当前位置:文档之家› 复合函数定义域问题

复合函数定义域问题

复合函数定义域问题
复合函数定义域问题

第一讲 复合函数的定义域

一、复合函数的构成

设()u g x =是A 到B 的函数,()y f u =是'B 到'C 上的函

数,且B 'B ?,当u 取遍B 中的元素时,y 取遍C ,那么(())y f g x =就是A 到C 上的函数。此函数称为由外函数()y f x =和内函数()u g x =复合而成的复合函数。

说明:

⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。

⑵x 称为直接变量,

u 称为中间变量,u 的取值范围即为()g x 的值域。

⑶))((x g f 与))((x f g 表示不同的复合函数。

例1.设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f . ⑷若)(x f 的定义域为'M ,则复合函数))((x g f 中,M x g ∈)(. 注意:)(x g 的值域'M M ?.

例2:

⑴若函数)(x f 的定义域是[0,1],求)21(x f -的定义域; ⑵若)12(-x f 的定义域是[-1,1],求函数)(x f 的定义域; ⑶已知)3(+x f 定义域是[)5,4-,求)32(-x f 定义域.

要点1:解决复合函数问题,一般先将复合函数分解,即它是哪个内函数和哪个外函数复合而成的.

解答:

⑴ 函数)21(x f -是由A 到B 上的函数x u 21-=与B 到C 上的函数)(u f y =复合而成的函数.

Θ函数)(x f 的定义域是[0,1],

∴B=[0,1],即函数x u 21-=的值域为[0,1].

∴1210≤-≤x ,

∴021≤-≤-x ,即210≤≤x ,

∴函数)21(x f -的定义域[0,2

1].

⑵ 函数)12(-x f 是由A 到B 上的函数12-=x u 与B 到C 上的函数)(u f y =复合而成的函数.

Θ)12(-x f 的定义域是[-1,1], ∴A=[-1,1],即-11≤≤x ,

∴1123≤-≤-x ,即12-=x u 的值域是[-3,1],

∴)(x f y =的定义域是[-3,1].

要点2:若已知)(x f 的定义域为A ,则)]([x g f 的定义域就是不等式A x g ∈)(的x 的集合;若已知)]([x g f 的定义域为A ,则)(x f 的定义域就是函数)(x g )(A x ∈的值域。

⑶ 函数)3(+x f 是由A 到B 上的函数3+=x u 与B 到C 上的函数)(u f y =复合而成的函数.

)3(+x f Θ的定义域是[-4,5),

∴A=[-4,5)即54<≤-x ,

∴831<+≤-x 即3+=x u 的值域B=[-1,8)

又)32(-x f 是由'A 到'B 上的函数32'-=x u 与B 到C 上的函数

)(u f y =复合而成的函数,而'B B =,从而32'-=x u 的值域)8,1['-=B

∴8321<-≤-x

∴,1122<≤x ∴2

111<≤x ∴)32(-x f 的定义域是[1,

211). 例3:已知函数)(x f 定义域是(a,b ),求)13()13()(+--=x f x f x F 的定义域.

解:由题,???<+<<-

13131b x a b x a , 当?????<-≥+b

a b a 3131,即2-≥>b a b 时,)(x F 不表示函数; 当?????<-<+b

a b a 3131,即2-

1,31(

-+b a . 说明: ① 已知)(x f 的定义域为(a,b),求))((x g f 的定义域的方法:

已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。实际上是已知中间变量的u 的取值范围,即)(b a u ,∈,)()(b a x g ,∈。通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。

② 已知))((x g f 的定义域为(a,b),求)(x f 的定义域的方法:

若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。实际上是已知复合函数))((x g f 直接变量x 的取值范围,即)(b a x ,∈。先利用b x a <<求得)(x g 的范围,则)(x g 的范围即是)(x f 的定义域,即使函数)(x f 的解析式形式所要求定义域真包含)(x g 的值域,也应以)(x g 的值域做为所求)(x f 的定义域,因为要确保所求外含数)(x f 与已知条件下所要求的外含数是同一函数,否则所求外含数)(x f 将失去解决问题的有效性。换元法其实质就是求复合函数))((x g f 的外函数)(x f ,如果外函数)(x f 的定义域不等于内函数)(x g 的值域,那么)(x f 就确定不了))((x g f 的最值或值域。

例4:已知函数x x x f +-=1)(,)1(≥x

求)(x f 的值域。 分析:令1)(-=x x u ,)1(≥x ;

则有1)(2++=u u u g ,)0(≥u

复合函数)(x f 是由1)(-=x x u 与1)(2++=u u u g 复合而成,而1)(2++=u u u g ,)0(≥u 的值域即)(x f 的值域,但1)(2++=u u u g 的本身定义域为R ,其值域则不等于复合函数)(x f 的值域了。

例5:已知函数6lg )3(222-=-x x x f ,求函数)(x f 的解析式,定

义域及奇偶性。

分析:因为6lg )3(222

-=-x x x f 定义域为{6|-≤x x 或6≥x } 令32-=x u ,3φu ;则33lg

)(-+=u u u f ,且u 3φ 所以 3,3

3lg )(φx x x x f -+=,定义域不关于原点对称,故)(x f 是非奇非偶函数。

然而只就3

3lg )(-+=x x x f 解析式而言,定义域是关于原点对称的,且)()(x f x f -=-,所以是奇函数。就本题而言)(u f 就是外函数其定义域决定于内函数32-=x u ,3φu 的值域,而不是外函数)(u f 其解析式本身决定的定义域了。

2.求有关复合函数的解析式,

例6.①已知 ,1)(2+=x x f 求)1(-x f ;

②已知 1)1()1(2++=-x x f ,求)(x f .

例7.①已知x x x f 1)1(+=- ,求)(x f ;

②已知221)1(x x x x f +

=-,求)1(+x f . 要点3:

已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。

已知)]([x g f 求)(x f 的常用方法有:配凑法和换元法。 配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。

换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,

最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。

例8.①已知)(x f 是一次函数,满足172)1(2)1(3+=--+x x f x f ,求)(x f ; ②已知x x f x f 4)1(2)(3=+,求)(x f .

要点4:

⑴ 当已知函数的类型求函数的解析式时,一般用待定系数法。

⑵ 若已知抽象的函数表达式,则常用解方程组、消参的思想方法 求函数的解析式。已知)(x f 满足某个等式,这个等式除)(x f 是未知量外,还出现其他未知量,如)(x f -、)1(x

f 等,必须根据已知等式再构造出其他等式组成方程组,通过解方程组求出)(x f 。

二、练习:

1.已知x x x f 2)12(2-=+,求)122(+f 和)322(+f . 解:令12212+=+x ,设2=x ,

,22222)2()122(2-=-=+f 令32212+=+x ,设12+=x ,

1222223)12(2)12()322(2=--+=+-+=+f .

2.已知???<->-=-=0,20,1)(,1)(2

x x x x x g x x f ,求))((x g f . 分析:)]([x g f 是用)(x g 替换)(x f y =中的x 而得到的,问

题是用)(x g 中的1-x 替换呢,还是用x -2替换呢?所以要按0>x 、0

注:)]([x f g 是用)(x f 替换)(x g y =中的x 而得到的,问题是用)(x f 替换)(x g 中的1-x 呢,还是替换x -2呢?所以要看012>-x 还是012<-x ,故按012>-x 、012<-x 分类。

Key:?????<+->-=03402)]([22x x x x x x x g f ,

,;

注:??

???-<<<->---=1111232)]([222x x x x x x x f g ,,

,。 三、总结:

1.复合函数的构成;

设函数)(u f y =,)(x g u =,则我们称))((x g f y =是由外函数)(u f y =和内函数)(x g u =复合而成的复合函数。其中x 被称为直接变量,u 被称为中间变量。复合函数中直接变量x 的取值范围叫做复合函数的定义域,中间变量u 的取值范围,即是)(x g 的值域,是外函数)(u f y =的定义域。 2.有关复合函数的定义域求法及解析式求法:

⑴定义域求法:

求复合函数的定义域只要解中间变量的不等式(由b x g a <<)(解x );求外函数的定义域只要求中间变量的值域范围(由b x a <<求)(x g 的值域)。已知一个复合函数求另一个复合函数的定义域,必须先求出外函数的定义域。特别强调,此时求出的外函数的定义域一定是前一个复合函数

的内函数的值域,例2(3)反映明显。

⑵解析式求法:待定系数法、配凑法、换元法、解方程组消元法.

四:外函数解析式其本身决定定义域的主要依据有:

⑴ 当)(x f 为整式或奇次根式时,x ∈R ;

⑵ 当)(x f 为偶次根式时,被开方数不小于0(即≥0); ⑶ 当)(x f 为分式时,分母不为0;当分母是偶次根式时,被

开方数大于0;

⑷ 当)(x f 为指数式时,对零指数幂或负整数指数幂,底不

为0(如0)(x x f =,221)(x

x x f ==-中0≠x )。 ⑸ 当)(x f 是由一些基本函数通过四则运算结合而成的,它

的定义域应是使各部分都有意义的自变量x 的值组成的集合,即求各部分定义域集合的交集。

⑹ 分段函数)(x f y =的定义域是各段上自变量x 的取值集

合的并集。

⑺ 由实际问题建立的函数,除了要考虑使解析式有意义外,

还要考虑实际意义对自变量的要求

⑻ 对于含参数字母的函数,求定义域时一般要对字母的取值

情况进行分类讨论,并要注意函数的定义域为非空集合。 ⑼ 对数函数的真数必须大于零,底数大于零且不等于1。 ⑽ 三角函数中的切割函数要注意对角变量的限制。

对数函数中的复合函数问题

对数函数中的复合函数问题 教学目的:通过一些例题的讲解,对对数函数的性质、图象及与二次函数的复合函数问题进行复习,使学生加深对函数的认识,能够对一些有难度的题进行分析解决。 教学难点:复合函数中定义域、值域以及单调性的求解。 教学过程:先复习对数函数以及性质。 下面我们来做几道例题。 我们在遇到的一些问题中往往对数函数不是单独出现的,它总是和其他函数同时出现,特别是二次函数。那么如何来解决这类比较复杂的问题呢? 把对数函数和二次函数结合起来,最常见的就是复合函数。下面就先来看这么一道题 例1的单调递增区间是( )。 A. B. C. D. 分析:由于以1/2为底的对数函数是一个单调减函数,所以要求该函数的单调递增区间,也就是要求该二次函数的单调递减区间。下面我们就把问题转化为解决二次函数的问题。对于该二次函数进行配方4 9)21(222-+=-+x x x ,我们可以很容易看出是一个开口向上的抛物线,则其在x 小于-1/2时为单调递减,x 大于-1/2时为单调递增。 那么该题是否到此为止了呢?其实在此对于上面的二次函数是有范围的,也就是说 即x<-2 或x>1综上所述,我们应该选择A 。 一般化:对于类似与上面这题的复合函数 的单调区间是怎样的.该二次函数图象为一开口向上的抛物线。 抛物线与x 轴有两个交点 抛物线与x 轴只有一个交点 抛物线与x 轴没有交点 利用几何画板作图探究并验证:(略)

例2若函数的值域为一切实数,求实数的取值范围。 按照通常的做法,要使函数有意义,必须有:对一切实数x都成立,即其实当时, 可以看出 可见值域并非为R,说明上述解答有误。 要使函数的值域为R,即要真数取遍所有正数,故二次函数的图象与x轴有交点,所以,得或。故实数a的取值范围为。 我们在考虑这类复合函数问题的时候,要仔细分析各函数的定义域和值域以及复合后的定义域和值域的变化。以上这两题中的二次函数是作为对数函数的一部分出现的,那么,对数函数作为二次函数的一部分出现时,又该怎样呢?下面来看这几道题: 例3若,且,求的最值。 分析:先整理,可得: 而。 这道题要注意对数的计算,通过配方求出最值。 例4若有两个小于1的正根,且,求实数的取值范围。 分析:先化简函数方程。, 由于形式有点复杂,可作代换, ()。

高一必修一数学-复合函数定义域

复合函数的定义域 讲解内容: 复合函数的定义域求法 讲解步骤: 第一步:函数概念及其定义域 函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值. 第二步:复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22 (())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。) 第三步:介绍复合函数的定义域求法 例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域; 解:由题意得 35x -<≤ 3325x ∴-<-≤ 137x -<≤ 1 7 33x ∴-<≤ 所以函数(32)f x -的定义域为17,33? ?- ??? . 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即 ???≤≤->-+?≤+<13023202320222 x x x x x x x x x ,或

复合函数定义域与值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义 域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为

复合函数的零点个数问题

复合函数、分段函数零点个数问题 2012.12.31 1.(2013届八校联考理10)已知函数???<≥=) 0()-(log ) 0(3)(3x x x x f x ,函数 )()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判断不正确...的是( ) A .若)(,41x g t = 有一个零点 B .若)(,4 1 2-x g t <<有两个零点 C .若)(,2-x g t =有三个零点 D .若)(,2-x g t <有四个零点 2、(2013届八校联考-文10)已知函数(0) ()lg()(0)x e x f x x x ?≥=?-0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2 +=x f x f 的零点的个数为 ________. 5.已知函数1+ (0)()0(=0) x x f x x x ?≠?=??? 则关于x 的方程 2 ()b ()0f x f x c ++= 有5个 不同的实数解的充要条件是( ) A b<-2且c>0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且 6 已知函数31 +,>0()3,0x x f x x x x ??=??+≤? , 则函数)2(-)2()(F 2 >+=a a x x f x 的零点个数不可能... 为( ) A 3 B 4 C 5 D 6

复合函数定义域三种形式解法

先介绍几个名词:(能理解最好,如果感觉这些名词有点晕,你可以跳过) 【定义域】:就是初中我们所学的,函数y=f(x)的自变量x的取值范围;【值域】:函数y=f(x)的因变量y的取值范围; 【显函数】:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5; 【隐函数】:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的; 【复合函数】:如果说y=f(x)是一个简单的抽象函数,那么把自变量x 用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。 讲解之前提醒很关键的一句:凡是函数的定义域,永远是指自变量x 的取值范围。 【题型一】已知抽象函数y=f(x)的定义域[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。 解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域【例题1】已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域. 解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],

即t=3+2x∈[0,3], 关于抽象复合函数定义域的求法 说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与 y=f(3+2x)的x虽然长得一样,但是意义不同,如果令x=3+2x,则等号两边的x就是一模一样了,x只能为-3了。 【题型二】已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 思路分析:本题型是已知y=f(g(x))的自变量x的范围,求y=f(x)的自变量x的范围,其中的关键是,前者的 g(x)相当于后者的x。 解决策略:求内函数t=g(x)在区间[m,n]的值域(t的取值范围),即为y=f(x)的定义域 【例题2】已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 解:∵y=f(2x-1)的定义域[0,3],∴0≤x≤3,令t=2x-1,∴t=2x-1∈[-1,5] 故,函数y=f(t)的定义域为t∈[-1,5], 故,函数y=f(x)的定义域为x∈[-1,5] 说明:函数y=f(x)与y=f(t)是同一个函数,与单个自变量是x还是t 无关。另外,题型二是题型一的逆向题目。

(完整版)1求函数定义域类型几方法(word版)

函数定义域的类型及求法 、已知解析式型(所有同学一定要会的) 即给出函数的解析式的定义域求袪,苴解袪是由解析式有意义列出关于自变量的不等 式或不等式组■解此不等式(或组)即得原函数的定义域° Jx 1 - 2x - 1^ 例求函数p 二 _ 的定文域. I - 15 >0 f Y > 5或丫 < -3 解*要使函数有意5C 则必须满足] ' - 即J ”工+引―8工0 [工疋5且工工―11 解得r > §或斗< 且里工一11 即口数的定义域为{工r > 5或藍丈-3且工上-11 } o 二、含参问题(很重要) 例乳已知函数$ = J 沁亍一6沁一澈十8的定义境为E 求实数战的取值范围° 分析;函数的定文域为R ,表明他:-6林亠用十S 乙0 ,使一切工E R 都成立,由厂 项的系數是刖,所以应分刪=0或旳黑0进行讨论d 解.讨论. ① 当也二0时,函数的定义域为R ; ② 当用=0时,mx ■ - 6)KX + M ? -F X > 0杲二次不等式,其对一切实数X 都成立的充 综上可知;0 £ m 玉1 ° 三、抽象函数(复合函数)的定义域 1已知f(x)的定义域,求f g(x)的定义域 其解法是:若f (x)的定义域为a < x < b ,则在f g(x)中,a < g(x) < b ,从中解得x 的取值范 要条件是.

围即为f g(x)的定义域. 例1 已知函数f(x)的定义域为1,,求f(3x 5)的定义域. 分析:该函数是由u 3x 5和f(u)构成的复合函数,其中x是自变量,u是中间变量,由于f(x)与f (u)是同一个函数,因此这里是已知 1 < u < 5,即K 3x 5 < 5,求x的取值范围. 4 10 解:Q f(x)的定义域为1,, 1 < 3x 5 < 5,4< x < 10. 3 3 故函数f(3x 5)的定义域为-,10. 3 3 2、已知f g(x)的定义域,求f (x)的定义域 其解法是:若f g(x)的定义域为m < x< n,则由m< x < n确定的g(x)的范围即为f (x)的定义域. 2 例2已知函数f(x 2x 2)的定义域为0,3,求函数f(x)的定义域. 分析:令u x2 2x 2,则f(x2 2x 2) f(u), 由于f(u)与f(x)是同一函数,因此u的取值范围即为f(x)的定义域. 解:由0 < x < 3,得 1 < x2 2x 2 < 5 . 令u x2 2x 2,贝y f (x2 2x 2) f (u),1< u < 5 . 故f (x)的定义域为1,. 3,已知f g(x)的定义域,求f[h(x)]的定义域 其解法是:若f g(x)的定义域为m < x < n,则由m < x < n确定的g(x)的取值范围即为h(x) 的取值范围,由h(x)的取值范围即可求出f[h(x)]的定义域x的取值范围。 例2 已知函数f(x 1)的定义域为1,,求f(3x 5)的定义域. 分析:令u x 1,t 3x 5,则f(x 1) f(u), f(3x 5) f(t), f (u), f (t)表示的是同一函数,故u的取值范围与t相同。 解:Q f(x)的定义域为1,,即K x < 5 0 < x 1 < 6。

复合函数定义域三种形式解法

复合函数定义域三种形式 解法 Last updated on the afternoon of January 3, 2021

先介绍几个名词:(能理解最好,如果感觉这些名词有点晕,你可以跳过)【定义域】:就是初中我们所学的,函数y=f(x)的自变量x的取值范围;【值域】:函数y=f(x)的因变量y的取值范围; 【显函数】:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5;【隐函数】:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的; 【复合函数】:如果说y=f(x)是一个简单的抽象函数,那么把自变量x用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。 讲解之前提醒很关键的一句:凡是函数的定义域,永远是指自变量x的取值范围。 【题型一】已知抽象函数y=f(x)的定义域[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。 解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域 【例题1】已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域. 解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],即t=3+2x ∈[0,3], 关于抽象复合函数定义域的求法 说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与

(完整版)几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。 f(x -1x )=x 2+1x 2,函数f(x)的解析式 换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。 f(x +1)=x 2 +x,函数f(x)的解析式: 复合函数的定义域 复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 22(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f 复合函数的定义域求法 .已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

求复合函数的定义域、值域、解析式(集锦)

求复合的定义域、值域、解析式(集锦) 一、 基本类型: 1、 求下列函数的定义域。 (1)12 )(-+=x x x f (2)x x x x f -+= 0)1()( (3) 1 11--= x y (4)()28 x f x = - 二、复合函数的定义域 1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域 2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2) ()1 f x g x x =-的定义域 2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域 3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是 求函数的值域 一、二次函数法 (1)求二次函数232y x x =-+的值域 (2)求函数225,[1,2]y x x x =-+∈-的值域. 二、换元法: (1) 求函数 y x =+

分分式法 求2 1+-=x x y 的值域。 解:(反解x 法) 四、判别式法 (1)求函数22221 x x y x x -+=++;的值域 2)已知函数2 1 ax b y x += +的值域为[-1,4],求常数b a ,的值。 五:有界性法: (1)求函数1e 1e y x x +-=的值域 六、数形结合法---扩展到n 个相加 (1)|1||4|y x x =-++(中间为减号的情况?) 求解析式 换元法 已知 23,f x =- 求 f (x ). 解方程组法 设函数f (x )满足f (x )+2 f (x 1)= x (x ≠0),求f (x )函数解析式. 一变:若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数 ,x y ,总有2 ()()(21),f x f x y x y y +=+++求()f x 。 令x=0,y=2x 待定系数法 设 f (2x )+f (3x +1)=13x 2+6x -1, 求 f (x ).

复合函数定义域的常见求法

复合函数定义域的常见求法 一、复合函数的概念 假如y 是u 的函数,而u 是x 的函数,即y = f ( u ), u = g ( x ) ,那么y 关于x 的函数y = f [g ( x ) ]叫做函数f 与 g 的复合函数,u 叫做中间变量。 注意:复合函数并不是一类新的函数,它只是反映某些函数在结构方面的某种特点,因此,依照复合函数结构,将它折成几个简单的函数时,应从外到里一层一层地拆,注意不要漏层。 另外,在研究有关复合函数的咨询题时,要注意复合函数的存在条件,即当且仅当g ( x )的值域与f ( u )的定义域的交集非空时,它们的复合函数才有意义,否那么如此的复合函数不存在。 例:f ( x + 1 ) = (x + 1)2 能够拆成y = f ( u ) = u 2 , u = g ( x ) , g ( x ) = x + 1 ,即能够看成f ( u ) = u 2 与g ( x ) = x + 1 两个函数复合而成。 二、求复合函数的定义域: 〔1〕假设f(x)的定义域为a ≤ x ≤ b,那么f [ g ( x ) ] 中的a ≤ g ( x ) ≤ b ,从中解得x 的范畴,即为f [g ( x )]的定义域。 例1、y = f ( x ) 的定义域为[ 0 , 1 ],求f ( 2x + 1 )的定义域。 答案: [-1/2 ,0 ] 例2、f ( x )的定义域为〔0,1〕,求f ( x 2)的定义域。 答案: [-1 ,1] 〔2〕假设f [ g ( x ) ]的定义域为〔m , n 〕那么由m < x < n 确定出g ( x )的范畴即为f ( x )的定义域。 例3、函数f ( 2x + 1 )的定义域为〔0,1〕,求f ( x ) 的定义域。 答案: [ 1 ,3] 〔3〕由f [ g ( x ) ] 的定义域,求得f ( x )的定义域后,再求f [ h ( x ) ]的定义域。 例4、f ( x + 1 )的定义域为[-2 ,3],求f ( 2x 2 – 2 ) 的定义域。 答案:[-√3/2 ,-√3]∪[√3/2 ,√3] 三、求复合函数的解析式。 关于复合函数的解析式的求法,尽管种类专门多,在那个地点重点介绍配凑法和换元法,详细内容请参阅?教学周刊?第6期。 〔1〕配凑法 假设f [ g ( x ) ] = F ( x )是关于x 的函数,能够把F ( x )表示g ( x )的复合函数形式,然后用x 替换g ( x ),即可得到f ( x )的解析式。 例5、f (x x x x x 21)122++=+,求f ( x )的解析式。 答案:f(x)= x 2 例6、f ( x + 331)1x x x +=,求f ( x )的解析式。 答案:f(x)= x 3-2x-1 〔2〕换元法 假设f [ g ( x ) ]的表达式,能够令g ( x ) = t ,从中解出x 再将x 代入f [ g ( x ) ]的表达式中,如此

函数的定义域及求法讲解

函数 一、函数的定义域及求法 1、分式的分母≠0;偶次方根的被开方数≥0; 2、对数函数的真数>0;对数函数的底数>0且≠1; 3、正切函数:x ≠kπ+ π/2 ,k∈Z;余切函数:x ≠kπ,k ∈Z ; 4、一次函数、二次函数、指数函数的定义域为R; 5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法; 6、复合函数定义域的求法:推理、取交集及分类讨论. [例题]: 1、求下列函数的定义域

3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论] 当m=0时,则mx2-4mx+m+3=3,→原函数的定义域为R; 当m≠0时,则mx2-4mx+m+3>0, ①m<0时,显然原函数定义域不为R; ②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R, 所以当m∈[0,1) 时,原函数定义域为R.

4、求函数y=log x + 1 (x≥4) 的反函数的定义域. 2 [解析]:[求原函数的值域] 由题意可知,即求原函数的值域, ∵x≥4,∴log2x≥2∴y≥3 所以函数y=log2x + 1 (x≥4) 的反函数的定义域是[3,+∞). 5、函数f(2x)的定义域是[-1,1],求f(log x)的定义域. 2 [解析]:由题意可知2-1≤2x≤21→f(x)定义域为[1/2,2] → 1/2≤log2x≤2→√ ̄2≤x≤4. x)的定义域是[√ ̄2,4]. 所以f(log 2 二、函数的值域及求法 1、一次函数y=kx+b(k≠0)的值域为R; 2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时, y≤-△/4a ; 3、反比例函数的值域:y≠0 ; 4、指数函数的值域为(0,+∞);对数函数的值域为R; 5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R; 6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法. [例题]::求下列函数的值域

复合函数讲义

. 复合函数(讲义) ? 知识点睛 1. 复合函数定义 若函数()y f u =,()u g x =,则称函数(())y f g x =为复合 函数,其中()f u 为外层函数,g (x )为层函数,u 是中间变量. 2. 复合函数定义域的求法 ①若y =()f x 的定义域为[a ,b ],则复合函数(())y f g x =的定义域即为不等式a ≤g (x )≤b 的解集; ②若(())y f g x =的定义域为[a ,b ],则函数y =()f x 的定义域即为x ∈[a ,b ]时g (x )的取值围. 注:同一对应法则f 下的围相同,即f (u )、f (g (x ))、f (h (x ))三个函数中,u ,g (x ), f (x )的围相同. 3. 复合函数的单调性 口诀:同增异减. 已知函数(())y f g x =,则求其单调区间的一般步骤如下: (1)确定定义域; (2)将复合函数(())y f g x =分解成:()y f u =,()u g x =; (3)分别确定这两个函数的单调区间. 4. 复合函数的奇偶性 口诀:有偶则偶,全奇为奇.即:

? 精讲精练 1. (1)设函数 f (x )=2x +3,g(x )=3x -5,则 f (g (x ))=____________,g (f (x ))=____________; (2)已知2211()f x x x x -=+,则(1)f x +=_________. 2. (1)设函数f (x )的定义域为[01],,则函数2()f x 的定义域为____________,函数2)f -的定义域为____________; 3. 求函数的值域:

复合函数的定义域-函数表达式的求法

复合函数的定义域-函数表达式的求法

个性化教学辅导教案 教案课题函数的单调性 教师姓名学生姓名××××上课日期2018.8.3 学科数学适用年级高一教材版本人教版A 学习目标1.掌握用定义法求函数的单调性 2.掌握函数最值的求法 重难点重点:函数的单调性及其几何意义,函数的最大(小)值及其几何意义. 难点:利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值. 课前检查作业完成情况:优□良□中□差□建议: 第5 讲复合函数的定义域函数表达式的求法 & 一.复合函数的定义域 1.复合函数的定义: 一般地:若)(u f y=,又)(x g u=,则函数)]([x g f y=叫x的复合函 数,其中)(u f y=叫外层函数,)(x g u=叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.

例如: 2 ()35,()1 f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 2 2(())3()53(1)538 f g x g x x x =+=++=+ 2.复合函数的定义域 函数))((x g f 的定义域还是指x 的取值范围,而不是)(x g 的取值范围. ① 已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 ② 已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域 ③ 已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类

复合函数知识总结及例题

复合函数问题 一、复合函数定义:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知的定义域,求 的定义域 思路:设函数 的定义域为D ,即 ,所以 的作用范围为D ,又f 对 作用,作用范围 不变,所以D x g ∈)(,解得 ,E 为 的定义域。 例1.设函数的定义域为(0,1),则函数的定义域为_____________。 解析:函数 的定义域为(0,1)即 ,所以的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以 解得,故函数 的定义域为(1,e ) 例2.若函数 ,则函数 的定义域为______________。 解析:先求f 的作用范围,由,知 即f 的作用范围为 ,又f 对f(x)作用所以 ,即 中x 应 满足即,解得 故函数的定义域为 (2)、已知的定义域,求的定义域 思路:设 的定义域为D ,即 ,由此得,所以f 的作用范围为E ,又f 对x 作 用,作用范围不变,所以 为 的定义域。 例3.已知的定义域为,则函数的定义域为_________。 解析: 的定义域为 ,即 ,由此得 所以f 的作用范围为,又f 对x 作用,作用范围不变,所以

即函数的定义域为例4.已知,则函数的定义域为------- 解析:先求f 的作用范围,由f x x x ()lg 2 2 248 -=-,知 解得,f 的作用范围为 ,又f 对x 作用,作用范围不变,所以, 即 的定义域为 (3)、已知的定义域,求的定义域 思路:设 的定义域为D ,即 ,由此得, 的作用范围为E ,又f 对 作 用,作用范围不变,所以 ,解得 ,F 为 的定义域。 例5.若函数 的定义域为 ,则 的定义域为____________。 解析:的定义域为,即,由此得 的作用范围为,又f 对作用,所以,解得 即的定义域为 评注:函数定义域是自变量x 的取值范围(用集合或区间表示)f 对谁作用,则谁的范围是f 的作用范围,f 的作用对象可以变,但f 的作用范围不会变。利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。 三、复合函数单调性问题 (1)引理证明 已知函数))((x g f y =.若)(x g u =在区间b a ,()上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,()上是增函数. 证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21 因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =,)(22x g u =即 ),(,21,21d c u u u u ∈>且

关于复合函数定义域的求解方法

关于复合函数定义域的求解方法 若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。对于有关复合函数定义域问题我们可以分成以下几种类型。 一、已知的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若的定义域为,求出中b x g a <<)(的解的范围,即为的定义域。 例1 已知)(x f 的定义域为]30(,,求定义域。 解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即 ???≤≤->-+?≤+<13023202320222x x x x x x x x x ,或 即23-<≤-x 或10≤

求复合函数的定义域

求复合函数的定义域 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、例题剖析: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

复合函数的定义域和值域

如果y是u的函数,记为,u又是x函数,记为,且g(x)的值域与f(u)的定义域的交集不空,则确定了一个y关于x的函数 ,这就是函数的复合函数,而称为外函数, 称为内函数。本文举例介绍复合函数问题的一些常见类型及解法。 1.求复合函数的定义域 关键是正确分析函数的复合层次,由里向外或由外向里逐层解决。 例1已知f(x)的定义域为[0,1)若,则函数的定义域是________。 解析由 故函数的定义域为。 例2已知函数f(x)的定义域为(1,3],求函数的定义域(a>0)。 解析由 由a>0,而知只有当0

解析函数是由函数复合而成的。由u的定义域得:。由,或y>1,故 所给函数的值域为。 3.求复合函数的奇偶性 (1)若内函数为偶函数,那么复合函数的奇偶性与外函数无关,必为偶函数; (2)若内与外函数都为奇函数,那么复合函数也是奇函数; (3)若内函数为奇函数,外函数为偶函数,那么复合函数必为偶函数。 除以上类型外,其它类复合函数的奇偶性和须严格按函数奇偶性定义来判断。 例5判断下列函数的奇偶性。 解析(1)由于内函数为偶函数,据以上结论知f(x)必为偶函数。 解析(2)由于内函数为偶函数,虽外函数是非奇非偶函数,但f(x)仍为偶函数。 例6若f(x)为奇函数,试判断函数的奇偶性。 解析根据以上结论,由于内函数和外函数f(u)都为奇函数,故函数必为奇函数。 例7已知,试判断函数f(x)的奇偶性。 解析由于内函数非奇非偶,外函数也非奇偶性,这时,f(x)的定义域为(-1,1),又 所以,函数f(x)为奇函数。

复合函数定义

复合函数定义:设y=f(u),u=g(x),当x在u=g(x)的定义域Dg中变化时,u=g(x)的值在y=f(u)的定义域Df内变化,因此变量x与y之间通过变量u形成的一种函数关系,记为:y=f(u)=f[g(x)]称为复合函数(composite function),其中x称为自变量,u为中间变量,y为因变量(即函数)。 生成条件不是任何两个函数都可以复合成一个复合函数,只有当μ=φ(x)的值域存在非空子集Zφ是y=f(μ)的定义域Df的子集时,二者才可以构成一个复合函数。 定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。 求函数的定义域主要应考虑以下几点: ⑴当为整式或奇次根式时,R; ⑵当为偶次根式时,被开方数不小于0(即≥0); ⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0; ⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。 ⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。 ⑹分段函数的定义域是各段上自变量的取值集合的并集。 ⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求 ⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。 ⑼对数函数的真数必须大于零,底数大于零且不等于1。 ⑽三角函数中的切割函数要注意对角变量的限制。 周期性设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期

复合函数定义域求法

复合函数定义域求法 若函数=()的定义域是B,=()的定义域是A,则复合函数=[()]的定义域是 D={|∈A,且()∈B}综合考虑各部分的x的取值范围,取他们的交集。 求函数的定义域主要应考虑以下几点: ⑴当为整式或奇次根式时,R; ⑵当为偶次根式时,被开方数不小于0(即≥0); ⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0; ⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。 ⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。 ⑹分段函数的定义域是各段上自变量的取值集合的并集。 ⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求 ⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。 ⑼对数函数的真数必须大于零,底数大于零且不等于1。 ⑽三角函数中的切割函数要注意对角变量的限制。 复合函数及其定义域求法(1)

一、复合函数的定义:设y是u的函数,即y=f(u),u是x的函数,即u=g(x),且g(x)的值域与f(u)的定义域的交集非空,那么y 通过u的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数记作y=f[g(x)],其中u称为中间变量。 二、对高中复合函数的通解法——综合分析法 1、解复合函数题的关键之一是写出复合过程 例1:指出下列函数的复合过程。 (1)y=√2-x2(2)y=sin3x(3)y=sin3x 解:(1)y=√2-x2是由y=√u,u=2-x2复合而成的。 (2)y=sin3x是由y=sinu,u=3x复合而成的。 (3)∵y=sin3x=(sinx)-3 ∴y=sin3x是由y=u-3,u=sinx复合而成的。 2、解复合函数题的关键之二是正确理解复合函数的定义。 看下例题:例2:已知f(x+3)的定义域为[1、2],求f(2x-5)的定义域。 经典误解1:解:f(x+3)是由y=f(u),u=g(x)=x+3复合而成的。 F(2x-5)是由y=f(u2),u2=g(x)=2x-5复合而成的。 由g(x),G(x)得:u2=2x-11即:y=f(u2),u2=2x-11 ∵f(u1)的定义域为[1、2] ∴1≤x﹤2 ∴-9≤2x-11﹤-6 即:y=f(u2)的定义域为[-9、-6] ∴f(2x-5)的定义域为[-9、-6] 经典误解2:解:∵f(x+3)的定义域为[1、2]

相关主题
文本预览
相关文档 最新文档