当前位置:文档之家› 时间序列分析报告材料张能福第三章

时间序列分析报告材料张能福第三章

时间序列分析报告材料张能福第三章
时间序列分析报告材料张能福第三章

第一节线性差分方程一、后移算子B定义为三、齐次方程解的计算1 、AR(n) 过程自相关函数ACF 1阶自回归模型AR(1) Xt= Xt-1+ at 的k阶滞后自协方差为:Xt= 1Xt-1+ 2Xt-2 + at 该模型的方差0以及滞后1期与2期的自协方差1, 2分别为一般地,n 阶自回归模型AR(n) Xt= 1Xt-1+ 2Xt-2 +…nXt-n + at 其中:zi 是AR(n) 特征方程(z)=0 的特征根,由AR(n) 平稳的条件知,|zi|<1; 因此,当zi 均为实数根时,k呈几何型衰减(单调或振荡);当存在虚数根时,则一对共扼复根构成通解中的一个阻尼正弦波项,k呈正弦波衰减。对MA(1) 过程其自协方差系数为二、偏自相关函数从Xt 中去掉Xt-1 的影响,则只剩下随机扰动项at ,显然它与Xt-2 无关,因此我们说Xt 与Xt-2 的偏自相关系数为零,记为MA(1) 过程可以等价地写成at 关于无穷序列Xt ,Xt-1 ,…的线性组合的形式:与MA(1) 相仿,可以验证MA(m) 过程的偏自相关函数是非截尾但趋于零的。ARMA(n,m) 的自相关函数,可以看作MA(m) 的自相关函数和AR(n) 的自相关函数的混合物。当n=0 时,它具有截尾性质;当m=0 时,它具有拖尾性质;当n、m都不为0时,它具有拖尾性质从识别上看,通常:ARMA(n ,m) 过程的偏自相关函数(PACF )可能在n阶滞后前有几项明显的尖柱(spikes ),但从n阶滞后项开始逐渐趋向于零;而它的自相关函数(ACF )则是在m阶滞后前有几项明显的尖柱,从m阶滞后项开始逐渐趋向于零。对k=1 ,2,3,…依次求解方程,得上述……序列为AR 模型的偏自相关函数。偏自相关性是条件相关,是在给定的条件下,和的条件相关。换名话说,

偏自相关函数是对和所解释的相关的度量。之间未被由最小二乘原理易得,是作为关于线性回归的回归系数。如果自回归过程的阶数为n,则对于k>n 应该有kk=0 。L + + + = - - 2 2 1 t t t t X X X q q a 或t t t t X X X a q q + - - - = - - L 2 2 1 这是一个AR( )过程,它的偏自相关函数非截尾但却趋于零,因此MA(1) 的偏自相关函数是非截尾但却趋于零的。注意: 上式只有当| |<1 时才有意义,否则意味着距Xt 越远的X值,对Xt 的影响越大,显然不符合常理。因此,我们把| |<1 称为MA(1) 的可逆性条件(invertibility condition )或可逆域。MA(m) 模型的识别规则:若随机序列的自相关函数截尾,即自m以后,k=0 (k>m );而它的偏自相关函数是拖尾的,则此序列是移动平均MA(m) 序列。同样需要注意的是:在实际识别时,由于样本自相关函数rk 是总体自相关函数k的一个估计,由于样本的随机性,当k>m 时,rk 不会全为0,而是在0的上下波动。但可以证明,当k>m 时,rk 服从如下渐近正态分布: rk~N(0,1/n) 式中n表示样本容量。因此,如果计算的rk 满足:我们就有95.5% 的把握判断原时间序列在m之后截尾。ARMA(n, m) 过程* ,从而前面的MA(m) 模型、AR(n) 模型和ARMA(n,m) 模型可分别表示为:其中:后移算子的性质: 二、线性差分方程差分方程的通解为:可写成这里这里,C (t) 是齐次方程通解,I(t) 是特解。假定G1 ,G2 ,…,Gn 是互不相同,则在时刻t的通解:其中Ai 为常数(可由初始条件确定)。无重根考虑齐次差分方程重根设有d个相等的根,可验证通解为对一般情形,因此,齐次方程解是由衰减指数项、多项式、衰

减正弦项,以及这些函数的组合混合生成的。齐次方程解便是请看例题定义:设零均值平稳序列第二节格林函数(Green’s function) 和平稳性(Stationarity) 一、格林函数(Green’s function) 能够表示为则称上式为平稳序列的传递形式,式中的加权系数称为格林(Green )函数,其中格林函数的含义:格林函数是描述系统记忆扰动程度的函数。(1)式可以记为其中式(1)表明具有传递形式的平稳序列可以由现在时刻以前的白噪声通过系统“”的作用而生成,是j个单位时间以前加入系统的干扰项对现实响应的权,亦即系统对的“记忆”。二、AR (1)系统的格林函数由AR (1)模型即:则AR(1) 模型的格林函数例:下面是参数分别为0.9 、0.1 和-0.9 的AR (1)系统对扰动的记忆情况。(演示试验)比较前后三个不同参数的图,可以看出:取正值时,响应波动较平坦。取负值时,响应波动较大。越大,系统响应回到均衡位置的速度越慢,时间越长。三、格林函数与AR (n)系统的平稳性平稳性的涵义就是干扰项对系统的影响逐渐减弱,直到消失,对于一个AR (n)系统,将其写成格林函数的表示形式,如果系统是平稳的,则预示随着j→∞,扰动的权数对于AR(1) 系统即这要求上述条件等价于AR(1) 系统的特征方程的根在单位圆内(或方程的根在单位圆外). AR (n)模型,即其中:的平稳性条件为:的根在单位圆外(或的根在单位圆内)。AR (n)系统的平稳性条件:(请同学们观察平稳性AR(n) 与非平稳性AR(n) 的区别。)AR(1) 的结论可以推广到AR(n) 图示如右图几个例题ARMA 模型格林函数的通用解法ARMA(n,m) 模型且则令则化为比

较等式两边B的同次幂的系数,可得由上式,格林函数可从开始依次递推算出。例:求AR(2,1) 系统的格林函数。是零均值平稳序列,如果白噪声序列第三节逆函数和可逆性(Invertibility )能够表示为一、逆函数的定义设则称上式为平稳序列式中的加权系数称为逆函数。可逆。ARMA (n,m )模型逆函数通用解法对于ARMA (n,m )模型的逆函数求解模型格林函数求解方法相同。令二、ARMA 模型的逆函数的逆转形式则平稳序列可表示为由ARMA(n,m) 模型可得仍由先前定义的和,则上式可化为比较上式两边B的同次幂的系数,得到即可从由此开始推算出。对于MA (m)模型的可逆性讨论与AR (n)模型平稳性的讨论是类似的,即:MA (m)模型的可逆性条件为其特征方程的特征根满足ARMA(n,m) 系统格林函数与逆函数的关系在格林函数的表达式中,用代替,代替代替,,即可得到相对应的逆函数。理论自协方差函数和自相关函数对于ARMA 系统来说,设序列的均值为零,则自协方差函数第四节自相关函数与偏自相关函数自相关函数样本自相关函数的计算在拟合模型之前,我们所有的只是序列的一个有限样本数据,无法求得理论自相关函数,只能求样本的自协方差函数和自相关函数。样本自协方差有两种形式:一、自相关函数则相应的自相关函数为在通常情况下,我们采用第一种算法。0 1 1 )) ( ( g j jg a j g k k t t k t k X X E = = + = - - - =1,2,…因此,AR(1) 模型的自相关函数为=1,2,…由AR(1) 的稳定性知| |<1 ,因此,k 时,呈指数形衰减,直到零。这种现象称为拖尾或称AR(1) 有无穷记忆(infinite memory )。注意,<0 时,呈振荡衰

减状。2阶自回归模型AR(2) 2 2 2 1 1 0 a s g j g j g + + = 类似地,可写出一般的k期滞后自协方差:2 2 1 1 2 2 1 1 )) ( ( - - - - - + = + + = k k t t t k t k r X X X E j g j a j j g (K=2,3,…) 于是,AR(2) 的k 阶自相关函数为:(K=2,3,…) 其中: 1= 1/(1- 2), 0=1 如果AR(2) 平稳,则由1+ 2<1 知| k| 衰减趋于零,呈拖尾状。至于衰减的形式,要看AR(2) 特征根的实虚性,若为实根,则呈单调或振荡型衰减,若为虚根,则呈正弦波型衰减。k期滞后协方差为: n k n k k t n t n t t K t k X X X X E - - - - - - - + + + = + + + + = g j g j g j a j j j g L L 2 2 1 1 2 2 1 1 )) ( ( 从而有自相关函数: 可见,无论k有多大,k的计算均与其1到n阶滞后的自相关函数有关,因此呈拖尾状。如果AR(n) 是平稳的,则| k| 递减且趋于零。事实上,自相关函数是一n阶差分方程,其通解为2、MA(m) 过程1 - - = t t t X qa a 可容易地写出它的自协方差系数:0 ) 1 ( 3 2 2 1 2 2 0 = = = - = + = L g g qs g s q g a a 于是,MA(1) 过程的自相关函数为:可见,当k>1 时,k>0 ,即Xt 与Xt-k 不相关,MA(1) 自相关函数是截尾的。一般地,m阶移动平均过程MA(m) 相应的自相关函数为可见,当k>m 时,Xt 与Xt-k 不相关,即存在截尾现象,因此,当k>m 时,k=0 是MA(m) 的一个特征。于是:可以根据自相关系数是否从某一点开始一直为0来判断MA(m) 模型的阶。自相关函数ACF(k) 给出了Xt 与Xt-1 的总体相关性,但总体相关性可能掩盖了变量间完全不同的隐含关系。例如,在AR(1) 随机过程中,Xt 与Xt-2 间有相关性可能主要是由于它们各自与Xt-1 间的相

关性带来的: 即自相关函数中包含了这种所有的“间接”相关。与之相反,Xt 与Xt-k 间的偏自相关函数(partial autocorrelation ,简记为PACF) 则是消除了中间变量Xt-1 ,…,Xt-k+1 带来的间接相关后的直接相关性,它是在已知序列值Xt-1 ,…,Xt-k+1 的条件下,Xt 与Xt-k 间关系的度量。在AR(1) 中,0 ) , ( 2 * 2 = = - t t X Corr a r 同样地,在AR(n) 过程中,对所有的k>n ,Xt 与Xt-k 间的偏自相关系数为零。AR(n) 的一个主要特征是:k>n 时,k*=Corr(Xt,Xt-k)=0 即k* 在n以后是截尾的。一随机时间序列的识别原则:若Xt 的偏自相关函数在n以后截尾,即k>n 时,k*=0 ,而它的自相关函数k是拖尾的,则此序列是自回归AR(n) 序列。对于一个k阶AR 模型,有:由此得到Yule-Walker 方程,记为:已知时,由该方程组可以解出。遗憾的是,用该方程组求解时,需要知道自回归过程的阶数。因此,我们可以对连续的k值求解Yule-Walker 方程。*

统计基础知识第五章时间序列分析习题及答案

第五章时间序列分析 一、单项选择题 1.构成时间数列的两个基本要素是( C )(2012年1月) A.主词和宾词 B.变量和次数 C.现象所属的时间及其统计指标数值 D.时间和次数 2.某地区历年出生人口数是一个( B )(2011年10月) A.时期数列 B.时点数列 C.分配数列 D.平均数数列 3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10) A.时期指标 B.时点指标 C.前者是时期指标,后者是时点指标 D.前者是时点指标,后者是时期指标 4.累计增长量( A ) (2010年10) A.等于逐期增长量之和 B.等于逐期增长量之积 C.等于逐期增长量之差 D.与逐期增长量没有关系 5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10) 万元万元万元万元 6.下列指标中属于时点指标的是( A ) (2009年10) A.商品库存量 B.商品销售量 C.平均每人销售额 D.商品销售额 7.时间数列中,各项指标数值可以相加的是( A ) (2009年10) A.时期数列 B.相对数时间数列 C.平均数时间数列 D.时点数列 8.时期数列中各项指标数值( A )(2009年1月) A.可以相加 B.不可以相加 C.绝大部分可以相加 D.绝大部分不可以相加 10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月) %+15%+18%%×15%×18% C.(108%+115%+118%)-1 %×115%×118%-1 二、多项选择题 1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月) A.序时平均数 B.动态平均数 C.静态平均数 D.平均发展水平 E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月) A.相邻两个环比发展速度之商等于相应的定基发展速度 B.环比发展速度的连乘积等于定基发展速度

应用时间序列分析第4章答案

河南大学: 姓名:汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x@@; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

时间序列分析第一章王燕习题解答

时间序列分析习题解答 第一章 P. 7 1.5 习题 1.1 什么是时间序列?请收集几个生活中的观察值序列。 答:按照时间的顺序把随机事件变化发展的过程记录下来就构成一个时间序列。 例1:1820—1869年每年出现的太阳黑子数目的观察值; 年份黑子数年份黑子数年份黑子数年份黑子数年份黑子数1820 16 1830 71 1840 63 1850 66 1860 96 1821 7 1831 48 1841 37 1851 64 1861 77 1822 4 1832 28 1842 24 1852 54 1862 59 1823 2 1833 8 1843 11 1853 39 1863 44 1824 8 1834 13 1844 15 1854 21 1864 47 1825 17 1835 57 1845 40 1855 7 1865 30 1826 36 1836 122 1846 62 1856 4 1866 16 1827 50 1837 138 1847 98 1857 23 1867 7 1828 62 1838 103 1848 124 1858 55 1868 37 1829 67 1839 86 1849 96 1859 94 1869 74 例2:北京市城镇居民1990—1999年每年的消费支出按照时间顺序记录下来,就构成了一个序列长度为10的消费支出时间序列(单位:亿元)。 1686,1925,2356,3027,3891,4874,5430,5796,6217,6796。 1.2 时域方法的特点是什么? 答:时域方法特点:具有理论基础扎实,操作步骤规范,分析结果易于解释的优点,是时间序列分析的主流方法。 1.3 时域方法的发展轨迹是怎样的? 答:时域方法的发展轨迹: 一.基础阶段: 1. G.U. Yule 1972年AR模型 2. G.U.Walker 1931年 MA模型、ARMA模型 二.核心阶段:G.E.P.Box和G.M.Jenkins 1. 1970年,出版《Time Series Analysis Forecasting and Control》 2. 提出ARIMA模型(Box-Jenkins模型) 3. Box-Jenkins模型实际上主要运用于单变量、同方差场合的线性模型 三.完善阶段: 1.异方差场合: a.Robert F.Engle 1982年 ARCH模型

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

时间序列分析报告材料张能福第三章

第一节线性差分方程一、后移算子B定义为三、齐次方程解的计算1、AR(n)过程自相关函数ACF 1阶自回归模型AR(1) Xt= Xt-1+ at 的k 阶滞后自协方差为:Xt= 1Xt-1+ 2Xt-2 + at 该模型的方差0以及滞后1期与2期的自协方差1, 2分别为一般地,n 阶自回归模型AR(n) Xt= 1Xt-1+ 2Xt-2 + …nXt-n + at 其中:zi 是AR(n)特征方程⑵=0的特征根,由AR(n)平稳的条件知,|zi|<1; 因此,当zi均为实数根时,k呈几何型衰减(单调或振荡);当存在虚数根时,则一对共扼复根构成通解中的一个阻尼正弦波项,k呈正弦波衰减。对MA(1)过程其自协方差系数为二、偏自相关函数从Xt 中去掉Xt-1的影响,则只剩下随机扰动项at ,显然它与Xt-2无关, 因此我们说Xt与Xt-2的偏自相关系数为零,记为MA(1)过程可以等价地写成at 关于无穷序列Xt , Xt-1 ,…的线性组合的形式:与MA(1)相仿,可以验证MA(m)过程的偏自相关函数是非截尾但趋于零的。ARMA(n,m)的自相关函数,可以看作MA(m)的自相关函数和AR(n)的自相关函数的混合物。当n=0时,它具有截尾性质;当m=0时,它具有拖尾性质;当n、m都不为0时,它具有拖尾性质从识别上看,通常:ARMA(n , m)过程的偏自相关函数(PACF ) 可能在n阶滞后前有几项明显的尖柱 (spikes ),但从n阶滞后项开始逐渐趋向于零;而它的自相关函数(ACF )则是在m阶滞后前有几项明显的尖柱,从m阶滞后项开始逐渐趋向于零。对k=1 , 2 , 3,…依次求解方程,得上述……序列为AR模型的偏自相关函数。偏自相关性是条件相关,是在给定的条件下,和的条件相关。换名话说,

时间序列分析 第一章 时间序列分析简介

input time monyy7. price; format time monyy5. ; cards; jan2005 101 feb2005 82 mar2005 66 apr2005 35 may2005 31 jun2005 7 ; run; proc print data=example1_1; run; 实验结果: 实验分析:该程序的到了一个名为sasuser.example1_1的永久数据集。所谓的永久数据库就是指在该库建立的数据集不会因为我们退出SAS系统而丢失,它会永久的保存在该数据库中,我们以后进入SAS系统还可以从该库中调用该数据集。 3.查看数据集 data example1_1; input time monyy7. price; format time monyy5. ; cards; jan2005 101 feb2005 82 mar2005 66 apr2005 35 may2005 31 jun2005 7 ; run; proc print data=example1_1; run; 实验结果:

2.序列变换 data example1_3; input price; logprice=log(price); time=intnx('month','01jan2005'd,_n_-1); format time monyy.; cards; 3.41 3.45 3.42 3.53 3.45 ; proc print data=example1_3; run; 实验结果: 实验分析:在时间序列分析中,我们得到的是观测值序列xt,但是需要分析的可能是这个观察值序列的某个函数变换,例如对数序列lnxt。在建立数据集时,我们可以通过简单的赋值命令实现这个变换。再该程序中,logprice=log(price);是一个简单的赋值语句,将price的对数函数值赋值给一个新的变量logprice,即建立了一个新的对数序列。 3.子集 data example1_4; set example1_3; keep time logprice; where time>='01mar2005'd; proc print data=example1_4; run; 实验结果:

spss教程第四章时间序列分析

第四章时间序列分析 由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。.为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。因此学习时间序列分析方法是非常必要的。 本章主要内容: 1. 时间序列的线图,自相关图和偏自关系图; 2. SPSS 软件的时间序列的分析方法季节变动分析。 §4.1 实验准备工作 §4.1.1 根据时间数据定义时间序列 对于一组示定义时间的时间序列数据,可以通过数据窗口的Date菜单操作,得到相应时间的时间序列。定义时间序列的具体操作方法是: 将数据按时间顺序排列,然后单击Date Define Dates打开Define Dates对话框,如图4.1所示。从左框中选择合适的时间表示方法,并且在右边时间框内定义起始点后点击OK,可以在数据库中增加时间数列。 图4.1 产生时间序列对话框 §4.1.2 绘制时间序列线图和自相关图 一、线图 线图用来反映时间序列随时间的推移的变化趋势和变化规律。下面通过例题说明线图的制作。 例题4.1:表4.1中显示的是某地1979至1982年度的汗衫背心的零售量数据。

试根据这些的数据对汗衫背心零售量进行季节分析。(参考文献[2]) 表4.1 某地背心汗衫零售量一览表单位:万件 1979 1980 1981 1982 1 23 30 18 22 2 3 3 37 20 32 3 69 59 92 102 4 91 120 139 155 5 192 311 324 372 6 348 334 343 324 7 254 270 271 290 8 122 122 193 153 9 95 70 62 77 10 34 33 27 17 11 19 23 17 37 12 27 16 13 46 解:根据表4.1的数据,建立数据文件SY-11(零售量),并对数据定义相应的时间值,使数据成为时间序列。为了分析时间序列,需要先绘制线图直观地反映时间序列的变化趋势和变化规律。具体操作如下: 1. 在数据编辑窗口单击Graphs Line,打开Line Charts对话框如图4. 2.。从中选择Simple单线图,从Date in Chart Are 栏中选择Values of individual cases,即输出的线图中横坐标显示变量中按照时间顺序排列的个体序列号,纵坐标显示时间序列的变量数据。 图4.2 Line Charts对话框 2. 单击Define,打开对话框如图4.4所示。选择分析变量进入Line Represents,,在Category Labels 类别标签(横坐标)中选择Case number数据个数(或变量年 度 月 份

《时间序列分析》第二章 时间序列预处理习题解答

《时间序列分析》习题解答?0?2习题2.3?0?21考虑时间序列10判断该时间序列是否 平稳计算该序列的样本自相关系数 kρ∧绘制该样本自相关图并解释该图形. ?0?2解根据时序图可以看出该时间序列有明显的递增趋势所以它一定不是平稳序列?0?2即可判断该时间序是非平稳序列其时序图程序见后。?0?2 时间序描述程序data example1 input number timeintnxyear01jan1980d _n_-1 format time date. cards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 proc gplot dataexample1 plot numbertime1 symbol1 cblack vstar ijoin run?0?2?0?2?0?2当延迟期数即k本题取值1 2 3 4 5 6远小于样本容量n本题为20时自相关系数kρ∧计算公式为 number1234567891011121314151617181920time01JAN8001J AN8101JAN8201JAN8301JAN8401JAN8501JAN8601JAN870 1JAN8801JAN8901JAN9001JAN9101JAN9201JAN9301JAN9 401JAN9501JAN9601JAN9701JAN9801JAN99121nkttktknttX XXXXXρ?6?1∧?6?1?6?1≈?6?1∑∑ 0kn4.9895?0?2 注20.05125.226χ接受原假设认为该序列为纯随机序列。?0?2解法三、Q统计量法计算Q统计量即12214.57kkQnρ∑?0?2?0?2?0?2?0?2?0?2?0?2?0?2?0?2?0?2?0?2查表得210.051221.0261χ?6?1由于Q统

第十章时间序列分析

第十章 时间序列分析 Ⅰ.学习目的 本章阐述常规的时间序列分析方法,通过学习,要求:1.理解时间序列的概念和种类,掌握时间序列的编制方法;2.掌握时间序列分析中水平指标和速度指标的计算及应用;3.掌握时间序列中长期趋势、季节变动、循环变动及不规则变动等因素的基本测定方法;4.掌握基本的时间序列预测方法。 Ⅱ.课程内容要点 第一节 时间序列分析概述 一、时间序列的概念 将统计指标的数值按时间先后顺序排列起来就形成了时间序列。 二、时间序列的种类 反映现象发展变化过程的时间序列按其统计指标的形式不同,可分为总量指标时间序列、相对指标时间序列和平均指标时间序列三种类型。其中总量指标时间序列是基础序列,相对指标和平均指标时间序列是派生序列。 根据总量指标反映现象的时间状况不同,总量指标时间序列又可分为时期指标时间序列和时点指标时间序列。 三、时间序列的编制方法:(一)时间长短应一致;(二)经济内容应一致;(三)总体范围应一致;(四)计算方法与计量单位要一致。 第二节 时间序列的分析指标 一、时间序列分析的水平指标 (一)发展水平。发展水平是时间序列中与其所属时间相对应的反映某种现象发展变化所达到的规模、程度和水平的指标数值。 (二)平均发展水平。将一个时间序列各期发展水平加以平均而得的平均数,叫平均发展水平,又称为动态平均数或序时平均数。 1.总量指标时间序列序时平均数的计算 (1)时期序列:n y n y y y y i n ∑= +++=Λ21 (2)时点序列 ①连续时点情况下,又分为两种情形: a .若掌握的资料是间隔相等的连续时点 (如每日的时点) 序列,则n y n y y y y i n ∑= +++=Λ21 b .若掌握的资料是间隔不等的连续时点序列,则 ∑∑=++++++=i i i n n n f f y f f f f y f y f y y ΛΛ212211 ②间断时点情况下。间断时点也分两种情况: a .若掌握的资料是间隔相等的间断时点,则采用首末折半法:

第十章 时间序列分析

第十章时间序列分析 第十章时间序列分析 第一节时间序列的意义和种类 第二节动态水平指标 第三节动态速度指标 【学习目标】通过本章学习,重点掌握时间序列的含义、编制原则、时期序列和时点序列的特点及时间序列的水平指标和速度指标的计算与运用;在此基础上熟悉时间序列的构成因素及分析模型,熟悉趋势变动及季节变动的测定。重点与难点:相对数时间序列序时平均数的计算;平均发展速度的计算;长期趋势、季节变动和循环变动的测定。? 第四节时间序列的分解分析 第一节时间序列的意义和种类 (一)涵义 一、时间序列的意义 第十章时间序列分析 时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。 (二)时间序列的构成要素: 现象所属的时间 反映现象发展水平的指标数值 第十章时间序列分析

第一节时间序列的意义和种类 99 215 109 655 120 333 135 823 159 878 182 321 2000 2001 2002 2003 2004 2005 48 198 60 794 71 177 78 973 84 402 89 677 1994 1995 1996 1997

1998 1999 国内生产总值 (亿元) 年份 国内生产总值 (亿元) 年份 要素一:时间t 要素二:指标数值a 第十章时间序列分析 第一节时间序列的意义和种类 (三)研究时间序列的主要作用有 1. 可以反映社会经济现象的发展变化过程,描述现象的发展状态和结果。 2. 可以研究社会经济现象的发展趋势和发展速度。 3. 可以探索现象发展变化的规律,对某些社会经济现象进行预测。 4. 利用时间序列可以在不同地区或国家之间进行对比分析,这也是统计分析的重要方法之一。 第十章时间序列分析 第一节时间序列的意义和种类 二时间序列的种类 (一)绝对数时间序列

时间序列分析-第二章-时间序列的预处理

时间序列分析-第二章-时间序列的预处理

两时间序列重叠显示时序图 2.4.2 平稳性与纯随机性检验 1、平稳性检验 为了判断序列是否平稳,除了需要考虑时序图的性质,还需要对自相关图进行检验。SAS系统ARIMA 过程中的IDENTIFY语句可以提供非常醒目的自相关图。 data example2_2; input freq@@; year=intnx ('year','1jan1970'd,_n_-1); format year year4.; cards; 97 154 137.7 149 164 157 188 204 179 210

202 218 209 204 211 206 214 217 210 217 219 211 233 316 221 239 215 228 219 239 224 234 227 298 332 245 357 301 389 ; proc arima data=example2_2; identify var=freq; run; 语句说明: (1)“proc arima data=example2_2;”是告诉系统,下面要对临时数据集example2_2中的数据进行ARIMA程序分析。 (2)“identify var=freq;”是对指令变量freq 的某些重要性质进行识别。 执行本例程序,IDENTIFY语句输出的描述性信息如下:

这部分给出了分析变量的名称、序列均值、标准差和观察值个数。 IDENTIFY语句输出结果的第二部分分为自相关图,本例获得的样本自相关见下图。 序列FREQ样本自相关图 其中: Lag——延迟阶数。 Covariance——延迟阶数给定后的自协方差函数。 Correlation——自相关系数的标准差。 “.”——2倍标准差范围。 2、纯随机性检验 为了判断序列是否有分析价值,我们必须对序列进行纯随机性检验,即白噪声检验。在IDENTIFY输出结果的最后一部分信息就是白噪声检验结果。本例中白噪声检验输出结果如下:

第三章平稳时间序列分析

t P p t t t t t x B x x B x Bx x ===---M 221第3章 平稳时间序列分析 一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。 3.1 方法性工具 3.1.1 差分运算 一、p 阶差分 记 t x ?为t x 的1阶差分:1--=?t t t x x x 记t x 2 ?为t x 的2阶差分:21122---+-=?-?=?t t t t t t x x x x x x 以此类推:记 t p x ?为t x 的p 阶差分:111---?-?=?t p t p t p x x x 二、k 步差分 记t k x ?为t x 的k 步差分:k t t t k x x x --=? 3.1.2 延迟算子 一、定义 延迟算子相当与一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。记B 为延迟算子,有 延迟算子的性质: 1. 10 =B 2.若c 为任一常数,有1 )()(-?=?=?t t t x c x B c x c B 3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B 4. n t t n x x B -= 5.)!(!!,)1()1(0 i n i n C B C B i n i i n n i i n -= -=-∑=其中 二、用延迟算子表示差分运算 1、p 阶差分 t p t p x B x )1(-=? 2、k 步差分 t k k t t t k x B x x x )1(-=-=?- 3.2 ARMA 模型的性质 3.2.1 AR 模型 定义 具有如下结构的模型称为p 阶自回归模型,简记为AR(p): t s Ex t s E Var E x x x x t s t s t t p t p t p t t t πΛ?=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφε (3.4) AR(p)模型有三个限制条件: 条件一: ≠p φ。这个限制条件保证了模型的最高阶数为p 。 条件二: t s E Var E t s t t ≠===,0)(,)(,0)(2εεσεεε。这个限制条件实际上是要求随机干扰序列 }{t ε为 零均值白噪声序列。 条件三:t s Ex t s π?=,0ε。这个限制条件说明当期的随机干扰与过去的序列值无关。 通常把AR(p)模型简记为: t p t p t t t x x x x εφφφφ+++++=---Λ22110 (3.5)

第五章 时间序列的模型识别

第五章时间序列的模型识别 前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下: 图5.1 建立时间序列模型流程图 在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。 对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关

最新地震处理教程——1 第一章 时间序列分析基础

第一章时间序列分析基础 一维傅里叶变换 首先观察一个实验。将弹簧的一端固定并悬垂,另一端挂一重物。向下拉重物使弹簧拉伸某一距离,比如说0.8个单位,使其振动。现假定弹簧是弹性的,那么它将无休止地上下运动。若将运动起始的平衡位置定为时间零,那么重物的位移量将随着时间函数在极限[+0.8—-0.8]之间变化。如果有一装置能给出位移振幅随时间函数变化的轨迹,就会得到一条正弦波曲线。其相邻两峰值间的时间间隔为0.08秒(80毫秒)。我们称它为弹簧的周期,它取决于所测弹簧刚度的弹性常数。我们说弹簧在一个周期时间内完成了一次上下振动。在1秒的观测时间内记下其周期数,我们发现是12.5周,这个数被称为弹簧振动的频率。你一定会注意到,1/0.08=12.5,这就是说频率为周期的倒数。 我们取另一个刚性较大的弹簧,并重复上面的实验。不过这次弹簧的振幅峰值位移为0.4个单位。它的运动轨迹所显示的是另一条正弦曲线。量其周期和频率分别为0.04秒和25周/秒,为了记下这些测量结果,我们做每个弹簧峰值振幅与频率的关系图,这便是振幅谱。 现在取两个相同的弹簧。一个弹簧从0.8个单位的峰值振幅位移开始松开,并使其振动。这时注意弹簧通过零时平衡位置的时间,就在它通过零时的一刹那,请你将另一弹簧从0.8个单位的同样峰值振幅位移处松开。这样由于起始的最大振幅相同,所以两个正弦时间函数的振幅谱也应该一样。但肯定两者之间是有差别的,特别是当第1个正弦波达到峰值振幅时,另一个的振幅为零。两者的区别为:第2个弹簧的运动相对于第1个弹簧的运动有一个等于四分之一周期的时间延迟。四分之一周期的时间延迟等于90°相位滞后。所以除振幅谱之外,我们还可以作出相位延迟谱,至此,这个实验做完了。那么我们学到了什么呢?这就是弹簧的弹性运动可以用正弦时间函数来描述,更重要的是,可以用正弦波的频率、峰值振幅及相位延迟来全面地描述正弦波运动。这个实验告诉我们弹簧的振动是怎样随时间和频率函数变化的。 现在设想有一组弹簧,每个弹簧的正弦运动都具有特定的频率、峰值振幅和相位延迟。所有弹簧的正弦响应如图1所示。我们可以把该系统的运动“合成”为一个总的波动,来代替该组中的各单个分量的运动。这一合成是直接把所有记录道相加,其结果得到一个与时间相关的信号,在图1中由第一道表示。我们通过这种合成可以把这一运动由频率域变换到时间域。这一变换是可逆的:即给定时间域信号,我们可以把它变换到频率域的正弦分量。在数学上,这种双向过程是由傅里叶变换完成的。在实际应用中,标准的运算是所谓快速傅氏变换。通过傅氏正变换可以把与时间相关的信号分解成它的频率分量,而所有的频率分量合成为时间域信号又是通过反傅氏变换来实现的。图2概括了信号的傅氏变换。振幅谱和相位谱(严格地讲是相位延迟谱)是图1中所显示的正弦波最简单的表示形

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 - -c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2λ=3λ=

时间序列分析——基于R(王燕)第四章

第四章:非平稳序列的确定性分析 题目一: ()()()()()()()12312123121231 ?14111??2144451 . 1616T T T T T T T T T T T T T T T T T T T T T x x x x x x x x x x x x x x x x x x x x x -------------=+++?? =+++=++++++????=+++ 题目二: 因为采用指数平滑法,所以1,t t x x +满足式子()11t t t x x x αα-=+-,下面式子 ()()1 1111t t t t t t x x x x x x αααα-++=+-??? =+-?? 成立,由上式可以推导出()()11111t t t t x x x x αααα++-=+-+-????,代入数据得:2 =5 α. 题目三: ()()()2122192221202019200 1 ?1210101113=11.251 ? 1010111311.2=11.04.5 ???10.40.6.i i i x x x x x x x x αα-==++++=++++===+-=?∑(1)(2) 根据程序计算可得:22?11.79277.x = ()222019181716161?2525x x x x x x =++++(3)可以推导出16,0.425a b ==,则4 25 b a -=-. 题目四: 因为,1,2,3, t x t t ==,根据指数平滑的关系式,我们可以得到以下公式: ()()()()()()() ()()()()()()()() 2 2 1 2 21 11121111 1111311. 2t t t t t t t x t t t x t t αααααααααααααααααααα----=+-------=-+---+--+++2+, + +2+用(1)式减去(2)式得: ()()()()()2 21=11111. t t t t x t αααααααααααα------------- 所以我们可以得到下面的等式: ()()()()()()1 2 2111=11111=. t t t t t x t t αααααααα +---------- -------

时间序列分析第二章王燕第一到第三题习题解答

时间序列分析习题解答 第二章 P.33 2.3 习 题 2.1 考虑序列{1,2,3,4,5,…,20}: (1) 判断该序列是否平稳; (2) 计算该序列的样本自相关系数k ^ ρ(k=1,2,…,6); (3) 绘制该样本自相关图,并解释该图形。 解:(1) 由于不存在常数μ,使,t EX t T μ=?∈,所以该序列不是平稳序列。 显然,该序列是按等步长1单调增加的序列。 (2) 1^ρ=0.85000 2^ρ=0.70150 3^ ρ=0.55602 4^ρ=0.41504 5^ρ=0.28008 6^ ρ=0.15263 (3) 样本自相关图 该图横轴表示自相关系数,纵轴表示延迟时期数。该图的自相关系数递减的速度缓慢,在6期的延迟时期里,自相关系数一直为正,说明该序列是有单调趋势的非平稳序列。 附:SAS 程序如下: data ex2_1; input freq@@; cards; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ; proc arima data=ex2_1; identify var=freq Nlag=6; run; 可得到上图的自相关图等内容, 更多结果被省略。

2.2 1975-1980年夏威夷岛莫那罗亚火山(Mauna Loa )每月释放的CO 2数据如下(单位:ppm )见下表。 330.45 330.97 331.64 332.87 333.61 333.55 331.90 330.05 328.58 328.31 329.41 330.63 331.63 332.46 333.36 334.45 334.82 334.32 333.05 330.87 329.24 328.87 330.18 331.50 332.81 333.23 334.55 335.82 336.44 335.99 334.65 332.41 331.32 330.73 332.05 333.53 334.66 335.07 336.33 337.39 337.65 337.57 336.25 334.39 332.44 332.25 333.59 334.76 335.89 336.44 337.63 338.54 339.06 338.95 337.41 335.71 333.68 333.69 335.05 336.53 337.81 338.16 339.88 340.57 341.19 340.87 339.25 337.19 335.49 336.63 337.74 338.36 (1)绘制该序列时序图,并判断该序列是否平稳; (2)计算该序列的样本自相关系数k ^ (k=1,2,…,24); (3)绘制该样本自相关图,并解释该图形。 解:(1) 该序列的时序图: 由上图可以看出,CO 2排量总体逐步上升,且以年为周期呈现出一定的周期性。 故该序列是呈现带周期性的单调上升趋势,该序列不平稳。

应用时间序列分析 第5章

佛山科学技术学院 应用时间序列分析实验报告 实验名称第五章非平稳序列的随机分析 一、上机练习 通过第4章我们学习了非平稳序列的确定性因素分解方法,但随着研究方法的深入和研究领域的拓宽,我们发现确定性因素分解方法不能很充分的提取确定性信息以及无法提供明确有效的方法判断各因素之间确切的作用关系。第5章所介绍的随机性分析方法弥补了确定性因素分解方法的不足,为我们提供了更加丰富、更加精确的时序分析工具。 5.8.1 拟合ARIMA模型 【程序】 data example5_1; input x@@; difx=dif(x); t=_n_; cards; 1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.38 5.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -1 6.22 -19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44 -23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29 -9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80 ; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; estimate p=1 noint; forecast lead=5id=t out=out; proc gplot data=out; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay; symbol1c=black i=none v=star; symbol2c=red i=join v=none; symbol3c=green I=join v=none;

应用时间序列分析第4章答案

大学: :汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

相关主题
文本预览
相关文档 最新文档