蚁群算法
- 格式:doc
- 大小:50.50 KB
- 文档页数:5
蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。
该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。
蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。
蚁群算法是群智能理论研究领域的一种主要算法。
1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。
数据分析知识:数据挖掘中的蚁群算法蚁群算法是一种模拟蚂蚁觅食行为的启发式算法。
它是一种基于群体智能的方法,能够有效地用于数据挖掘和机器学习领域。
本文将介绍蚁群算法的基本原理和应用案例。
一、蚁群算法的基本原理蚁群算法受到了蚂蚁觅食行为的启发。
蚂蚁在觅食过程中会遵循一定的规则,例如在路径上释放信息素,吸引其他蚂蚁前往同一方向;在路径上的信息素浓度较高的路径更容易选择。
蚁群算法利用了这些规则,以一种群体智能的方式搜索解空间。
具体来说,蚁群算法由以下几个步骤组成:1.初始化:定义问题的解空间和初试信息素浓度。
解空间可以是任何基于排列、图形或其他对象的集合,例如TSP问题中的城市序列集合。
信息素浓度矩阵是一个与解空间大小相同的矩阵,用于反映每个解的吸引力。
2.移动规则:蚂蚁在解空间中移动的规则。
通常规则包括根据当前解和信息素浓度选择下一步解以及更新当前解的信息素浓度。
3.信息素更新:蚁群中的蚂蚁经过路径后,更新路径上的信息素浓度。
通常信息素浓度的更新涉及一个挥发系数和一个信息素增量。
4.终止条件:确定蚁群算法的运行时间,例如最大迭代次数或达到特定解的准确度。
蚁群算法是一种群体智能的方法,每只蚂蚁只能看到局部的解。
通过信息素的释放和更新,蚁群最终能够找到全局最优解。
二、蚁群算法的应用案例蚁群算法最常用于解决组合优化问题,例如TSP问题、车辆路径问题和任务分配问题。
下面将介绍蚁群算法在TSP问题和车辆路径问题中的应用。
1. TSP问题TSP问题是一个NP难问题,是指在旅行时,如何有效地走遍所有篮子,使得总的旅行距离最小。
蚁群算法是适用于TSP问题的一种有效的算法。
在每一代,蚂蚁会在城市之间移动,假设当前城市为i,则下一个选择的城市j是基于概率函数计算得到的。
概率函数考虑了当前城市的信息素浓度以及城市之间的距离。
每条路径释放的信息素浓度大小根据路径长度而定。
这样,蚂蚁可以在TSP问题上找到最优解。
2.车辆路径问题车辆路径问题是指在有限时间内如何合理地分配车辆到不同的客户,以最小化送货时间和车辆的旅行距离。
蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。
这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。
它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。
蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。
由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。
蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。
蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。
在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。
蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。
蚁群算法简介蚁群算法是一种优化技术,受到自然界中蚂蚁寻找食物的行为的启发。
这种算法模拟了蚂蚁的信息共享和移动模式,用于解决复杂的组合优化问题,如旅行商问题(TSP)、车辆路径问题(VRP)等。
一、蚁群算法的基本原理在自然界中,蚂蚁寻找食物的行为非常有趣。
它们会在路径上留下信息素,后续的蚂蚁会根据信息素的强度选择路径,倾向于选择信息素浓度高的路径。
这样,一段时间后,大多数蚂蚁都会选择最短或最佳的路径。
这就是蚁群算法的基本原理。
二、蚁群算法的主要步骤1.初始化:首先,为每条边分配一个初始的信息素浓度。
通常,所有边的初始信息素浓度都是相等的。
2.路径选择:在每一步,每个蚂蚁都会根据当前位置和周围信息素浓度选择下一步的移动方向。
选择概率与信息素浓度成正比,与距离成反比。
这意味着蚂蚁更倾向于选择信息素浓度高且距离短的路径。
3.释放信息素:当蚂蚁完成一次完整的路径后,它会在其经过的边上留下信息素。
信息素的浓度与解决问题的质量成正比,即如果蚂蚁找到了一条更好的路径,那么这条路径上的信息素浓度会增加。
4.更新:经过一段时间后,信息素会随时间的推移而挥发,这使得那些不再被认为是最优的路径上的信息素浓度逐渐减少。
同时,每条边上的信息素浓度也会随着时间的推移而均匀增加,这使得那些从未被探索过的路径也有被选择的可能性。
5.终止条件:算法会在找到满足条件的最优解或达到预设的最大迭代次数后终止。
三、蚁群算法的优势和局限性蚁群算法的优势在于其对于组合优化问题的良好性能和其自然启发式的搜索过程。
这种算法能够有效地找到全局最优解,并且在搜索过程中能够避免陷入局部最优解。
此外,蚁群算法具有较强的鲁棒性,对于问题的规模和复杂性具有较强的适应性。
然而,蚁群算法也存在一些局限性。
首先,算法的性能高度依赖于参数的设置,如信息素的挥发速度、蚂蚁的数量、迭代次数等。
其次,对于一些复杂的问题,可能需要很长的计算时间才能找到最优解。
此外,蚁群算法可能无法处理大规模的问题,因为这可能导致计算时间和空间的复杂性增加。
蚁群算法的基本原理和应用简介蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的启发式算法,它源于对蚂蚁在寻找食物时的行为规律的研究。
蚁群算法模拟了蚂蚁在寻找最佳路径时释放信息素、选择路径的策略,通过蚁群成员之间的相互合作和信息共享来求解各类优化问题。
蚁群算法具有较高的适应性和鲁棒性,被广泛应用于优化问题求解中。
基本原理蚁群算法基于一种基本的反馈机制:蚂蚁在行动过程中释放信息素,并根据所释放的信息素密度来选择路径。
信息素在路径上的积累程度会影响蚂蚁选择路径的概率,从而引导整个蚁群向目标位置集中。
具体的基本原理如下:1.蚂蚁的行动规则:蚂蚁按照一定的规则进行移动,每个蚂蚁根据当前位置的信息素密度以及启发式信息(例如距离、路径质量等)选择下一步的移动方向。
2.信息素的更新:蚂蚁在路径上释放信息素,并且信息素的蒸发和更新过程会导致信息素的动态变化。
经过多次迭代后,信息素会逐渐积累在最优路径上,从而引导后续的蚂蚁选择该路径。
3.路径选择概率:蚂蚁在选择下一步移动方向时,会根据当前位置的信息素和启发式信息计算路径选择概率。
较高的信息素密度和启发式信息将增加路径的选择概率。
应用领域蚁群算法在众多领域中取得了广泛的应用,以下列举几个示例:1.路径规划问题:蚁群算法可以用于解决路径规划问题,例如在城市中找到最短路径。
蚁群算法通过模拟蚂蚁的觅食行为,可以在复杂的网络中找到最优路径,无论是在城市道路网络还是在电信网络中。
–寻找最短路径:蚁群算法可以应用于解决最短路径问题,例如在城市导航、物流路径规划等领域。
–车辆路径优化:蚁群算法可以优化车辆的路线,减少行驶距离和时间,提高运输效率。
2.优化问题:蚁群算法在求解各种优化问题中具有较好的性能,例如旅行商问题、装箱问题等。
–旅行商问题:蚁群算法可以应用于解决旅行商问题,找到最短的旅行路线,减少旅行的距离和时间。
–装箱问题:蚁群算法可以优化装箱问题,将不同大小的物品装入不同大小的容器中,减少空间浪费。
武汉理工大学本科学生毕业设计(论文)开题报告1、目的及意义(含国内外的研究现状分析)1.1、题目:基于蚁题研究群算法的TSP问题1.2、背景资料:随着社会的不断发展最短路径问题已广泛应用于交通运输、物流配送、网络分析、管道铺设、厂区选址与布局等与声场实践息息相关的问题。
以交通运输为例,搜索城市路网中两点间的最短路径就显的极其重要。
但在实际运用中发现,但城市路网节点过多时经典算法就会导致计算量急剧上升,搜索开销相当大,效率很低。
蚁群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻经的行为而提出的一种基于种群的启发式随机搜索算法,蚁群算法具有并行性、鲁棒性、正反馈性等特点。
蚁群算法最早成功应用于解决著名的旅行商问题以及二次分配问题、车间任务调度问题、图的着色问题、网络路由等许多复杂的组合问题。
目前蚁群算法在求解最短路径和他是TSP问题容易陷入局部最优、跌送次数多、时间复杂度高。
毕业设计是高校实现本科培养目标和要求的一个重要阶段,是理论与实践相结合、教学与科研及生产相结合的重要实践环节,是对学生四年学习的专业基础知识和研究能力、自学能力以及各种综合能力的检验。
毕业设计的质量是衡量学生培养水平的一个重要指标,而毕业设计的选题工作在整个毕业设计环节中占有举足轻重的地位。
科学合理地选题是达到预期教学效果的基础。
对于学生而言,选择一个自己感兴趣且符合自身学习基础的课题是做好毕业设计的前提。
1.3、目的及意义:目的:随着人们对效益的要求越来越高,人们发现组合优化的各种方法,但在一些复杂度比较高的问题上,一些传统的方法显示了他的限制,列如计算量上升太快,时间复杂度很高,这就需要一些新的方法来解决这些问题,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
意义:蚁群系统(Ant Colony System),这种算法是目前国内外启发式算法中的研究热点和前沿课题,被成功地运用于旅行商问题的求解,蚁群算法在求解复杂优化问题方面具有很大的优越性和广阔的前景。
但是,根据观察实验发现,蚁群中的多个蚂蚁的运动是随机的,在扩散范围较大时,在较短时间内很难找出一条较好的路径,在算法实现的过程中容易出现停滞现象和收敛速度慢现象。
在这种弊端的情况下,学者们提出了一种自适应蚁群算法,通过自适应地调整运行过程中的挥发因子来改变路径中信息素浓度,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
1.4、国内外研究现状分析:随着人们对生命本质的不断了解,生命科学也以前所未有的速度迅猛发展,使人工智能的研究开始摆脱经典逻辑计算的束缚,大胆探索起新的非经典计算途径。
在这种背景下,社会性动物的自组织行为引起了人们的广泛关注,许多学者对这种行为进行数学建模并用计算机对其进行仿真,这就产生了所谓的“群智能”。
群智能指的是“无智能的主体通过合作表现出智能行为的特性”[2],是一种基于生物群体行为规律的计算技术。
它受社会昆虫,例如蚂蚁、蜜蜂和群居脊椎动物,又如鸟群、鱼群和兽群等的启发,解决分布式问题。
它在没有集中控制并且不提供全局模型的前提下,为寻找复杂的分布式问题的解决方案提供了一种新的思路。
有些专家在研究自然界的生物群体系统时,惊奇地发现社会昆虫和群居的脊椎动物能发现新的食物源、在群体内部产生劳动分工,建筑庞大复杂的巢穴、跨越几千公里迁徙到指定地区和在狭窄的空间内协调调度等。
这些社会性动物的自组织行为引起了人们广泛的关注,许多学者对这种行为进行数学建模并用计算机对其进行仿真,发现群智能有如下特点和优点[2]:(1) 群体中相互合作的个体是分布的(Distributed),这样更能够适应当前网络环境下的工作状态。
(2) 没有中心的控制与数据,这样的系统更具有鲁棒性(Robust),不会由于某一个或者某几个个体的故障而影响整个问题的求解。
(3) 可以不通过个体之间直接通信,而是通过非直接通信进行合作,这样的系统具有更好的可扩充性(Scalability)。
(4) 由于系统中个体的增加而增加的系统通信开销在这里是十分小的,系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性(Simplicity)。
目前,群智能理论研究领域包括两种主要算法:蚁群算法(Ant Colony Optimization,简记ACO)和粒子群算法(Particle Swarm Optimization,简记PSO)。
而以蚁群算法为代表的群体智能已成为当今分布式人工智能研究的一个热点,它是由意大利学者M.Dorigo 、V . Maniez-zo 、A. Colorini [3,4,5]等人从生物进化机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为后,于1991年首先提出的,也叫蚂蚁系统(Ant System ,AS )。
M. Dorigo 等人充分利用蚁群搜索食物的过程与著名的旅行商问题(Traveling Salesman Problem )之间的相似性,吸收了蚂蚁的行为特征,设计虚拟的“蚂蚁”摸索不同的路线,并留下会随时间逐渐消失的虚拟“信息量”[2]。
虚拟的“信息量”会挥发,当蚂蚁每次随机选择要走的路径时,倾向于选择信息量比较浓的路径。
根据“信息量浓度更近”的原则,既可选择出最佳路线。
虽然蚁群算法的研究时间不长,但初步研究已显示它在求解复杂优化问题方面具有很大优势,特别是1998年在比利时布鲁塞尔专门召开了第一届蚂蚁优化国际研讨会后,现在每两年召开一次这样的蚂蚁优化国际研讨会。
这标志着蚁群算法的研究已经得到国际上的广泛支持,使得这种新兴的智能进化仿生算法展现出了勃勃生机[6]。
2、基本内容和技术方案2.1、基本内容:根据仿生学家的长期研究发现:蚂蚁虽没有知觉,但运动时会通过在路径上释放出一种特殊的分泌物-信息素来寻找路径。
蚂蚁个体之间就是利用信息素作为介质来相互交流、合作的。
某条路上经过的蚂蚁越多,信息素的强度就会越大,而蚂蚁能感知路上信息素的存在和强度,它们倾向于选择外激素强度大的方向,因为通过较短路径往返于食物和巢穴之间的蚂蚁能以更短的时间经过这条路径上的点,所以这些点上的外激素就会因蚂蚁经过的次数增多而增强,这样就会有更多的蚂蚁选择此路径,这条路径上的外激素就会越来越强,选择此路径的蚂蚁也越来越多。
直到最后,几乎所有的蚂蚁都选择这条最短的路径。
2.2、技术方案:蚁群算法可以表述如下:在算法的初始时刻,将m 只蚂蚁随机地放到 n 座城市,同时,将每只蚂蚁的禁忌表的第一个元素设置为它当前所在的城市。
此时各路径上的信息素量相等,设τij (0) = C (C 为一较小的常数),接下来,每只蚂蚁根据路径上残留的信息素量和启发式信息(两城市间的距离)独立地选择下一座城市,在时刻 t ,蚂蚁 k 从城市i转移到城市j 的概率k ijp (t)为: [][]k ()()(), if j J ()()() 0, otherwisek ij ij k is is ij s J i t t i t p t αβαβτητη∈⎧⎡⎤⎡⎤⋅⎣⎦⎣⎦⎪∈⎪⋅=⎨⎪⎪⎩∑ (2. 1) 其中,J k (i)= {1,2,……,n}- tabu k 表示蚂蚁 k 下一步允许选择的城市集合。
列表tabu k记录了蚂蚁 k 当前走过的城市。
当所有 n 座城市都加入到tabu k 中时,蚂蚁 k 便完成了一次周游,此时蚂蚁 k 所走过的路径便是 TSP 问题的一个可行解。
(2. 1)式中的ηij 是一个启发式因子,表示蚂蚁从城市 i 转移到城市 j 的期望程度。
在 AS 算法中,ηij 通常取城市 i 与城市 j 之间距离的倒数。
α和β分别表示信息素和启发式因子的相对重要程度。
当所有蚂蚁完成一次周游后,各路径上的信息素根据(2. 2)式更新。
()ij ij ij t n t ττρτ∆+*-=+)()1( (2. 2) ∑=∆=∆m k k ij ij 1ττ (2. 3)其中ρ(0 < ρ <1)表示路径上信息素的蒸发系数,1-ρ 表示信息素的持久性系数;△τij 表示本次迭代边 ij 上信息素的增量。
△τk ij 表示第k 只蚂蚁在本次迭代中留在边ij 上的信息素量。
如果蚂蚁 k 没有经过边 ij ,则△τk ij 的值为零。
△τk ij 表示为: , k ij 0, k K ij Q L τ⎧⎪∆=⎨⎪⎩若蚂蚁在本次周游中经过边 否则 (2. 4) 其中,Q 为正常数,L k 表示第 k 只蚂蚁在本次周游中所走过路径的长度。
M. Dorigo 提出了 3 种 AS 算法的模型 [7], 式 (2.4) 称为 ant-cycle ,另外两个模型分别称为 ant-quantity 和 ant-density ,其差别主要在 (2. 4) 式,即:在 ant-quantity 模型中为:, k ij 0, ij k ij Q d τ⎧⎪∆=⎨⎪⎩蚂蚁在时刻t 和t+1经过边否则 (2. 5) 在 ant-density 模型中为:, k ij 0, k ij Q τ⎧∆=⎨⎩蚂蚁在时刻t 和t+1经过边 否则 (2. 6) AS 算法实际上是正反馈原理和启发式算法相结合的一种算法。
在选择路径时,蚂蚁不仅利用了路径上的信息素,而且用到了城市间距离的倒数作为启发式因子。
实验结果表明,ant-cycle 模型比 ant-quantity 和 ant-density 模型有更好的性能。
这是因为 ant-cycle 模型利用全局信息更新路径上的信息素量,而 ant-quantity 和ant-density 模型使用局部信息。
AS 算法的时间复杂度为Ο(N C *n 2*m) ,算法的空间复杂度为S(n)=O(n 2)+O(n*m) ,其中 N C 表示迭代的次数,n 为城市数,m 为蚂蚁的数目。
3、进度安排经过仔细的分析和研究,现把毕业设计的进度做如下大概的安排:(1)3月16到3月25日:理解毕业设计要求,收集、查阅相关资料。
(2)3月26日到4月10日:根据软件工程学的方法,进行系统分析和设计,提交系统总体设计方案。
并完成英文资料的翻译。
(3)4月11日到5月31日:熟悉开发环境和开发工具,实现系统功能设计,完成程序编码并上机调试通过。
(4)6月1日到6月中旬:撰写毕业论文,准备毕业答辩的有关文档及资料。
4、指导教师意见指导教师签名:年月日注:1.开题报告应根据教师下发的毕业设计(论文)任务书,在教师的指导下由学生独立撰写,在毕业设计开始后三周内完成。
2.“设计的目的及意义”至少800字,“基本内容和技术方案”至少400字。
进度安排应尽可能详细。