基于MATLAB的蚁群算法解决旅行商问题 (附带源程序、仿真)
- 格式:doc
- 大小:115.50 KB
- 文档页数:9
MATLAB中的蚁群算法与粒子群优化联合优化实例分析引言:在现代科学技术的发展中,优化问题一直是一个关键的挑战。
为了解决这些问题,出现了许多优化算法。
其中,蚁群算法(Ant Colony Optimization,ACO)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种被广泛应用的算法。
本文将通过示例分析,探讨如何将这两种优化算法结合使用以获得更好的优化结果。
1. 蚁群算法概述蚁群算法是一种启发式优化算法,灵感来源于蚂蚁寻找食物的行为。
蚂蚁在搜索食物的过程中,通过释放信息素与其他蚂蚁进行通信,从而引导整个群体向最优解靠近。
这种算法主要适用于组合优化问题,如旅行商问题(Traveling Salesman Problem,TSP)等。
2. 粒子群优化算法概述粒子群优化算法是一种仿生优化算法,灵感来源于鸟群觅食的行为。
在算法中,个体被模拟成鸟群中的粒子,并通过合作和竞争的方式搜索最优解。
粒子的位置代表可能的解,速度代表解的搜索方向和距离。
这种算法通常适用于连续优化问题。
3. 蚁群算法与粒子群优化算法的结合蚁群算法和粒子群优化算法有着不同的特点和适用范围,结合它们的优点可以提高优化结果的质量。
在下面的示例中,我们将探讨一个工程优化问题,通过联合使用这两种算法来获得较好的优化结果。
示例:电力系统优化在电力系统中,优化发电机组的负荷分配可以有效降低能源消耗和运行成本。
我们将使用蚁群算法和粒子群优化算法联合进行负荷分配的优化。
首先,我们需要建立一个能源消耗和运行成本的数学模型。
这个模型将考虑发电机组的负荷分配和相应的能源消耗和运行成本。
假设我们有n个发电机组,每个组的负荷分配为x1,x2,...,xn,则总的能源消耗为:E = f(x1) + f(x2) + ... + f(xn)其中f(x)是关于负荷分配的函数,代表了每个发电机组的能源消耗。
接下来,我们使用蚁群算法对发电机组的负荷分配进行优化。
蚁群算法求解旅行商问题1.旅行商问题旅行商问题常被称为旅行推销员问题,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。
规则虽然简单,但在地点数目增多后求解却极为复杂。
假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。
这就是旅行商问题。
旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。
由于对n个城市所有可能的遍历数目可达)!1n个, 因此解决这个问题需要的(计算时间很长。
2.蚁群算法蚁群总是能够发现从蚁巢到食物源的最短路径。
经研究发现,蚂蚁在行走过的路上留下一种挥发性的激素,蚂蚁就是通过这种激素进行信息交流。
蚂蚁趋向于走激素积累较多的路径。
找到最短路径的蚂蚁总是最早返回巢穴,从而在路上留下了较多的激素。
由于最短路径上积累了较多的激素,选择这条路径的蚂蚁就会越来越多,到最后所有的蚂蚁都会趋向于选择这条最短路径。
基于蚂蚁这种行为,人们通过模拟蚂蚁的行为,而提出了一种全局搜索优化的算法,称之为蚁群算法。
3.求解方法假设有n个城市,它们的邻接矩阵为d,其中d代表城市iji到城市j之间的距离。
现也就是找到一个这n个城市的排列,使蚂蚁按这个顺序“旅行”这n个城市,而蚂蚁的行进路程最短。
使用蚁群算法是用一些虚拟的蚂蚁,让它们在这n个城市间“旅行”,如果蚂蚁行进一周后,走的路程较短,则留下较多的信息素,如果蚂蚁走的路程较长,则留下较少的信息素,而蚂蚁更偏向于走信息素多的路径,一段时间后即可找出一条路径。
假设有m只蚂蚁,用η表示边),(j i的能见度,它反映由城ij市i转移到城市j的期望程度,一般取其为d的倒数,即期望ij程度与两城市间的距离成反比;τ表示边),(j i的信息素轨迹强ij度;kτ∆表示蚂蚁k在边),(j i上留下的信息素;k ij p表示处于城ij市i的蚂蚁向城市j的转移概率,其中,城市j是蚂蚁k未访问的城市。
蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。
它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。
该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。
在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。
每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。
当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。
下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。
MATLAB多旅⾏商问题源代码MATLAB多旅⾏商问题源代码functionvarargout = mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter,show_prog,show_res) % MTSPF_GA Fixed Multiple Traveling Salesmen Problem (M-TSP) Genetic Algorithm (GA)% Finds a (near) optimal solution to a variation of the M-TSP by setting% up a GA to search for the shortest route (least distance needed for% each salesman to travel from the start location to individual cities% and back to the original starting place)%% Summary:% 1. Each salesman starts at the first point, and ends at the first% point, but travels to a unique set of cities in between% 2. Except for the first, each city is visited by exactly one salesman%% Note: The Fixed Start/End location is taken to be the first XY point%% Input:% XY (float) is an Nx2 matrix of city locations, where N is the number of cities% DMAT (float) is an NxN matrix of city-to-city distances or costs% SALESMEN (scalar integer) is the number of salesmen to visit the cities% MIN_TOUR (scalar integer) is the minimum tour length for any of the% salesmen, NOT including the start/end point% POP_SIZE (scalar integer) is the size of the population (should be divisible by 8)% NUM_ITER (scalar integer) is the number of desired iterations for the algorithm to run% SHOW_PROG (scalar logical) shows the GA progress if true% SHOW_RES (scalar logical) shows the GA results if true%% Output:% OPT_RTE (integer array) is the best route found by the algorithm% OPT_BRK (integer array) is the list of route break points (these specify the indices% into the route used to obtain the individual salesman routes)% MIN_DIST (scalar float) is the total distance traveled by the salesmen%% Route/Breakpoint Details:% If there are 10 cities and 3 salesmen, a possible route/break% combination might be: rte = [5 6 9 4 2 8 10 3 7], brks = [3 7]% Taken together, these represent the solution [1 5 6 9 1][1 4 2 8 1][1 10 3 7 1],% which designates the routes for the 3 salesmen as follows:% . Salesman 1 travels from city 1 to 5 to 6 to 9 and back to 1% . Salesman 2 travels from city 1 to 4 to 2 to 8 and back to 1% . Salesman 3 travels from city 1 to 10 to 3 to 7 and back to 1%% 2D Example:% n = 35;% xy = 10*rand(n,2);% salesmen = 5;% min_tour = 3;% pop_size = 80;% num_iter = 5e3;% a = meshgrid(1:n);% dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour, ... % pop_size,num_iter,1,1); %% 3D Example:% n = 35;% xyz = 10*rand(n,3);% salesmen = 5;% min_tour = 3;% pop_size = 80;% num_iter = 5e3;% a = meshgrid(1:n);% dmat = reshape(sqrt(sum((xyz(a,:)-xyz(a',:)).^2,2)),n,n);% [opt_rte,opt_brk,min_dist] = mtspf_ga(xyz,dmat,salesmen,min_tour, ... % pop_size,num_iter,1,1); %% See also: mtsp_ga, mtspo_ga, mtspof_ga, mtspofs_ga, mtspv_ga, distmat%% Author: Joseph Kirk% Email: jdkirk630@/doc/641797704.html% Release: 1.3% Release Date: 6/2/09% Process Inputs and Initialize Defaultsnargs = 8;for k = nargin:nargs-1switch kcase 0xy = 10*rand(40,2);case 1N = size(xy,1);a = meshgrid(1:N);dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),N,N);case 2salesmen = 5;case 3min_tour = 2;case 4pop_size = 80;case 5num_iter = 5e3;case 6show_prog = 1;case 7show_res = 1;otherwiseendend% Verify Inputs[N,dims] = size(xy);[nr,nc] = size(dmat);if N ~= nr || N ~= ncerror('Invalid XY or DMAT inputs!')endn = N - 1; % Separate Start/End City% Sanity Checkssalesmen = max(1,min(n,round(real(salesmen(1)))));min_tour = max(1,min(floor(n/salesmen),round(real(min_tour(1))))); pop_size = max(8,8*ceil(pop_size(1)/8));num_iter = max(1,round(real(num_iter(1))));show_prog = logical(show_prog(1));show_res = logical(show_res(1));% Initializations for Route Break Point Selectionnum_brks = salesmen-1;dof = n - min_tour*salesmen; % degrees of freedom addto = ones(1,dof+1);for k = 2:num_brksaddto = cumsum(addto);endcum_prob = cumsum(addto)/sum(addto);% Initialize the Populationspop_rte = zeros(pop_size,n); % population of routespop_brk = zeros(pop_size,num_brks); % population of breaksfor k = 1:pop_sizepop_rte(k,:) = randperm(n)+1;pop_brk(k,:) = randbreaks();end% Select the Colors for the Plotted Routesclr = [1 0 0; 0 0 1; 0.67 0 1; 0 1 0; 1 0.5 0];if salesmen > 5clr = hsv(salesmen);end% Run the GAglobal_min = Inf;total_dist = zeros(1,pop_size);dist_history = zeros(1,num_iter);tmp_pop_rte = zeros(8,n);tmp_pop_brk = zeros(8,num_brks);new_pop_rte = zeros(pop_size,n);new_pop_brk = zeros(pop_size,num_brks);ifshow_progpfig = figure('Name','MTSPF_GA | Current Best Solution','Numbertitle','off'); end foriter = 1:num_iter% Evaluate Members of the Populationfor p = 1:pop_sizep_rte = pop_rte(p,:);p_brk = pop_brk(p,:);rng = [[1 p_brk+1];[p_brk n]]';for s = 1:salesmend = d + dmat(1,p_rte(rng(s,1))); % Add Start Distancefor k = rng(s,1):rng(s,2)-1d = d + dmat(p_rte(k),p_rte(k+1));endd = d + dmat(p_rte(rng(s,2)),1); % Add End Distanceendtotal_dist(p) = d;end% Find the Best Route in the Population[min_dist,index] = min(total_dist);dist_history(iter) = min_dist;ifmin_distglobal_min = min_dist;opt_rte = pop_rte(index,:);opt_brk = pop_brk(index,:);rng = [[1 opt_brk+1];[opt_brk n]]';ifshow_prog% Plot the Best Routefigure(pfig);for s = 1:salesmenrte = [1 opt_rte(rng(s,1):rng(s,2)) 1];if dims == 3, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:)); else plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); endtitle(sprintf('Total Distance = %1.4f, Iteration = %d',min_dist,iter)); hold onendif dims == 3, plot3(xy(1,1),xy(1,2),xy(1,3),'ko');else plot(xy(1,1),xy(1,2),'ko'); endhold offend% Genetic Algorithm Operatorsrand_grouping = randperm(pop_size);for p = 8:8:pop_sizertes = pop_rte(rand_grouping(p-7:p),:);brks = pop_brk(rand_grouping(p-7:p),:); dists = total_dist(rand_grouping(p-7:p)); [ignore,idx] = min(dists);best_of_8_rte = rtes(idx,:);best_of_8_brk = brks(idx,:);rte_ins_pts = sort(ceil(n*rand(1,2)));I = rte_ins_pts(1);J = rte_ins_pts(2);for k = 1:8 % Generate New Solutionstmp_pop_rte(k,:) = best_of_8_rte;tmp_pop_brk(k,:) = best_of_8_brk;switch kcase 2 % Fliptmp_pop_rte(k,I:J) = fliplr(tmp_pop_rte(k,I:J)); case 3 % Swaptmp_pop_rte(k,[I J]) = tmp_pop_rte(k,[J I]); case 4 % Slidetmp_pop_rte(k,I:J) = tmp_pop_rte(k,[I+1:J I]); case 5 % Modify Breakstmp_pop_brk(k,:) = randbreaks();case 6 % Flip, Modify Breakstmp_pop_rte(k,I:J) = fliplr(tmp_pop_rte(k,I:J)); tmp_pop_brk(k,:) = randbreaks();case 7 % Swap, Modify Breakstmp_pop_rte(k,[I J]) = tmp_pop_rte(k,[J I]); tmp_pop_brk(k,:) = randbreaks();case 8 % Slide, Modify Breakstmp_pop_rte(k,I:J) = tmp_pop_rte(k,[I+1:J I]); tmp_pop_brk(k,:) = randbreaks(); otherwise % Do Nothingendnew_pop_rte(p-7:p,:) = tmp_pop_rte;new_pop_brk(p-7:p,:) = tmp_pop_brk;endpop_rte = new_pop_rte;pop_brk = new_pop_brk;endifshow_res% Plotsfigure('Name','MTSPF_GA | Results','Numbertitle','off'); subplot(2,2,1);if dims == 3, plot3(xy(:,1),xy(:,2),xy(:,3),'k.');else plot(xy(:,1),xy(:,2),'k.'); endtitle('City Locations');subplot(2,2,2);imagesc(dmat([1 opt_rte],[1 opt_rte]));title('Distance Matrix');subplot(2,2,3);rng = [[1 opt_brk+1];[opt_brk n]]';for s = 1:salesmenrte = [1 opt_rte(rng(s,1):rng(s,2)) 1];if dims == 3, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:)); else plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); endtitle(sprintf('Total Distance = %1.4f',min_dist));hold on;endif dims == 3, plot3(xy(1,1),xy(1,2),xy(1,3),'ko');else plot(xy(1,1),xy(1,2),'ko'); endsubplot(2,2,4);plot(dist_history,'b','LineWidth',2);title('Best Solution History');set(gca,'XLim',[0 num_iter+1],'YLim',[0 1.1*max([1 dist_history])]); end% Return Outputsifnargoutvarargout{1} = opt_rte;varargout{2} = opt_brk;varargout{3} = min_dist;end% Generate Random Set of Break Pointsfunction breaks = randbreaks()ifmin_tour == 1 % No Constraints on Breakstmp_brks = randperm(n-1);breaks = sort(tmp_brks(1:num_brks));else % Force Breaks to be at Least the Minimum Tour Length num_adjust = find(rand < cum_prob,1)-1; spaces = ceil(num_brks*rand(1,num_adjust));adjust = zeros(1,num_brks);forkk = 1:num_brksadjust(kk) = sum(spaces == kk);endbreaks = min_tour*(1:num_brks) + cumsum(adjust);endendend。
基于蚁群算法的旅行商问题解决方案描述旅行商问题是一个经典的组合优化问题,也是计算机科学领域中的一个问题。
它是指一个旅行商要在多个城市之间旅行,他需要找到从一个城市出发,经过若干个城市,最终返回原来的城市所需的最短路径。
蚁群算法是一种启发式搜索算法,模拟了蚁群在寻找食物时的行为。
该算法通过模拟蚂蚁在场景中的行动策略,找到最优解。
在蚁群算法中,蚂蚁根据已知的信息和他们自身的记忆快速找到最优路径。
因此,蚁群算法成功地被应用于解决许多优化问题,包括旅行商问题。
蚁群算法中,每个蚂蚁都会向其他蚂蚁释放信息,来传递它所发现的路径的信息。
其他蚂蚁会通过“估算函数”来决定哪一条路径更值得去选择。
通过不断地多轮迭代,我们最终得到一个最优的路径。
解决方案步骤1. 建立距离矩阵在使用蚁群算法解决旅行商问题时,首先需要建立起各个城市之间的距离矩阵。
这里距离的定义可以是距离、时间、成本等。
距离矩阵通常是一个对称矩阵,因为从城市 A 到城市 B 的距离等于从城市 B 到城市 A 的距离。
2. 初始化信息素在蚁群算法中,信息素有很大的作用。
初始化信息素的方式有很多种,最常用的方法是将任意小的值分配给连接任意两个城市的路径上的信息素。
3. 计算蚂蚁的转移概率蚂蚁在寻找食物时也是根据“成本”和“信息素”来选择路径的。
在这里,“成本”可以表示为距离,而“信息素”则用于表示蚂蚁传递信息的强度。
蚂蚁在寻找路径时,会考虑到两个城市之间的距离和路径上的信息素,然后他们会根据之前的经验来找到最短路径。
4. 路径更新在路径更新过程中,蚂蚁会遵循之前所述的方法,计算出路径的长度,并依据此更新路径上的信息素。
蚂蚁所建立的信息素数量为该蚂蚁走过的路径长度的某个变体。
5. 调整信息素残留量在运行过程中,信息素量也需要适当的调整。
在信息素量退火时,需要将所有的信息素小幅更新,并且平衡化当前的信息素与上一轮更新的信息素。
优点相比于其他优化算法如遗传算法和模拟退火算法等,蚁群算法有以下优点:1. 效率高蚁群算法可以在较短的时间内找到较优的解,且需要的计算量不大。
蚁群算法matlab代码蚁群算法,英文名为Ant Colony Algorithm,缩写为ACO,是一种启发式算法,是一种模拟蚂蚁寻找食物路径的算法。
在实际生活中,蚂蚁找到食物并返回巢穴后,将其找到食物的路径上的信息素留下,其他蚂蚁通过检测信息素来指导寻路,成为了一种集体智慧行为。
ACO也是通过模拟蚂蚁寻找食物路径的方式来寻找优化问题的最优解。
在ACO算法中,信息素是一个重要的概念,代表了走过某一路径的“好概率”,用这个“好概率”更新一些路径上的信息素,使得其他蚂蚁更可能选择经过这条路径,从而实现路径优化的目的。
在本文中,我们将讨论如何使用Matlab实现蚁群算法来优化问题。
1. 设定问题首先,我们要选取一个优化问题,并将其转换为需要在优化过程中进行选择的决策变量。
例如,我们想要优化旅行商问题(TSP)。
在TSP中,我们需要让旅行商以最短的距离经过所有城市,每个城市仅经过一次,最终回到出发的城市。
我们可以将每个城市编号,然后将TSP转化为一个最短路径选择的问题,即最短路径从编号为1的城市开始,经过所有城市,最终回到编号为1的城市。
2. 设定ACO参数在使用ACO优化问题时,需要设定一些参数,这些参数会影响算法的表现。
ACO算法需要设定的参数有:1.信息素含量:初始信息素的大小,即每个路径上的信息素浓度。
2.信息素挥发速度:信息素的随时间“减弱”程度。
3.信息素加成强度:蚂蚁经过路径后增加的信息素量。
4.启发式权重:用于计算启发式因子,即节点距离的贡献值。
5.蚂蚁数量:模拟蚂蚁数量,即同时寻找路径的蚂蚁个数。
6.迭代次数:模拟的迭代次数,即ACO算法运行的次数。
7.初始节点:ACO算法开始的节点。
3. 创建ACO优化函数我们可以使用Matlab来创建一个函数来实现ACO算法。
我们称其为“ACOoptimization.m”。
function best_path =ACOoptimization(city_location,iter_num,ant_num,init ial_path,alpha,beta,rho,update_flag) %ACO优化函数 %输入: %city_location: 城市坐标矩阵,格式为[x1,y1;x2,y2;...;xn,yn] %iter_num: 迭代次数 %ant_num: 蚂蚁数量 %initial_path: 起始路径,即初始解 %alpha,beta,rho: 超参数,用于调节蚂蚁选择路径的概率 %update_flag: 是否更新信息素的标志(1表示更新,0表示否) %输出: %best_path: 最优解,即最短路径%初始化信息素 pheromone = 0.01 *ones(length(city_location),length(city_location)); %初始化路径权重 path_weight =zeros(ant_num,1); %城市数量 n_cities =length(city_location);%主循环 for iter = 1:iter_num %一个迭代里所有蚂蚁都寻找一遍路径 for ant =1:ant_num %初始化蚂蚁位置current_city = initial_path; %标记是否经过了某个城市 visit_flag =zeros(1,n_cities);visit_flag(current_city) = 1; %用来存储当前路径 current_path = [current_city];%蚂蚁找东西 for i =1:n_cities-1 %计算路径概率p =calculate_probability(current_city,visit_flag,phero mone,city_location,alpha,beta); %蚂蚁选择路径 [next_city,next_index] = select_path(p);%路径更新current_path = [current_path;next_city];visit_flag(next_city) = 1;current_city = next_city;%更新路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end-1),:),city_location(current_path(end),:));end%加入回到起点的路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end),:),city_location(current_path(1),:));%判断是否为最优解 ifant == 1 best_path = current_path; else if path_weight(ant) <path_weight(ant-1) best_path =current_path; end end%更新信息素 ifupdate_flag == 1 pheromone =update_pheromone(pheromone,path_weight,initial_path,current_path,rho); end end end end在函数中,我们首先定义了ACOalg函数的参数,包括城市坐标矩阵,迭代次数,蚂蚁数量,初始路径,超参数alpha,beta,rho,以及是否需要更新信息素。
蚁群算法应用实例详解1. 旅行商问题(Traveling Salesman Problem,TSP):TSP是一种经典的优化问题,旨在找到一条经过所有城市的最短路径。
蚁群算法可以通过每只蚂蚁在城市之间释放信息素的方式,不断更新路径的选择概率,最终找到最优解。
2.工厂布局问题:在工厂布局问题中,需要确定在给定一组潜在工厂位置的情况下,如何选择最佳的工厂位置以最小化总体成本。
蚁群算法可以模拟蚂蚁根据信息素量来选择工厂位置,从而找到最优的布局方案。
3.路径规划问题:蚁群算法可以用于快速找到最短路径或最优路径。
例如,蚁群算法可以在无人机飞行中用于路径规划,以指导无人机在给定目标点之间找到最短路径。
4.数据聚类问题:蚁群算法可以用于数据聚类,通过模拟蚂蚁寻找食物的行为,将相似的数据点聚集到一起。
这种算法可以有效地将相似的数据点聚集在一起,从而形成聚类。
5.多目标优化问题:在多目标优化问题中,蚁群算法可以用来找到一组非支配解,这些解在目标函数空间中没有比其他解更好的解。
蚁群算法可以通过使用多个信息素矩阵来维护多个目标函数的信息素量,以求得非支配解。
6.物流路径优化:在物流领域中,蚁群算法可以应用于寻找最佳的路径规划方案。
蚂蚁释放的信息素可以代表路径上的可行性和效率,使得算法能够找到最佳的物流路径。
以上仅是蚁群算法在实际应用中的一些例子,实际上蚁群算法还有很多其他的应用领域,如电力系统优化、车辆路径规划、无线传感器网路等。
蚁群算法的优势在于其灵活性和适应性,能够在不同的问题领域和复杂环境中找到最优解。
基于蚁群算法的多目标最优旅游线路规划设计1.引言旅游已经成为现代人生活中的重要组成部分,人们不仅为了放松心情、享受美景,也为了体验新颖事物、开拓眼界。
然而,在大量的旅游景点选择之中,如何规划一条旅游线路让观光者能够在有限的时间和预算内,尽可能地访问到自己感爱好的景点,是一个具有挑战性的问题。
传统的旅游线路规划方法通常是基于观光者的个人喜好和阅历进行主观规划,导致了线路的局限性和不全面性。
因此,本文将探讨一种方法,以期能够解决这个问题。
2.蚁群算法的原理蚁群算法是一种模拟蚂蚁觅食行为的启发式算法,它模拟了蚁群在寻找食物时发现和选择路径的过程。
蚁群算法通过蚂蚁之间的信息沟通与合作,找到一条最优路径,解决了多目标优化问题。
蚂蚁在寻找食物时,会释放信息素,并通过信息素的引导与感知来选择路径。
当蚂蚁走过某条路径时,会释放更多的信息素,从而增强该路径的吸引力。
同时,信息素会随时间的推移逐渐挥发,若果路径上的信息素浓度低于一定阈值,蚂蚁将放弃该路径。
这种信息素的释放与挥发机制使得蚂蚁有能力找到最短路径。
3.基于蚁群算法的旅游线路规划设计(1)问题建模在多目标最优旅游线路规划设计中,我们需要思量两个主要目标:时间和预算。
我们期望在给定的时间和预算内,尽可能多地访问旅游景点。
因此,我们需要将这个问题建模成一个多目标优化问题。
(2)蚁群算法的应用将蚁群算法应用于旅游线路规划设计,起首需要定义观光者和景点之间的信息素和距离。
我们可以将观光者看作是蚂蚁,景点看作是食物源。
观光者在每个城市停留的时间和期望的预算,可以看作是蚂蚁选择路径的时间约束和信息素浓度的阈值。
通过定义好这些信息,我们可以模拟蚂蚁的选择路径的过程。
当蚂蚁到达一个城市时,它会选择下一个城市的路径,这个选择将基于信息素和距离的权重决策。
信息素浓度高的路径和距离较短的路径将具有更高的权重。
在每一轮迭代中,蚂蚁们会选择路径,并更新路径上的信息素浓度。
较短的路径会释放更多的信息素,从而增强路径的吸引力。
蚁群优化算法原理及Matlab编程实现
蚁群算法的提出:
人工蚂蚁与真实蚂蚁的异同比较
相同点比较
不同点比较
蚁群算法的流程图
基本蚁群算法的实现步骤
(i,j)的初始化信息量τij(t) = const,其中const表示常数,且初始时刻Δτij(0) = 0。
(2)循环次数。
(3)蚂蚁的禁忌表索引号k=1。
(4)蚂蚁数目。
(5)蚂蚁个体根据状态转移概率公式计算的概率选择元素(城市)j并前进,。
其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转
重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重
视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t)为启发函数,
表达式为。
式中,d ij表示相邻两个城市之间的距离。
(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该τij(t + n) = (1 − ρ) * τij(t) + Δτij(t)
(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,
]蚁群算法的matlab源程序1.蚁群算法主程序:main.m
2.蚁群算法寻找路径程序:path.m
[编辑]蚁群算法仿真结果。
蚁群算法及python代码实现蚁群算法是一种仿生学启发式算法,其灵感来自于观察蚂蚁群体在寻找食物时的行为。
蚁群算法通常用于解决组合优化问题,如旅行商问题和资源调度问题等。
蚁群算法基于一组蚂蚁对问题空间进行搜索。
每个蚂蚁都是局部自主的,通过观察先前的行动和信息素浓度来决定它应该采取的下一步行动。
信息素是一种蚂蚁在路径上放置的化学标记,用于指引其他蚂蚁寻找路径。
在蚁群算法中,每个蚂蚁在搜索过程中维护一条解,并以概率选择下一步行动。
概率是根据该蚂蚁当前位置的信息素浓度和路径长度等因素计算出来的。
当蚂蚁完成搜索之后,每个蚂蚁都会根据其解的质量增加信息素浓度。
信息素在蚁群算法中扮演着重要的角色,因为它可以帮助蚂蚁发现高质量的解。
当信息素浓度较高时,更多的蚂蚁会选择这条路径。
这样,路径上的信息素浓度会不断增加,从而吸引更多的蚂蚁走这条路径,形成了一个“正反馈”机制。
通过多次迭代的过程,蚁群算法可以不断优化解,直到找到最优解或满足特定的终止条件。
蚁群算法的优点在于其能够在搜索过程中同时考虑全局信息和局部信息,且其具有分布式计算的特性,操作简单,易于实现。
缺点是蚁群算法容易陷入局部最优解,且在大规模问题中可能过于耗时。
以下是一个使用Python 实现蚁群算法解决TSP(旅行商问题)的例子:import randomimport numpy as np# 蚂蚁类class Ant:def __init__(self, num_cities, alpha, beta, pheromone, distance):self.num_cities = num_cities # 城市数量self.alpha = alpha # 信息素重要程度因子self.beta = beta # 启发式因子self.pheromone = pheromone # 信息素矩阵self.distance = distance # 距离矩阵self.tabu_list = [] # 禁忌表self.path_length = 0 # 路径长度self.allowed_cities = [i for i in range(num_cities)] # 允许搜索的城市集合self.current_city = random.randint(0, num_cities - 1) # 当前所在城市# 选择下一个城市def select_next_city(self):denominator = 0for c in self.allowed_cities:denominator += (self.pheromone[self.current_city][c] ** self.alpha) * \((1.0 / self.distance[self.current_city][c]) ** self.beta)probabilities = [0 for i in range(self.num_cities)]for i in range(self.num_cities):if i in self.allowed_cities:probabilities[i] = (self.pheromone[self.current_city][i] ** self.alpha) * \((1.0 / self.distance[self.current_city][i]) ** self.beta) / denominator selected_city = 0rand = random.random()for i, probability in enumerate(probabilities):rand -= probabilityif rand <= 0:selected_city = ibreakself.allowed_cities.remove(selected_city)self.tabu_list.append(selected_city)self.path_length += self.distance[self.current_city][selected_city]self.current_city = selected_city# 更新信息素def update_pheromone(self, delta):for i in range(self.num_cities):for j in range(self.num_cities):self.pheromone[i][j] *= deltaself.pheromone[i][j] += self.tabu_list.count(i) / self.path_length# 蚁群算法类class ACO:def __init__(self, num_ants, num_iterations, alpha, beta, rho, q, distance):self.num_ants = num_ants # 蚂蚁数量self.num_iterations = num_iterations # 迭代次数self.alpha = alpha # 信息素重要程度因子self.beta = beta # 启发式因子self.rho = rho # 信息素挥发因子self.q = q # 信息素增加强度系数self.distance = distance # 距离矩阵self.num_cities = len(distance) # 城市数量self.pheromone = [[1.0 / (self.num_cities * self.num_cities) for j in range(self.num_cities)] for i in range(self.num_cities)] # 信息素矩阵self.ants = [Ant(self.num_cities, self.alpha, self.beta, self.pheromone, self.distance) for i in range(num_ants)] # 蚂蚁集合# 迭代搜索def search(self):best_path = Nonebest_length = np.inffor iter in range(self.num_iterations):for ant in self.ants:# 每只蚂蚁都走num_cities - 1 步for i in range(self.num_cities - 1):ant.select_next_city()ant.path_length += self.distance[ant.current_city][ant.tabu_list[0]]ant.tabu_list.append(ant.tabu_list[0]) # 回到起点# 更新最佳路径和长度if ant.path_length < best_length:best_length = ant.path_lengthbest_path = ant.tabu_list# 更新信息素delta = self.q / ant.path_lengthant.update_pheromone(delta)# 重置蚂蚁ant.allowed_cities = [i for i in range(self.num_cities)]ant.tabu_list = []ant.path_length = 0ant.current_city = random.randint(0, self.num_cities - 1)# 信息素挥发for i in range(self.num_cities):for j in range(self.num_cities):self.pheromone[i][j] *= (1 - self.rho)# 信息素增加for ant in self.ants:for i in range(self.num_cities):for j in range(self.num_cities):self.pheromone[i][j] += ant.pheromone[i][j]return best_path, best_length# 测试if __name__ == "__main__":distance_matrix = [[0, 30, 84, 56, 70],[30, 0, 63, 98, 14],[84, 63, 0, 45, 52],[56, 98, 45, 0, 25],[70, 14, 52, 25, 0]] # 五个城市之间的距离矩阵aco = ACO(num_ants=20, num_iterations=100, alpha=1.0, beta=5.0, rho=0.5, q=100, distance=distance_matrix)best_path, best_length = aco.search()print("Best path: ", best_path)print("Best length: ", best_length)这段代码中首先定义了一个`Ant` 类,表示蚂蚁,其中维护了一些状态(例如禁忌表和当前所在城市),并且实现了选择下一个城市和更新信息素的方法。
基于蚁群算法求解旅行商问题
徐义豪
【期刊名称】《电子技术与软件工程》
【年(卷),期】2013(000)017
【摘要】旅行商问题,即TSP问题(Trav01ingSalegmanProblem)是数学领域中著名问题之一,这是一个NP难题也是一个著名的组合优化问题。
它广泛地应用于电力系统故障诊断,国防武器一目标分配(weapon—targetassignment)问题等领域。
蚁群算法是模仿蚂蚁在寻找食物过程中的行为而形成的一种寻找优化路径的机率型模拟进化算法,经研究表明该算法具有许多优良的性质,具有一定的有效性和应用价值。
根据蚂蚁寻找食物的行为和旅行商活动的相似性,利用蚁群算法可以求解旅行商问题,从而找到最短路径,实现最优解。
【总页数】2页(P226-226,227)
【作者】徐义豪
【作者单位】辽宁科技大学电子与信息工程学院,辽宁省鞍山市114051
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.基于MATLAB的蚁群算法求解旅行商问题 [J], 黄丽韶;朱喜基
2.基于自适应蚁群算法的旅行商问题的求解 [J], 黄志华
3.基于GPU加速的并行蚁群算法求解旅行商问题研究 [J], 杨雅宁;蔺勇
4.基于蚁群算法的带有时间约束旅行商问题求解 [J], 李安颖;陈群;宋荷
5.基于OPENMP求解旅行商问题的并行蚁群算法 [J], 刘向娇;吴素萍;刘佳梅因版权原因,仅展示原文概要,查看原文内容请购买。
基于蚁群算法的旅⾏商问题(TSP)实现基于蚁群算法的旅⾏商问题(TSP)实现⼀.问题分析旅⾏商问题,即TSP问题(Travelling Salesman Problem)⼜译为旅⾏推销员问题、货郎担问题,是数学领域中著名问题之⼀。
假设有⼀个旅⾏商⼈要拜访n个城市,他必须选择所要⾛的路径,路径的限制是每个城市只能拜访⼀次,⽽且最后要回到原来出发的城市。
路径的选择⽬标是要求得到的路径路程为所有路径之中的最⼩值。
旅⾏商问题是⼀个经典的NP难题,也是组合优化中研究最多的问题之⼀。
城市管道铺设优化、物流业的车辆调度、制造业中的切割路径优化等,现实⽣活中的优化问题都可以归结为TSP问题进⾏求解。
寻找⼀种有效的解决该问题的算法,具有重要的现实意义。
蚁群算法是⼀种求解TSP问题的优化算法。
⼆.算法选择蚁群算法(ant colony optimization, ACO),⼜称蚂蚁算法,是⼀种⽤来在图中寻找优化路径的机率型算法。
它由Marco Dorigo 于1992年在他的博⼠论⽂中提出,其灵感来源于蚂蚁在寻找⾷物过程中发现路径的⾏为。
蚁群算法的主要思想为:模拟蚂蚁觅⾷⾏为。
蚂蚁在运⾏过程中会释放⼀种特殊的分泌物-信息素来寻找路径。
信息素会随着时间消减,后⾯的蚂蚁选择信息素多的路径,这样便形成了⼀个正反馈机制。
在整个寻径过程中,虽然单只蚂蚁的选择能⼒有限,但它们的⾏为具有⾮常⾼的⾃组织性,相互之间交换路径,最终寻找到最优路径。
蚁群算法是⼀种模拟进化算法,初步的研究表明该算法具有许多优良的性质。
针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进⾏了⽐较,数值仿真结果表明,蚁群算法具有⼀种新的模拟进化优化⽅法的有效性和应⽤价值。
蚁群算法是⼀种求解组合最优化问题的新型通⽤启发式⽅法,该⽅法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点。
通过建⽴适当的数学模型,基于故障过电流的配电⽹故障定位变为⼀种⾮线性全局寻优问题。
function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta ,Rho,Q)%%===================================================== ====================%% ACATSP.m%% Ant Colony Algorithm for Traveling Salesman Problem%% ChengAihua,PLA Information Engineering University,ZhengZhou,China%% Email:aihuacheng@%% All rights reserved%%-------------------------------------------------------------------------%% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%===================================================== ====================%%第一步:变量初始化n=size(C,1);%n表示问题的规模(城市个数)D=zeros(n,n);%D表示完全图的赋权邻接矩阵for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;elseD(i,j)=eps;endD(j,i)=D(i,j);endendEta=1./D;%Eta为启发因子,这里设为距离的倒数Tau=ones(n,n);%Tau为信息素矩阵Tabu=zeros(m,n);%存储并记录路径的生成NC=1;%迭代计数器R_best=zeros(NC_max,n);%各代最佳路线L_best=inf.*ones(NC_m ax,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度while NC<=NC_max%停止条件之一:达到最大迭代次数%%第二步:将m只蚂蚁放到n个城市上Randpos=[];for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)];endTabu(:,1)=(Randpos(1,1:m))';%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:nfor i=1:mvisited=Tabu(i,1:(j-1));%已访问的城市J=zeros(1,(n-j+1));%待访问的城市P=J;%待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0J(Jc)=k;Jc=Jc+1;endend%下面计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta); endP=P/(sum(P));%按概率原则选取下一个城市Pcum=cumsum(P);Select=find(Pcum>=rand);to_visit=J(Select(1));Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:);end%%第四步:记录本次迭代最佳路线L=zeros(m,1);for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1));endL(i)=L(i)+D(R(1),R(n));endL_best(NC)=min(L);pos=find(L==L_best(NC));R_best(NC,:)=Tabu(pos(1),:);L_ave(NC)=mean(L);NC=NC+1%%第五步:更新信息素Delta_Tau=zeros(n,n);for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);endTau=(1-Rho).*Tau+Delta_Tau;%%第六步:禁忌表清零Tabu=zeros(m,n);end%%第七步:输出结果Pos=find(L_best==min(L_best));Shortest_Route=R_best(Pos(1),:)Shortest_Length=L_best(Pos(1))subplot(1,2,1)DrawRoute(C,Shortest_Route)subplot(1,2,2)plot(L_best)hold onplot(L_ave)function DrawRoute(C,R)%%===================================================== ====================%% DrawRoute.m%% 画路线图的子函数%%-------------------------------------------------------------------------%% C Coordinate 节点坐标,由一个N×2的矩阵存储%% R Route 路线%%===================================================== ====================N=length(R);scatter(C(:,1),C(:,2));plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])hold onfor ii=2:Nplot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)]) hold onend设置初始参数如下:m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100; 31城市坐标为:1304 23123639 13154177 22443712 13993488 15353326 15563238 12294196 10044312 7904386 5703007 19702562 17562788 14912381 16761332 6953715 16783918 21794061 23703780 22123676 25784029 28384263 29313429 19083507 23673394 26433439 32012935 32403140 35502545 23572778 28262370 2975运行后得到15602的巡游路径,路线图和收敛曲线如下:。
基于蚁群算法的旅行商问题的研究作者:李辉来源:《无线互联科技》2015年第03期摘要:群居性昆虫行为的研究为计算机科学家提供了设计分布式控制和优化算法的有力方法。
对以蚁群算法为代表的群集智能的研究已经逐渐成为一个研究热点。
蚁群算法在实际的生活中有很大的用处,比如求解旅行商问题,文章介绍了一种求解复杂TSP的蚁群算法,阐述了该算法的基本原理及实现过程,并且在本文中尝试用编码的形式将基本蚁群算法应用到求解旅行商问题中去。
关键词:基本蚁群算法;信息素;旅行商问题1 意义和目标近年来,许多学者对蜜蜂、蚂蚁等一些昆虫的行为进行了大量的研究,特别是他们的集体行为,而这些动物一般都是群居昆虫。
每个昆虫的能力虽然十分有限,但昆虫群体的能力却远远超过所有个体能力的总和。
比如,蚂蚁群可以快速建立起巢穴与食物之间的最短路径。
令人惊奇的是,每只蚂蚁并不直接比较每条路径,而仅仅只是遵守信息素释放/跟随规则就能找到最佳路径。
蚂蚁群的这种能力很自然地引起了计算机科学家的兴趣。
旅行商问题的定义并不统一,一般广泛认为这样定义:假若有多个城市,而这多个城市的距离为已知条件,这个距离也可以理解为多个城市之间的开销,若要得到某一个旅行商走遍所有城市的一条回路,但必须满足所有城市之间的距离的和为最小,也可以是城市之间的开销达到最小值的这样的一条回路。
求解TSP问题的算法较多,但文章使用基本蚁群算法来解决旅行商问题。
2 国内外研究现状为了得到解决组合优化问题的某种计算机智能方法,Mnaeizzo、Cootmi、Dorigo在意大利的米兰理工学院,发现了蚂蚁系统,也就是本文中提到的蚁群算法,这是第一次提出的蚁群算法思想,是从蚂蚁寻找食物的过程中发现的。
人们由蚁群的集体行为得到了蚁群算法,可以说传统求解组合优化问题的算法可以称之为新型仿生算法,而蚁群算法就是其中一种。
从第一次提出蚁群算法以后,Dorigo等人又对蚁群算法做了不少改进,这些改进可以从以下模块来理解:首先,加强了蚁群算法的实际应用的背景;其次,又有新的算法模型的出现,是从原来蚁群算法的基础上做了较大的改进。
基于MATLAB的蚁族算法求解旅行商问题作者:李艳平来源:《计算机光盘软件与应用》2013年第14期摘要:目前求解旅行商问题效果最好的混合算法是最大最小蚂蚁算法和局部搜索算法,本文对蚁群算法的仿真学原理进行概要介绍,蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能多目标优化算法,通过蚁群觅食过程中最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用,并通过实例仿真结果表明,此算法有一定优越性。
关键词:蚁群算法;旅行商问题;仿真;多目标优化中图分类号:TP301.6旅行商问题(TSP)是一个经典的组合优化问题。
TSP可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。
应如何选择行进路线,以使总的行程最短。
从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。
由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个N P完全问题。
随着问题规模的增大,人们对复杂事物和复杂系统建立数学模型并进行求解的能力是有限的,目标函数和约束条件往往不能以明确的函数关系表达,或因函数带有随机参、变量,导致基于数学模型的优化方法在应用于实际生产时,有其局限性甚至不适用。
基于仿真的优化(Simulation Based Optimization,SBO)方法正是在这样的背景下发展起来的。
近年来应用蚁群算法求解旅行商问题,由于其并行性与分布性,特别适用于大规模启发式搜索,实验结果表明这种研究方法是可行的。
1 蚁群算法的仿生学原理蚁群算法最早是由意大利学者M.Dorigo提出来的,它的灵感来源于蚂蚁在寻找食物过程中发现路径的行为,蚂蚁集体寻找路径时,利用称为“外激素”的生物信息激素选择后继行为的智能过程。
蚂蚁是一种群居昆虫,在觅食等活动中,彼此依赖、相互协作共同完成特定的任务。
蚁群的行为是整体协作,相互分工,以一个整体去解决一些对单个蚂蚁来说不可能完成的任务。
摘要:旅行商问题的传统求解方法是遗传算法,但此算法收敛速度慢,并不能获得问题的最优化解。
蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用,对问题求解进行局部优化。
经过计算机仿真结果表明,这种蚁群算法对求解旅行商问题有较好的改进效果。
关键词:蚁群算法;旅行商问题;MATLAB;优化一、意义和目标旅行商问题是物流领域中的典型问题,它的求解具有十分重要的理论和现实意义。
采用一定的物流配送方式,可以大大节省人力物力,完善整个物流系统。
已被广泛采用的遗传算法是旅行商问题的传统求解方法,但遗传算法收敛速度慢,具有一定的缺陷。
本文采用蚁群算法,充分利用蚁群算法的智能性,求解旅行商问题,并进行实例仿真。
进行仿真计算的目标是,该算法能够获得旅行商问题的优化结果,平均距离和最短距离。
二、国内外研究现状仿生学出现于20世纪50年代中期,人们从生物进化机理中受到启发,提出了遗传算法、进化规划、进化策略等许多用以解决复杂优化问题的新方法。
这些以生物特性为基础的演化算法的发展及对生物群落行为的发现引导研究人员进一步开展了对生物社会性的研究,从而出现了基于群智能理论的蚁群算法,并掀起了一股研究的热潮。
20世纪90年代意大利科学家M.Dorigo M最早提出了蚁群优化算法——蚂蚁系统(Ant system, AS),在求解二次分配、图着色问题、车辆调度、集成电路设计以及通信网络负载问题的处理中都取得了较好的结果。
旅行商问题(TSP, Traveling Salesman Problem)被认为是一个基本问题,是在1859年由威廉·汉密尔顿爵士首次提出的。
所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。
这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的NP问题。
TSP在工程领域有着广泛的应用,并常作为比较算法性能的标志。
如网络通讯、货物运输、电气布线、管道铺设、加工调度、专家系统、柔性制造系统等方面,都是TSP广泛应用的领域。
求解算法包括贪婪法(GM)、极小代数法(MA)、模拟退火法(SA)和遗传算法(GA)等。
而应用蚁群算法求解旅行商问题是近年来研究的新方向,由于其并行性与分布性,特别适用于大规模启发式搜索,实验结果证明了其可行性和有效性。
三、蚁群系统基本原理在蚂蚁群找到食物时,它们总能找到一条从食物到巢穴之间的最优路径。
这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素(phero-mone)。
当它们碰到一个还没有走过的路口时,就随机地挑选一条路径前行。
与此同时释放出与路径长度有关的信息素。
路径越长,释放的激素浓度越低。
当后来的蚂蚁再次碰到这个路口的时候,选择激素浓度较高路径概率就会相对较大。
这样形成了一个正反馈。
最优路径上的激素浓度越来越大,而其它的路径上激素浓度却会随着时间的流逝而消减。
最终整个蚁群会找出最优路径。
在整个寻径过程中,虽然单个蚂蚁的选择能力有限,但是通过激素的作用,整个蚁群之间交换着路径信息,最终找出最优路径。
四、基于MATLAB的蚁群算法求解旅行商问题TSP问题描述如下:设有n个城市C=(1,2,...,n),任意两个城市i,j之间的距离为d ij ,求一条经过每个城市的路径π=(π(1),π(2),...,π(n)),使得距离最小。
主要符号说明C n个城市的坐标,n×2的矩阵NC_max最大迭代次数m蚂蚁个数Alpha表征信息素重要程度的参数Beta表征启发式因子重要程度的参数Rho 信息素蒸发系数Q 信息素增加强度系数R_best各代最佳路线L_best各代最佳路线的长度求解TSP问题的蚂蚁算法中,每只蚂蚁是一个独立的用于构造路线的过程,若干蚂蚁过程之间通过自适应的信息素值来交换信息,合作求解,并不断优化。
这里的信息素值分布式存储在图中,与各弧相关联。
蚂蚁算法求解TSP问题的过程如下:(1)首先初始化,设迭代的次数为NC。
初始化NC=0(2)将m个蚂蚁置于n个顶点上(3)m只蚂蚁按概率函数选择下一座城市,完成各自的周游每个蚂蚁按照状态变化规则逐步地构造一个解,即生成一条回路。
蚂蚁的任务是访问所有的城市后返回到起点,生成一条回路。
设蚂蚁k当前所在的顶点为i,那么,蚂蚁k由点i向点j移动要遵循规则而不断迁移,按不同概率来选择下一点。
(4)记录本次迭代最佳路线(5)全局更新信息素值应用全局信息素更新规则来改变信息素值。
当所有m个蚂蚁生成了m个解,其中有一条最短路径是本代最优解,将属于这条路线上的所有弧相关联的信息素值进行更新。
全局信息素更新的目的是在最短路线上注入额外的信息素,即只有属于最短路线的弧上的信息素才能得到加强,这是一个正反馈的过程,也是一个强化学习的过程。
在图中各弧上,伴随着信息素的挥发,全局最短路线上各弧的信息素值得到增加。
(6)终止若终止条件满足,则结束;否则NC=NC+1,转入步骤(2)进行下一代进化。
终止条件可指定进化的代数,也可限定运行时间,或设定最短路长的下限。
(7)输出结果五、数据实验及结果通过计算机仿真,得出旅行商问题优化结果和平均距离和最短距离,如图所示:六、分析与总结本文设计了一种基于MATLAB实现的蚁群算法,用以求解组合优化难题中的典型代表旅行商问题。
对30个城市旅行商问题进行了测试,所得结果能达到优化作用,实现了本文的研究目标。
经过对旅行商问题的深入理解,得到了能解决问题的基本数学模型,然后设计算法的基本思想,技术路线,最后编码。
在多次调试,修改后,本算法成功运行,并实现了最初的设定目标。
另外,MATLAB具有丰富的绘图函数,对于绘图十分方便,这是选择MATLAB解决TSP问题的算法编写、调试的原因。
蚁群算法研究处于初期,还有许多问题值得研究,如算法的参数选择、蚂蚁数的比例等只能通过仿真实验,无法给出理论指导。
附录:蚁群算法解决旅行商问题MATLAB程序function yy=ACATSPx=[41 37 54 25 7 2 68 71 54 83 64 18 22 83 91 25 24 58 71 74 87 18 13 82 62 58 45 41 44 4]';y=[94 84 67 62 64 99 58 44 62 69 60 54 60 46 38 38 42 69 71 78 76 40 40 7 32 35 21 26 35 50]';C=[x y];NC_max=50;m=30;Alpha=1.5;Beta=2;Rho=0.1;Q=10^6;%%-------------------------------------------------------------------------%% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%=============================================================== ==========%%第一步:变量初始化n=size(C,1);%n表示问题的规模(城市个数)D=zeros(n,n);%D表示完全图的赋权邻接矩阵for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;elseD(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示endD(j,i)=D(i,j); %对称矩阵endendEta=1./D; %Eta为启发因子,这里设为距离的倒数Tau=ones(n,n); %Tau为信息素矩阵Tabu=zeros(m,n); %存储并记录路径的生成NC=1; %迭代计数器,记录迭代次数R_best=zeros(NC_max,n); %各代最佳路线L_best=inf.*ones(NC_max,1); %各代最佳路线的长度L_ave=zeros(NC_max,1); %各代路线的平均长度while NC<=NC_max %停止条件之一:达到最大迭代次数,停止%%第二步:将m只蚂蚁放到n个城市上Randpos=[]; %随即存取for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)];endTabu(:,1)=(Randpos(1,1:m))';%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:n %所在城市不计算for i=1:mvisited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问J=zeros(1,(n-j+1)); %待访问的城市P=J; %待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0 %开始时置0J(Jc)=k;Jc=Jc+1; %访问的城市个数自加1 endend%下面计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta) ;endP=P/(sum(P));%按概率原则选取下一个城市Pcum=cumsum(P); %cumsum,元素累加即求和Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线 to_visit=J(Select(1));Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:);end%%第四步:记录本次迭代最佳路线L=zeros(m,1); %开始距离为0,m*1的列向量for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离endL(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离endL_best(NC)=min(L); %最佳距离取最小pos=find(L==L_best(NC));R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线L_ave(NC)=mean(L); %此轮迭代后的平均距离NC=NC+1; %迭代继续%%第五步:更新信息素Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1)) +Q/L(i);%此次循环在路径(i,j)上的信息素增量endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L (i);%此次循环在整个路径上的信息素增量endTau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素%%第六步:禁忌表清零Tabu=zeros(m,n); %%直到最大迭代次数end%%第七步:输出结果Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离subplot(1,2,1); %绘制第一个子图形DrawRoute(C,Shortest_Route); %画路线图的子函数subplot(1,2,2); %绘制第二个子图形plot(L_best);hold on%保持图形plot(L_ave,'r');title('平均距离和最短距离') %标题function DrawRoute(C,R)%%=============================================================== ==========%% DrawRoute.m%% 画路线图的子函数%%-------------------------------------------------------------------------%% C Coordinate 节点坐标,由一个N×2的矩阵存储%% R Route 路线%%=============================================================== ==========N=length(R);scatter(C(:,1),C(:,2));hold onplot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g');hold onfor ii=2:Nplot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g');hold onendtitle('旅行商问题优化结果 ')。