 设为平面BA1D的一个法向量,又,则即不妨取x=3,则,所以为平面BA1D的一个法向量,从而,设二面角B -A 1D -A 的大小为θ,则3cos 4θ=. 因为[]0,θπ∈,所以.因此二面角B -A 1D -A 的正弦值为74. 1.【2016高考新课标1卷】(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )21919- 【解析】(Ⅰ)由已知可得ΑF DF ⊥,ΑF FE ⊥,所以ΑF ⊥平面ΕFDC . 又F A ⊂平面ΑΒΕF ,故平面ΑΒΕF⊥平面ΕFDC .(Ⅱ)过D 作DG ΕF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ΑΒΕF .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故,则2DF =,3DG =,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,()0,0,3D .由已知,//AB EF ,所以//AB 平面EFDC . 又平面ABCD平面,故//AB CD ,//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,所以C ΕF ∠为二面角C BE F --的平面角,.从而可得. 所以,,,.设(),,x y z =n 是平面ΒC Ε的法向量,则ΕC ΕΒ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,所以可取.设m 是平面ΑΒCD 的法向量,则,同理可取.则.故二面角E BC A 的余弦值为21919-.【考点定位】线面垂直、二面角、勾股定理8. 【2014高考江西理第19题】如图,四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD . (1)求证:;PD AB ⊥ (2)若问AB 为何值时,四棱锥ABCD P -的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值【答案】(1)详见解析, (2)63AB =时,四棱锥的体积P-ABCD 最大. 平面BPC 与平面DPC 夹角的余弦值为10.5【解析】(1)证明:ABCD 为矩形,故AB ⊥AD , 又平面PAD ⊥平面ABCD 平面PAD平面ABCD=AD所以AB ⊥平面PAD ,因为PD ⊂平面PAD ,故AB ⊥PD(2)解:过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG,BC ⊥PG在直角三角形BPC 中,设,AB m =,则,故四棱锥P-ABCD 的体积为因为故当63m =时,即63AB =时,四棱锥的体积P-ABCD 最大.A BCD P建立如图所示的空间直角坐标系,故设平面BPC 的法向量,则由1PC ⊥n ,1BC ⊥n 得解得1,0,x y ==1(1,0,1),=n同理可求出平面DPC 的法向量,从而平面BPC 与平面DPC 夹角θ的余弦值为【考点定位】面面垂直性质定理,四棱锥体积,利用空间向量求二面角 9. 【2014高考辽宁理第19题】如图,ABC ∆和BCD ∆所在平面互相垂直,且,,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.【答案】(1)详见解析;(2) 255. 【解析】 (1)证明:(方法一)过E 作EO ⊥BC ,垂足为O ,连OF ,由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC=∠FOC=2π,即FO ⊥BC , 又EO ⊥BC ,因此BC ⊥面EFO , 又EF ⊂面EFO ,所以EF ⊥BC.(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 左垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.易得B (0,0,0),A(0,-1,3),D(3,-1,0),C(0,2,0),因而,所以,因此0EF BC ⋅=,从而EF BC ⊥,所以EF BC ⊥.(2)(方法一)在图1中,过O 作OG ⊥BF ,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,从而EO ⊥面BDC ,又OG ⊥BF ,由三垂线定理知EG 垂直BF. 因此∠EGO 为二面角E-BF-C 的平面角;在△EOC 中,EO=12EC=12BC·cos30°=32,由△BGO ∽△BFC 知,,因此tan ∠EGO=2EOOG=,从而sin ∠EGO=255,即二面角E-BF-C 的正弦值为255. (方法二)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量,又,由得其中一个,设二面角E-BF-C 的大小为θ,且由题意知θ为锐角,则,因此sin ∠EGO=255,即二面角E-BF-C 的正弦值为255. 【考点定位】线面垂直的判定、二面角. 10. 【2014高考全国1第19题】如图,三棱柱中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =; (Ⅱ)若1AC AB ⊥,,BC AB =,求二面角的余弦值.(Ⅰ)证明:1AB AC =; (Ⅱ)若1AC AB ⊥,,BC AB =,求二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ)17【解析】(I )连接1BC ,交1B C 于O ,连接AO .因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥.又1B O CO =,故1AB AC =. (II )因为1AC AB ⊥,且O 为1B C 的中点,所以AO CO =,又因为BC AB =,.故OA OB ⊥,从而两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示的空间直角坐标系O xyz -.因为,所以1CBB ∆为等边三角形.又AB BC =,则3(0,0,)3A ,(1,0,0)B ,,., ,.设(,,)n x y z =是平面11AA B 的法向量,则即所以可取.设m 是平面111A B C 的法向量,则同理可取.则.所以二面角的余弦值为17.11. 【2014高考陕西第17题】四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱于点H G F ,,.学科网(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值. 【答案】(1)证明见解析;(2)105. 【解析】(1)由该四面体的三视图可知:,由题设,BC ∥面EFGH 面EFGH 面BDC FG = 面EFGH面ABC EH =BC ∴∥FG ,BC ∥EH , FG ∴∥EH .同理EF ∥AD ,HG ∥AD , EF ∴∥HG .∴四边形EFGH 是平行四边形又∴AD ⊥平面BDCAD BC ∴⊥BC ∥FG ,EF ∥AD EF FG ∴⊥∴四边形EFGH 是矩形(2)如图,以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C,,设平面EFGH 的一个法向量(,,)n x y z =BC ∥FG ,EF ∥AD即得,取(1,1,0)n =。
第7讲立体几何中的向量方法(一)——证明平行与垂直最新考纲 1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=01.判断正误(在括号内打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)若两直线的方向向量不平行,则两直线不平行.( )(3)若两平面的法向量平行,则两平面平行或重合.( )(4)若空间向量a平行于平面α,则a所在直线与平面α平行.( )答案(1)×(2)√(3)√(4)×2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对解析∵n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β不平行,也不垂直.答案 C3.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33 D.⎝⎛⎭⎪⎫33,33,-33 解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .答案 C4.(2017·青岛月考)所图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设|AD |=2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),所以AM →=(-2,0,1),ON →=(1,0,2),因此AM →·ON →=-2+0+2=0,故AM ⊥ON .答案 垂直5.(2017·杭州调研)设直线l 的方向向量为a ,平面α的法向量为n =(2,2,4),若a =(1,1,2),则直线l 与平面α的位置关系为________;若a =(-1,-1,1),则直线l 与平面α的位置关系为________. 解析 当a =(1,1,2)时,a =12n ,则l ⊥α;当a =(-1,-1,1)时,a ·n =(-1,-1,1)·(2,2,4)=0,则l ∥α或l ⊂α. 答案 l ⊥α l ∥α或l ⊂α6.(2017·绍兴月考)设α,β为两个不同的平面,u =(-2,2,5),v =(1,-1,x )分别为平面α,β的法向量.(1)若α⊥β,则x =________; (2)若α∥β,则x =________.解析 (1)由α⊥β,得u ·v =0,即-2-2+5x =0,x =45;(2)由α∥β,得u ∥v ,即-21=2-1=5x ,x =-52.答案 (1)45 (2)-52考点一 利用空间向量证明平行问题【例1】 如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz . 由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0又由法一知PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0,∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄平面EFG ,∴PB ∥平面EFG .法二 PB →=(2,0,-2),FE →=(0,-1,0), FG →=(1,1,-1).设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →, 又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .(2)取PA 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·PA →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥PA →,即DM ⊥PA .又∵PA ∩PB =P , ∴DM ⊥平面PAB .∵DM ⊂平面PAD , ∴平面PAD ⊥平面PAB .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,故AB 1⊥平面A 1BD . 法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三 利用空间向量解决探索性问题【例3】 (2017·湖州调研)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .规律方法 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在. 【训练3】 在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (1)求证:EF ⊥CD ;(2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 坐标;若不存在,试说明理由.(1)证明 由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).∵EF →·DC →=0,∴EF →⊥DC →,从而得EF ⊥CD . (2)解 假设存在满足条件的点G ,设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即存在满足条件的点G ,且点G 为AD 的中点.[思想方法]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直. [易错防范]1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.。
专题8.7 立体几何中的向量方法(知识点讲解)【知识框架】【核心素养】以几何体为载体,考查空间线面的平行、垂直关系,考查空间角的函数值的计算,凸显直观想象、数学运算、逻辑推理的核心素养.【知识点展示】(一)异面直线所成的角①定义:设a ,b 是两条异面直线,过空间任一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做a 与b 所成的角.②范围:两异面直线所成角θ的取值范围是(0,]2π.③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos |cos |||||||a ba b θϕ⋅==⋅.(二)直线与平面所成角直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.范围 [0,]2π.(三) 二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).(3)二面角的范围是[0,π]. (四)利用向量求空间距离点面距的求法:如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【常考题型剖析】题型一: 求异面直线所成的角例1.(2018·全国高考真题(理))在长方体1111ABCD A B C D -中,1AB BC ==,13AA =线1AD 与1DB 所成角的余弦值为( )A .15B .56C 5D .22【答案】C【解析】以D 为坐标原点,DA,DC,DD 1为x,y,z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,13),3)D A B D ,所以11(1,0,3),(1,13)AD DB =-=,因为11111115cos ,525AD DB AD DB AD DB ⋅-===⨯,所以异面直线1AD 与1DB 5,选C.例2.(2023·全国·高三专题练习(理))已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C 21D 421【答案】B 【解析】 【分析】利用空间向量的线性运算性质,结合空间向量夹角公式进行求解即可. 【详解】设该正面体的棱长为1,因为M 为BC 中点,N 为AD 中点, 所以22131(1)2BN DM ==-⨯因为M 为BC 中点,N 为AD 中点, 所以有12BN BA AN AB AD =+=-+, 1111(),2222DM DB BM DA AB BC AD AB AC AB AD AB AC =+=++=-++-=-++2222111()()222111112224411111111111111111112222242421,2BN DMAB AD AD AB AC AB AD AB AB AC AD AB AD AC AD⋅=-+-++=⋅--⋅-+⋅+⋅=⨯⨯-⨯-⨯⨯⨯-⨯+⨯⨯⨯+⨯⨯⨯=- 122cos ,333BN DM BN DM BN DM-⋅〈〉===-⋅⨯,根据异面直线所成角的定义可知直线BN 与直线DM 所成角的余弦值为23, 故选:B例3.(2022·贵州毕节·三模(理))在正四棱锥S ABCD -中,底面边长为22侧棱长为4,点P 是底面ABCD 内一动点,且13SP =A ,P 两点间距离最小时,直线BP 与直线SC 所成角的余弦值为( ) A 5B 3C 2D .110【答案】A 【解析】 【分析】如图所示,连接,AC BC 交于点O ,连接PO ,得到PO ⊥底面ABCD ,根据13SP =求得1OP =,得到,A P 两点间距离最小为1AB =,以,,OA OB OS 分别为x 轴、y 轴和z 轴,建立空间直角坐标系,求得(1,2,0),(2,0,23)BP SC =-=--,结合向量的夹角公式,即可求解.【详解】如图所示,连接,AC BC 交于点O ,连接PO ,因为四棱锥S ABCD -为正四棱锥,可得PO ⊥底面ABCD , 由底面边长为24AC =,所以2AO =,在直角SOA 中,4,2SA AO ==,可得2223SO SA AO =- 又由13SP =SOP △中,可得221OP SP SO -=, 即点P 在以O 为圆心,以1为半径的圆上,所以当圆与OA 的交点时,此时,A P 两点间距离最小,最小值为1AB =, 以,,OA OB OS 分别为x 轴、y 轴和z 轴,建立空间直角坐标系,如图所示, 可得(1,0,0),(0,2,0),(0,0,3),(2,0,0)P B S C -,则(1,2,0),(2,0,23)BP SC =-=--,可得25cos ,54BP SC BP SC BP SC⋅-==⨯⋅, 所以直线BP 与直线SC 5故选:A.【方法技巧】向量法求两异面直线所成角的步骤 (1)选好基底或建立空间直角坐标系; (2)求出两直线的方向向量v 1,v 2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.提醒:两异面直线所成角θ的范围是⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角. 题型二:求直线与平面所成角例4.(2022·全国·模拟预测(理))如图为一个四棱锥与三棱锥的组合体,C ,D ,E 三点共线,已知三棱锥P -ADE 四个面都为直角三角形,且ED ⊥AD ,P A ⊥平面ABCE ,PE =3,CD =AD =2,ED =1,则直线PC 与平面P AE 所成角的正弦值等于( )A 3B 10C 15D 13 【答案】C 【解析】本题利用空间向量处理线面夹角问题,sin cos ,PC n θ=. 【详解】如图建立空间直角坐标系,()002P ,,,()2,2,0C ,()0,0,0A ,()2,1,0E -则有:()2,2,2PC =--,()2,1,0AE =-,()0,0,2AP =设平面P AE 的法向量(),,n x y z =,则有2020x y z -=⎧⎨=⎩,令1x =,则2,0y z ==,即()1,2,0n = ∴15cos ,5PC n PC n PC n⋅==-PC 与平面P AE 15 故选:C .例5.(2021·浙江高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215.(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出. 【详解】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,2),3,0,0)A P D ,(0,0,0),3,1,0)M C -又N 为PC 中点,所以313352,2222N AN ⎛-=- ⎝⎝. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin ||2725244AN n AN n θ⋅===++‖例6. (2020·北京高考真题)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)23. 【解析】(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD , 1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩, 令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23. 【总结提升】利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 题型三:求二面角例7.(2021·天津高考真题)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值. (III )求二面角11A AC E --的正弦值. 【答案】(I )证明见解析;(II 3(III )13.【分析】(I )建立空间直角坐标系,求出1D F 及平面11A EC 的一个法向量m ,证明1m D F ⊥,即可得证; (II )求出1AC ,由1sin cos ,A m C θ=运算即可得解; (III )求得平面11AA C 的一个法向量DB ,由cos ,DB m DB m DB m⋅=⋅结合同角三角函数的平方关系即可得解.【详解】(I )以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立如图空间直角坐标系, 则()0,0,0A ,()10,0,2A ,()2,0,0B ,()2,2,0C ,()0,2,0D ,()12,2,2C ,()10,2,2D , 因为E 为棱BC 的中点,F 为棱CD 的中点,所以()2,1,0E ,()1,2,0F ,所以()11,0,2D F =-,()112,2,0AC =,()12,1,2A E =-, 设平面11A EC 的一个法向量为()111,,m x y z =,则11111111202202m x y m x y A A E z C ⎧⋅+=⎪⎨⋅+-=⎩=⎪=,令12x =,则()2,2,1m =-,因为1220m D F =⋅-=,所以1m D F ⊥,因为1D F ⊄平面11A EC ,所以1//D F 平面11A EC ; (II )由(1)得,()12,2,2AC =, 设直线1AC 与平面11A EC 所成角为θ, 则11123sin cos ,323m A C AC m m C A θ⋅===⨯⋅ (III )由正方体的特征可得,平面11AA C 的一个法向量为()2,2,0DB =-, 则822cos ,322DB m DB m DB m⋅===⨯⋅ 所以二面角11A AC E --211cos,3DB m -=.例8. (2021·全国·高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(12;(270【解析】 【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果. 【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =22BC a == [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM. 所以2112BC =.所以2BC = [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,241+DB t 21+AM t 由1122=⋅=⋅DABSDA AB DB AN ,得221241123=++t t t 212t =,所以22==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x ()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,2BM ⎛⎫= ⎪ ⎪⎝⎭,()2,1,1BP =--,由222220220n BM n BP x y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3314cos ,72m n m n m n ⋅===⋅⨯ 所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --的正弦值为70 [方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 21D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得310=HG 在Rt AHG 中,2310==AH HG ,由勾股定理求得35=AG . 所以,70sin AH AGH AG ∠==,即二面角A PM B --70【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得. (2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.例9. (2021·全国·高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N , 因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠.又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=52520255-=,所以BF ED ⊥. (2)[方法一]【最优解】:向量法 设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ, 则cos m BA m BAθ⋅=⋅222214a a =⨯-+22214a a =-+当12a =时,2224a a -+取最小值为272, 此时cos θ6272.所以()2min63sin 13θ⎛⎫=-= ⎪ ⎪⎝⎭112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B H FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G . 由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即1211(2)B H s =+-121(2)B H s =+-.所以2211DH B H B D =+2221(2)s t s ++-2229225t t t t =+-+ 则11sin B D DHB DH∠=2229225t t t t =+-+29119222t =+⎛⎫-+ ⎪⎝⎭所以,当12t =时,()1min 3sin DHB ∠= [方法三]:投影法 如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F 中,222115DF B D B F t ++在Rt ECF 中,223EF EC FC +D 作1B N 的平行线交EN 于点Q . 在Rt DEQ △中,2225(1)DE QD EQ t +=+-在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅()2315(1)t t ++=()222214sin 35t t DFE t -+∠+1sin 2DFESDF EF DFE =⋅∠2122142t t =-+13,2B NFS =1cos B NF DFES Sθ=22214t t =-+,()29sin 127t t θ=--+当12t =,即112B D =,面11BB C C 与面DFE 3 【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维. 【总结提升】利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小.但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. 题型四: 利用向量求空间距离例10.(2022·江苏·扬中市第二高级中学模拟预测)在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,侧棱13AA =,D ,E 分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,则点1A 到平面ABD 的距离为( ) A 6B 6C 26D .26【答案】A 【解析】 【分析】以C 为坐标原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设CA CB a ==,求出11(,,1)22GE =,利用空间向量的数量积转化求解点1A 到平面ABD 的距离.【详解】解:如图所示,以C 为坐标原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系, 设CA CB a ==,则(A a ,0,0),(0B ,a ,0),3(0,0,)2D ,1(A a ,0,3), 可得3(,,)222a a E ,1(,,)332a a G ,(,,1)66a a GE =,3(0,,)2BD a =-, 因为点E 在平面ABD 上的射影是ABD △的重心, 所以GE ⊥平面ABD ,所以0GE BD ⋅=,即30()10662a a a ⨯+⨯-+⨯=,解得3a =, 即11(,,1)22GE =,则点1A 到平面ABD 的距离为d ,E 是1A B 的中点, 所以2||6d GE ==. 故选:A.例11.(2022·上海·位育中学模拟预测)正方形ABCD 的边长是2E F ,、分别是AB 和CD 的中点,将正方形沿EF 折成直二面角 (如图所示).M 为矩形AEFD 内一点,如果MBE MBC MB ∠∠=,和平面BCF 所成角的正切值为13,那么点M 到直线EF 的距离为______.23123【解析】 【分析】利用空间向量运算处理,根据直线夹角cos cos ,a b α=结合MBE MBC ∠=∠可得1y =,再根据线面夹角sin cos ,n BM θ=运算求解2z =【详解】如图,以E 为坐标原点建立空间直角坐标系则()()()0,0,0,1,0,0,1,2,0E B C ,设()()0,,02,01M y z y z ≤≤≤≤()()()1,0,0,0,2,0,1,,EB BC BM y z ===-则22221cos ,,cos ,11EB BM BC BM EB BM BC BM EB BMBC BMy z y z ⋅-⋅====++++∵MBE MBC ∠=∠222211y z y z ++++,即1y =∴()1,1,BM z =-平面BCF 的一个法向量()0,0,1n =,则2cos ,2n BM n BM n BMz ⋅==+∵MB 和平面BCF 所成角的正切值为132102z=+,则2z =∴点M 到直线EF 22例12.(2022·全国·高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值. 【答案】2 3【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111112211433333A A BC A A ABC A ABC AB BC C C B V Sh h V S A A V ---=⋅===⋅==, 解得2h =所以点A 到平面1A BC 2 (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =12AA AB ==,122A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020m BD a b c m BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-, 则11cos ,222m n m n m n⋅===⨯⋅, 所以二面角A BD C --21312⎛⎫-= ⎪⎝⎭【总结提升】1.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |,所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.2.利用法向量求解空间线面角、面面角、距离等问题,关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.。
第七节立体几何中的向量方法[最新考纲][考情分析][核心素养]1。
理解直线的方向向量与平面的法向量。
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。
4。
能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。
主要通过空间角(异面直线所成角、直线与平面所成角、二面角)的求法考查向量方法应用,多为解答题第2问,分值为12分.1.直观想象2.逻辑推理3.数学运算‖知识梳理‖空间角的求法(1)求异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角βl1与l2所成的角θ范围(0,π)错误!错误!求法cos β=a·b|a||b|cos θ=|cos β|=|a·b||a||b|►常用结论两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.(2)求直线与平面所成的角设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=错误!|cos<a,n〉|=错误!错误!.(3)求二面角的大小①如图①,AB,CD是二面角α-l-β的两条面内与棱l垂直的直线,则二面角的大小θ=错误!〈错误!,错误!>.②如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=错误!|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).►常用结论解空间角最值问题时往往会用到最小角定理cosθ=cosθ1cos θ2如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cos θ=cos θ1cos θ2。
2024年高考数学总复习第八章《立体几何与空间向量》§8.7立体几何中的向量方法(二)——求空间角和距离最新考纲1.能用向量方法解决线线、线面、面面的夹角的计算问题.2.体会向量方法在研究几何问题中的作用.1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).概念方法微思考1.利用空间向量如何求线段长度?提示利用|AB →|2=AB →·AB →可以求空间中有向线段的长度.2.如何求空间点面之间的距离?提示点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为|BO →|=|AB →||cos 〈AB →,n 〉|.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(×)(3)两个平面的法向量所成的角是这两个平面所成的角.(×)(4)两异面直线夹角的范围是0,π2,直线与平面所成角的范围是0,π2,二面角的范围是[0,π].(√)(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.(×)题组二教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为()A .45°B .135°C .45°或135°D .90°答案C解析cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案π6解析如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22),AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角,cos ∠C 1AD =AC 1,→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32,又∵∠C 1AD ∈0,π2,∴∠C 1AD =π6.题组三易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.22答案C 解析以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos 〈BM →,AN →〉=BM ,→·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010.5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为________.答案30°解析设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一求异面直线所成的角例1如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC .又AE ⊥EC ,所以EG =3,且EG ⊥AC .在Rt △EBG 中,可得BE =2,故DF =22.在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),1,0C (0,3,0),所以AE →=(1,3,2),CF →1,-3故cos 〈AE →,CF →〉=AE ,→·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为()A.110B.35C.710D.45答案C解析如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),-32,-12,所以AM →=(0,1,2),BN →=32,-12,2所以cos 〈AM →,BN →〉=AM ,→·BN →|AM →|·|BN →|=725×5=710,故选C.题型二求直线与平面所成的角例2(2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.(1)证明由已知可得BF ⊥PF ,BF ⊥EF ,PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)解如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,所以PE ⊥PF .所以PH =32,EH =32.则H (0,0,0),,01,-32,DP →,32,HP →,0又HP →为平面ABFD 的法向量,设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP ,→·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34.思维升华若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2(2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.(1)证明因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.如图,连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC ,所以PO ⊥平面ABC .(2)解由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0).设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0).设平面PAM 的法向量为n =(x ,y ,z ).由AP →·n =0,AM →·n =0,得y +23z =0,+(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=OB ,→·n |OB ,→||n |=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB →,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去)或a =43.所以n -833,433,-又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34.题型三求二面角例3(2018·济南模拟)如图1,在高为6的等腰梯形ABCD 中,AB ∥CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ⊥平面BCO 1O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∥OB .(1)证明:OD ⊥平面PAQ ;(2)若BE =2AE ,求二面角C —BQ —A 的余弦值.(1)证明由题设知OA ,OB ,OO 1两两垂直,所以以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 中点,∴,92,∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →,m -92,-∵OD →·AQ →=0,OD →·PQ →=0,∴OD →⊥AQ →,OD →⊥PQ →,且AQ →与PQ →不共线,∴OD ⊥平面PAQ .(2)解∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3,则Q (6,3,0),∴QB →=(-6,3,0),BC →=(0,-3,6).设平面CBQ 的法向量为n 1=(x ,y ,z ),1·QB ,→=0,1·BC ,→=06x +3y =0,3y +6z =0,令z =1,则y =2,x =1,则n 1=(1,2,1),易知平面ABQ 的一个法向量为n 2=(0,0,1),设二面角C —BQ —A 的平面角为θ,由图可知,θ为锐角,则cos θ=|n 1·n 2|n 1|·|n 2||=66.思维升华利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3(2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD 所在平面垂直,M 是 CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为 CD的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0),设n =(x ,y ,z )是平面MAB 的法向量,则·AM ,→=0,·AB ,→=0,2x +y +z =0,y =0.可取n =(1,0,2),DA →是平面MCD 的一个法向量,因此cos 〈n ,DA →〉=n ·DA ,→|n ||DA ,→|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例(12分)如图,四棱锥S -ABCD 中,△ABD 为正三角形,∠BCD =120°,CB =CD =CS =2,∠BSD =90°.(1)求证:AC ⊥平面SBD ;(2)若SC ⊥BD ,求二面角A -SB -C 的余弦值.(1)证明设AC ∩BD =O ,连接SO ,如图①,因为AB =AD ,CB =CD ,所以AC 是BD 的垂直平分线,即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°,所以BD =23,CO =1.在Rt △SBD 中,因为∠BSD =90°,O 为BD 的中点,所以SO =12BD =3.在△SOC 中,因为CO =1,SO =3,CS =2,所以SO 2+CO 2=CS 2,所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD .[5分](2)解方法一过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB .因为OK ∩AO =O ,OK ,AO ⊂平面AOK ,所以SB ⊥平面AOK .[6分]因为AK ⊂平面AOK ,所以AK ⊥SB .同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角.因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD .在Rt △SOB 中,OK =SO ·OB SB =62.在Rt △AOK 中,AK =AO 2+OK 2=422,同理可求CK =102.[10分]在△AKC 中,cos ∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分]方法二因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD ,所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD ,所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3).所以AB →=(-3,3,0),CB →=(1,3,0),SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1),AB ,→·n =-3x 1+3y 1=0,SB ,→·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3).同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分]所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为()A .60°B .120°C .60°或120°D .90°答案C解析cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为()A.55B.53C.56D.54答案A解析设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为()A.12B.23C.33D.22答案B解析以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),,0D (0,1,0),∴A 1D →=(0,1,-1),A 1E →,0设平面A 1ED 的一个法向量为n 1=(1,y ,z ),1D ,→·n 1=0,1E ,→·n 1=0,-z =0,-12z =0,=2,=2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为()A.π6B.π4C.π3D.π2答案D解析以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1),∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·上饶模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为()A .0B .-14C.14D.12答案C解析以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ,则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.(2018·上海松江、闵行区模拟)如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于()A.43B.53C.23D .-23答案C解析由题意可知,平面ABO 的一个法向量为OC →=(0,0,2),由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC ,→·n ||OC ,→||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),0,,12,,12,∴PA →=(0,0,-2),DE →,12,DF →-12,12,设平面DEF 的法向量为n =(x ,y ,z ),·DE ,→=0,·DF ,→=0,=0,x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,PA →〉|=|PA ,→·n ||PA ,→||n |=55,∴直线PA 与平面DEF 所成角的正弦值为55.8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案45解析∵AE ∶ED ∶AD =1∶1∶2,∴AE ⊥ED ,即AE ,DE ,EF 两两垂直,所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),∴AF →=(-1,2,0),EC →=(0,2,1),∴cos 〈AF →,EC →〉=AF ,→·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案60°解析以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=EF ,→·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°],∴EF 和BC 1所成的角为60°.10.(2018·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析方法一延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan ∠EHB =EB BH =23.方法二如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),,1,1AE →,1AF →1,1设平面AEF 的法向量为n =(x ,y ,z ),·AE ,→=0,·AF ,→=0,+13z =0,x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3),取平面ABC 的法向量为m =(0,0,-1),设平面AEF 与平面ABC 所成的锐二面角为θ,则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.11.(2018·皖江八校联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形,∴M 是AC 1的中点,又Q 是A 1B 的中点,∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1,∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M ,∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1,∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2),∴CA →=(3,-1,0),B 1A 1→=(3,-2,0),B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ),则由n ⊥B 1A 1→,n ⊥B 1B →,-2y =0,2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3),设直线AC 与平面A 1BB 1所成的角为α,则sin α=|n ·CA ,→||n |·|CA ,→|=23231=9331.12.(2018·赣州模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ;(2)求二面角A -BF -C 的余弦值.(1)证明在Rt △ABE 中,由AB =AE =1,得∠AEB =45°,同理在Rt △CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC .在△PAD 中,cos ∠PAD =PA 2+AD 2-PD 22PA ·AD =5+9-82×3×5=55,在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos ∠PAE =5+1-2×5×1×55=4,所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD ,所以PE ⊥平面ABCD ,所以PE ⊥BE .又因为CE ∩PE =E ,CE ,PE ⊂平面PEC ,所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),,-22,D (-2,2,0),-22,22,AB →,22,BF →-322,22,BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1),·AB ,→=22x 1+22y 1=0,·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22),设平面BFC 的法向量为n =(x 2,y 2,z 2),·BC ,→=-2x 2+22y 2=0,·BF ,→=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角),则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3,∴B (0,4,0),S (0,0,3).设BC =m ,则C (m ,4,0),∵SF BF =CE BE=λ,∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3),∴F0,4λ1+λ,31+λ同理可得m 1+λ,4,0,∴FE →m 1+λ,41+λ,-31+λ∵FA →0,-4λ1+λ,-31+λ∠AFE 为直角,即FA →·FE →=0,则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,∴16λ=9,解得λ=916.14.(2018·海南五校模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明连接A1Q.∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A1(0,0,1),B1(1,0,1),,1,12,,12,NM →-12,12A 1B 1→=(1,0,0).由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),∴PN→λ,12,-设n =(x ,y ,z )是平面PMN 的法向量,·NM ,→=0,·PN ,→=0,+12y +12z =0,+12y -z =0,=1+2λ3x ,=2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去).综上,存在点P ,且当A 1P =7-354时,满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于()A .1B .2C .13D .26答案B 解析设平面ABCD 的法向量为n =(x ,y ,z ),⊥AB →,⊥AD →,x -2y +3z =0,4x +y =0,令y =4,则n ,4则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∴h =2626×226=2.16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.(1)证明设AD =CD =BC =1,∵AB ∥CD ,∠BCD =120°,∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,则BC ⊥AC .∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF ,∴AC ⊥平面BCF .∵EF ∥AC ,∴EF ⊥平面BCF .(2)解以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,·AB ,→=0,·BM ,→=0,-3x +y =0,-y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos 〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4.∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77,∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。
2021年高考数学一轮复习第八篇立体几何第7讲立体几何中的向量方法(一)教案理新人教版【xx年高考会这样考】1.通过线线、线面、面面关系考查空间向量的坐标运算.2.能用向量方法证明直线和平面位置关系的一些定理.3.利用空间向量求空间距离.【复习指导】本讲复习中要掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离.基础梳理1.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=a21+a22+a23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB →|=a 2-a 12+b 2-b 12+c 2-c 12.2.立体几何中的向量方法(1)直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.(2)用向量证明空间中的平行关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. (3)用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.(4)点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.一种思想向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面向量定理和空间向量基本定理的进一步深化和规范,是对向量大小和方向的量化: (1)以原点为起点的向量,其终点坐标即向量坐标; (2)向量坐标等于向量的终点坐标减去其起点坐标.得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,计算空间成角和距离等问题. 三种方法主要利用直线的方向向量和平面的法向量解决下列问题: (1)平行⎩⎪⎨⎪⎧直线与直线平行直线与平面平行平面与平面平行(2)垂直⎩⎪⎨⎪⎧直线与直线垂直直线与平面垂直平面与平面垂直(3)点到平面的距离求点到平面距离是向量数量积运算(求投影)的具体应用,也是求异面直线之间距离,直线与平面距离和平面与平面距离的基础.双基自测1.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是( ).A .平行B .相交C .垂直D .不确定 解析 ∵v 2=-2v 1,∴v 1∥v 2. 答案 A2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( ). A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0)D .P (3,-3,4)解析 ∵n =(6,-3,6)是平面α的法向量, ∴n ⊥MP →,在选项A 中,MP →=(1,4,1),∴n ·MP →=0. 答案 A3.(xx·唐山月考)已知点A ,B ,C ∈平面α,点P ∉α,则AP →·AB →=0,且AP →·AC →=0是AP →·BC →=0的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 由⎩⎪⎨⎪⎧AP →·AB →=0AP →·AC →=0,得AP →·(AB →-AC →)=0,即AP →·CB →=0,亦即AP →·BC →=0, 反之,若AP →·BC →=0,则AP →·(AC →-AB →)=0⇒AP →·AB →=AP →·AC →,未必等于0. 答案 A4.(人教A 版教材习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ). A .a∥c ,b∥c B .a∥b ,a⊥c C .a∥c ,a⊥bD .以上都不对解析 ∵c =(-4,-6,2)=2(-2,-3,1)=2a ,∴a∥c , 又a·b =-2×2+(-3)×0+1×4=0,∴a⊥b . 答案 C5.(xx·舟山调研)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是________. 解析 设平面ABC 的法向量n =(x ,y ,z ). 则⎩⎪⎨⎪⎧AB →·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2x +2y +z =0,4x +5y +3z =0.令z =1,得⎩⎪⎨⎪⎧x =12,y =-1,∴n =⎝ ⎛⎭⎪⎫12,-1,1,∴平面ABC 的单位法向量为±n |n|=±⎝ ⎛⎭⎪⎫13,-23,23.答案 ±⎝ ⎛⎭⎪⎫13,-23,23考向一 利用空间向量证明平行问题【例1】►如图所示,在正方体ABCD A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .[审题视点] 直接用线面平行定理不易证明,考虑用向量方法证明.证明 法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0), 于是MN →=⎝ ⎛⎭⎪⎫12,0,12,设平面A 1BD 的法向量是n =(x ,y ,z ).则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1.∴n =(1,-1,-1). 又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n ,又MN ⊄平面A 1BD , ∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→, ∴MN →∥DA 1→,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为了数量的计算问题.【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E 、F 、G 分别是线段PA 、PD 、CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面PAD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →、FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG .考向二 利用空间向量证明垂直问题【例2】►如图所示,在棱长为1的正方体OABC O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤1,以O 为原点建立空间直角坐标系O xyz . (1)求证A 1F ⊥C 1E ;(2)若A 1,E ,F ,C 1四点共面 求证:A 1F →=12A 1C 1→+A 1E →.[审题视点] 本题已建好空间直角坐标系,故可用向量法求解,要注意找准点的坐标. 证明 (1)由已知条件A 1(1,0,1),F (1-x,1,0),C 1(0,1,1),E (1,x,0), A 1F →=(-x,1,-1),C 1E →=(1,x -1,-1),则A 1F →·C 1E →=-x +(x -1)+1=0, ∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .(2)A 1F →=(-x,1,-1),A 1C 1→=(-1,1,0), A 1E →=(0,x ,-1),设A 1F →=λA 1C 1→+μA 1E →,⎩⎪⎨⎪⎧-x =-λ,1=λ+μx ,-1=-μ,解得λ=12,μ=1.∴A 1F →=12A 1C 1→+A 1E →.证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与平面垂直,平面与平面垂直可转化为直线与直线垂直证明.【训练2】 如图所示,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE .证明 AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, △ABC 为正三角形.∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一 ∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE .AB →=(1,0,0),∴PD →·AB →=0, ∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB . 法二 AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3). ∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∵PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE .考向三 利用向量求空间距离【例3】►在三棱锥SABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示,求点B 到平面CMN 的距离. [审题视点] 考虑用向量法求距离,距离公式不要记错. 解 取AC 的中点O ,连接OS 、OB . ∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,∴SO ⊥BO .如图所示,建立空间直角坐标系O xyz , 则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2).∴CM →=(3,3,0),MN →=(-1,0,2), MB →=(-1,3,0).设n =(x ,y ,z )为平面CMN 的一个法向量, 则⎩⎪⎨⎪⎧CM →·n =3x +3y =0,MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1). ∴点B 到平面CMN 的距离 d =|n ·MB →||n |=423.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |, 所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.【训练3】 (xx·江西)如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =2 3.(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.解 取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD . 又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .取O 为原点,直线OC 、BO 、OM 为x 轴、y 轴、z 轴,建立空间直角坐标系如图.OB =OM =3,则各点坐标分别为C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23).(1)设n =(x ,y ,z )是平面MBC 的法向量,则BC →=(1,3,0), BM →=(0,3,3),由n ⊥BC →得x +3y =0;由n ⊥BM →得3y +3z =0. 取n =(3,-1,1),BA →=(0,0,23),则 d =|BA →·n ||n |=235=2155.(2)CM →=(-1,0,3),CA →=(-1,-3,23). 设平面ACM 的法向量为n 1=(x ,y ,z ), 由n 1⊥CM →,n 1⊥CA →得⎩⎨⎧-x +3z =0,-x -3y +23z =0,解得x =3z ,y =z ,取n 1=(3,1,1). 又平面BCD 的法向量为n 2=(0,0,1). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=15.设所求二面角为θ,则sin θ=255.规范解答15——立体几何中的探索性问题【问题研究】 高考中立体几何部分在对有关的点、线、面位置关系考查的同时,往往也会考查一些探索性问题,主要是对一些点的位置、线段的长度,空间角的范围和体积的范围的探究,对条件和结论不完备的开放性问题的探究,这类题目往往难度都比较大,设问的方式一般是“是否存在?存在给出证明,不存在说明理由.”【解决方案】 解决存在与否类的探索性问题一般有两个思路:一是直接去找存在的点、线、面或是一些其他的量;二是首先假设其存在,然后通过推理论证或是计算,如果得出了一个合理的结果,就说明其存在;如果得出了一个矛盾的结果,就说明其不存在. 【示例】► (本小题满分14分) (xx·福建)如图,四棱锥PABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°.(1)求证:平面PAB ⊥平面PAD ; (2)设AB =AP .(ⅰ)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(ⅱ)在线段AD 上是否存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等?说明理由. (1)可先根据线线垂直,证明线面垂直,即可证得面面垂直.(2)由于题中PB 与平面PCD 所成的角不好作出,因此用向量法求解.至于第2小问,可先假设点G 存在,然后推理得出矛盾或列出方程无解,从而否定假设. [解答示范] (1)因为PA ⊥平面ABCD ,AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(4分) (2)以A 为坐标原点,建立空间直角坐标系Axyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E , 则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ).由AB +AD =4得,AD =4-t ,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),C D →=(-1,1,0),P D →=(0,4-t ,-t ).(6分)(ⅰ)设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥C D →,n ⊥P D →,得⎩⎪⎨⎪⎧ -x +y =0,4-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ).又P B →=(t,0,-t ), 故由直线PB 与平面PCD 所成的角为30°得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|P B →|,即|2t 2-4t |t 2+t 2+4-t 2·2t 2=12, 解得t =45或t =4(舍去),因为AD =4-t >0,所以AB =45.(9分)(ⅱ)法一 假设在线段AD 上存在一个点G ,使得点G 到P ,B ,C ,D 的距离都相等, 设G (0,m,0)(其中0≤m ≤4-t ),则G C →=(1,3-t -m,0),G D →=(0,4-t -m,0),G P →=(0,-m ,t ).由|G C →|=|G D →|得12+(3-t -m )2=(4-t -m )2,即t =3-m ;(1)由|G D →|=|G P →|得(4-t -m )2=m 2+t 2.(2)由(1)、(2)消去t ,化简得m 2-3m +4=0.(3)(12分)由于方程(3)没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等.(14分)法二 (1)同法一.(2)(ⅰ)以A 为坐标原点,建立空间直角坐标系Axyz (如图).在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ),由AB +AD =4得AD =4-t .所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),C D →=(-1,1,0),P D →=(0,4-t ,-t ).设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥C D →,n ⊥P D →,得⎩⎪⎨⎪⎧ -x +y =0,4-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ).又P B →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|P B →|, 即|2t 2-4t |t 2+t 2+4-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),所以 AB =45.法二 假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,从而∠CGD =90°,即CG ⊥AD ,所以GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ,(11分)在Rt △ABG 中,GB =AB 2+AG 2=λ2+3-λ2= 2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.(14分)[解答示范] ∵函数y =c x在R 上单调递减,∴0<c <1.(2分)即p :0<c <1.∵c >0且c ≠1,∴綈p :c >1.(3分) 又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数, ∴c ≤12.即q :0<c ≤12. ∵c >0且c ≠1,∴綈q :c >12且c ≠1.(6分) 又∵“p ∨q ”为真,“p ∧q ”为假,∴p 真q 假或p 假q 真.(7分)①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 12<c <1;(9分) ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.(11分) 综上所述,实数c 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 12<c <1.(12分) 探索性问题只要根据设问把问题确定下来就变为了普通问题,解题的关键是如何把要探索的问题确定下来,如本题第(2)问,法一是先设出G 点,由条件列出方程无解知G 点不存在.法二是由已知先确定G 点,然后推理得出矛盾,故G 点不存在.。
第07节 立体几何中的向量方法
班级__________ 姓名_____________ 学号___________ 得分__________
一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)
1. 已知平面α的法向量为(2,2,4),(3,1,2)n AB =-=-,点A 不在α内,则直线AB 与平面的位置关系为
A .A
B α⊥
B .AB α⊂
C .AB 与α相交不垂直
D .//AB α
【答案】D
【解析】(2,2,4)(3,1,2)6280n AB n AB ⋅=-⋅-=--+=∴⊥,而点A 不在α内,故//AB α
2.【浙江省杭州市萧山区第一中学月考】若,,且,则的值是( )
A. 0
B. 1
C. -2
D. 2
【答案】C
3.【2017年河南省信阳市期末】设是直线的方向向量,是平面
的法向量,则( ) A. B. C. 或 D. 或 【答案】D
【解析】
因为,所以,即或.故选D.
4.【2017年福建省数学基地校】二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二
面角的两个半平面内,且都垂直于AB .已知4AB =, 6AC =, 8BD =, CD =则该二面角的大小为( )
(A) 150 (B) 45 (C) 60 (D) 120
【答案】C
【解析】由条件知0CA AB ⋅=, 0AB BD ⋅=, CD CA AB BD =++. ∴2222222CD CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅ ()2222648268cos ,217CA BD =+++⨯⨯=.
∴1cos ,2CA BD =-
, ,120CA BD =,∴二面角的大小为60; 故选C.
5. 如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为
( ) A .(1,1,1)
B.⎝ ⎛⎭⎪⎫23,23,1
C.⎝ ⎛⎭⎪⎫22,22,1
D.⎝ ⎛⎭
⎪⎫24,24,1 【答案】 C
6. 如图,在长方体ABCD-A1B1C1D1中,AB=2,AA1=3,AD=22,P为C1D1的中点,M为BC 的中点.则AM与PM的位置关系为 ( )
A.平行B.异面
C.垂直D.以上都不对
【答案】 C。