复合函数的定义域ppt
- 格式:ppt
- 大小:187.50 KB
- 文档页数:24
求复合函数的定义域一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、例题剖析:(1)、已知f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。
例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以01<<ln x解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1 即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11() 即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且 故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且(2)、已知[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。
例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
一、复合函数函数y=log2x是对数函数,那么函数y=log2(2x-1)是什么函数呢?我们可以这样理解:设y=log2u,u=2x-1,因此函数y=log2(2x-1)是由对数函数y=log2u和一次函数u=2x-1经过复合而成的。
一般地,如果y是u的函数,而u又是x的函数,即y=f(u),u=g(x),那么y关于x的函数y=f[g(x)]叫做函数f和g的复合函数,u叫做中间变量。
二、复合函数。
定理:设y=f(u),u=g(x),已知u=g(x)在[a,b]上是单调增(减)函数,y=f(u)在区间[g(a),g(b)](或[g(b),g(a)]上是单调增(减)函数,那么复合函数y=f[g(x)]在[a,b]上一定是单调函数,并有以下结论:同增异减判断复合函数的单调性的步骤如下:(1)求复合函数定义域;(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);(3)判断每个常见函数的单调性;(4)将中间变量的取值范围转化为自变量的取值范围;(5)求出复合函数的单调性。
例1.讨论函数y=0.8x2-4x+3的单调性。
解:函数定义域为R。
令u=x2-4x+3,y=0.8u。
指数函数y=0.8u在(-∞,+∞)上是减函数,u=x2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,∴ 函数y=0.8x2-4x+3在(-∞,2]上是增函数,在[2,+∞)上是减函数。
这里没有第四步,因为中间变量允许的取值范围是R,无需转化为自变量的取值范围。
例2.讨论函数y=(log2x)2+log2x的单调性。
解:显然函数定义域为(0,+∞)。
令 u=log2x,y=u2+u∵ u=log2x在(0,+∞)上是增函数,y=u2+u在(-∞,- ]上是减函数,在[- ,+∞)上是增函数(注意(-∞,-]及[-,+∞)是u的取值范围)因为u≤- log 2x≤- 0<x≤,(u≥- log2x≥-x≥)所以y=(log2x)2+log2x在(0,]上是减函数,在[,+∞)上是增函数。
复合函数定义:设y=f(u),u=g(x),当x在u=g(x)的定义域Dg中变化时,u=g(x)的值在y=f(u)的定义域Df内变化,因此变量x与y之间通过变量u形成的一种函间变量,y为因变量(即函数)。
生成条件不是任何两个函数都可以复合成一个复合函数,只有当μ=φ(x)的值域存在非空子集Zφ是y=f(μ)的定义域Df的子集时,二者才可以构成一个复合函数。
定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
周期性设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)增减性依y=f(u),μ=φ(x)的增减性决定。
即“增增得增,减减得增,增减得减”,可以简化为“同增异减”判断复合函数的单调性的步骤如下:⑴求复合函数定义域;⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);⑶判断每个常见函数的单调性;⑷将中间变量的取值范围转化为自变量的取值范围;⑸求出复合函数的单调性。
第一讲 复合函数的定义域一、复合函数的构成设()u g x =是A 到B 的函数,()y f u =是'B 到'C 上的函数,且B 'B ⊆,当u 取遍B 中的元素时,y 取遍C ,那么(())y f g x =就是A 到C 上的函数。
此函数称为由外函数()y f x =和内函数()u g x =复合而成的复合函数。
说明:⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。
⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。
⑶))((x g f 与))((x f g 表示不同的复合函数。
例1.设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f . ⑷若)(x f 的定义域为'M ,则复合函数))((x g f 中,M x g ∈)(. 注意:)(x g 的值域'M M ⊆.例2:⑴若函数)(x f 的定义域是[0,1],求)21(x f -的定义域; ⑵若)12(-x f 的定义域是[-1,1],求函数)(x f 的定义域; ⑶已知)3(+x f 定义域是[)5,4-,求)32(-x f 定义域.要点1:解决复合函数问题,一般先将复合函数分解,即它是哪个内函数和哪个外函数复合而成的.解答:⑴ 函数)21(x f -是由A 到B 上的函数x u 21-=与B 到C 上的函数)(u f y =复合而成的函数.函数)(x f 的定义域是[0,1],∴B=[0,1],即函数x u 21-=的值域为[0,1].∴1210≤-≤x ,∴021≤-≤-x ,即210≤≤x ,∴函数)21(x f -的定义域[0,21].⑵ 函数)12(-x f 是由A 到B 上的函数12-=x u 与B 到C 上的函数)(u f y =复合而成的函数.)12(-x f 的定义域是[-1,1], ∴A=[-1,1],即-11≤≤x ,∴1123≤-≤-x ,即12-=x u 的值域是[-3,1],∴)(x f y =的定义域是[-3,1].要点2:若已知)(x f 的定义域为A ,则)]([x g f 的定义域就是不等式A x g ∈)(的x 的集合;若已知)]([x g f 的定义域为A ,则)(x f 的定义域就是函数)(x g )(A x ∈的值域。
复合函数的定义域和值域Hessen was revised in January 2021如果y是u的函数,记为,u又是x函数,记为,且g(x)的值域与f(u)的定义域的交集不空,则确定了一个y关于x的函数,这就是函数的复合函数,而称为外函数,称为内函数。
本文举例介绍复合函数问题的一些常见类型及解法。
1.求复合函数的定义域关键是正确分析函数的复合层次,由里向外或由外向里逐层解决。
例1已知f(x)的定义域为[0,1)若,则函数的定义域是________。
解析由故函数的定义域为。
例2已知函数f(x)的定义域为(1,3],求函数的定义域(a>0)。
解析由由a>0,而知只有当0<a<1时,不等式线才有解,解集为;否则,不等式组的解集为空集,这说明仅当o<a<1时,g(x)才能是x的函数,且其定义域为。
2.求复合函数的值域关键是由里向外,逐层解决。
例3函数的值域是()(A)(B)[0,4](C)(D)解析函数是由函数与y=lgu复合而成的。
由知,由y=lgu知,,故所给函数的值域为,应该选C。
例4求函数的值域。
解析函数是由函数复合而成的。
由u的定义域得:。
由,或y>1,故所给函数的值域为。
3.求复合函数的奇偶性(1)若内函数为偶函数,那么复合函数的奇偶性与外函数无关,必为偶函数;(2)若内与外函数都为奇函数,那么复合函数也是奇函数;(3)若内函数为奇函数,外函数为偶函数,那么复合函数必为偶函数。
除以上类型外,其它类复合函数的奇偶性和须严格按函数奇偶性定义来判断。
例5判断下列函数的奇偶性。
解析(1)由于内函数为偶函数,据以上结论知f(x)必为偶函数。
解析(2)由于内函数为偶函数,虽外函数是非奇非偶函数,但f(x)仍为偶函数。
例6若f(x)为奇函数,试判断函数的奇偶性。
解析根据以上结论,由于内函数和外函数f(u)都为奇函数,故函数必为奇函数。
例7已知,试判断函数f(x)的奇偶性。
复合函数编辑[fù hé hán shù]不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠Ø时,二者才可以构成一个复合函数。
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du 内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
目录1定义域2周期性3增减性▪决定因素▪基本步骤▪例题▪求参数范围4求导1定义域编辑若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
说白了------复合函数y=f[g(x)]中---g(x)的值域是f(u)的定义域。
y=f(x)+g(x)不是复合函数。
求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R的值域;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
复合函数的定义域讲解内容:复合函数的定义域求法讲解步骤:第一步:函数概念及其定义域函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。
其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值.第二步:复合函数的定义一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22(())3()53(1)538f g x g x x x =+=++=+问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。
)第三步:介绍复合函数的定义域求法例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域;解:由题意得35x -<≤Q3325x ∴-<-≤ 137x -<≤1733x ∴-<≤ 所以函数(32)f x -的定义域为17,33⎛⎤- ⎥⎝⎦. 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。
解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即⎩⎨⎧≤≤->-<⇔⎪⎩⎪⎨⎧≤+>+⇔≤+<13023202320222x x x x x x x x x ,或即23-<≤-x 或10≤<x故)2(2x x f +的定义域为[)(]1,02,3Y -- 例2. 若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域解:由题意得23x ∴-≤≤639x ∴-≤≤42311x ∴-≤+≤所以函数()f x 的定义域为:[]4,11-例3. 已知)1(+x f 的定义域为)32[,-,求()2-x f 的定义域。
复合函数的单调性设单调函数)(xfy=为外层函数,)(xgy=为内层函数(1) 若)(xfy=增,)(xgy=增,则))((xgfy=增.(2) 若)(xfy=增,)(xgy=减,则))((xgfy=减.(3) 若)(xfy=减,)(xgy=减,则))((xgfy=增.(4) 若)(xfy=减,)(xgy=增,则))((xgfy=减.结论:同曾异减例1. 求函数222)(-+=xxxf的单调区间.外层函数:ty2=内层函数:22-+=xxt内层函数的单调增区间:],21[+∞-∈x内层函数的单调减区间:]21,[--∞∈x由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x复合函数的减区间为:]21,[--∞∈x在本例题的讲解的开始就求出内层函数的单调区间,因为在复合函数的单调性的问题中很多基础薄弱的同学在此处会出现思维混乱,并且这样可以避免接下来涉及到定义域而学生又容易忽略的情况.例2.求函数)2(log)(22-+=xxxf的单调区间.解题过程:外层函数:ty2log=内层函数:22-+=xxt22>-+=xxt由图知:内层函数的单调增区间:[∈x内层函数的单调减区间:]2,[--∞∈x由于外层函数为增函数所以,复合函数的增区间为:],1[+∞∈x复合函数的减区间为:]2,[--∞∈x例3.求函数xy cos=的单调区间解题过程:外层函数:ty=内层函数:xt cos=cos≥=xt由图知:内层函数的单调增区间:]2,22[πππkkx+-∈内层函数的单调减区间:]22,2[πππkkx+∈由于外层函数为增函数所以,复合函数的增区间为:]2,22[πππkkx+-∈复合函数的减区间为:]22,2[πππkkx+∈复合函数的定义域函数的概念:设是,A B非空数集,如果按某个确定的对应关系f,使对于集合A中的任意一个x,在集合B中都有唯一确定的数()f x和它对应,那么就称:f A B→为集合A到集合B的函数,记作:(),y f x x A=∈。