北京市海淀区高考数学一模试卷 文科 解析版
- 格式:docx
- 大小:235.37 KB
- 文档页数:33
2011年北京市海淀区高考数学一模试卷(文科)一、选择题(共8小题,每小题3分,满分40分)1. 已知集合A ={x ∈R|0<x <3},B ={x ∈R|x 2≥4},则A ∩B =( )A {x|2<x <3}B {x|2≤x <3}C {x|x ≤−2或2≤x <3}D R2. 设a =30.5,b =log 32,c =cos 23π,则( ) A c <b <a B c <a <b C a <b <c D b <c <a3. 函数f(x)=x+1x 图象的对称中心为( )A (0, 0)B (0, 1)C (1, 0)D (1, 1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为( )A 25B 24C 23D 225. 从集合A ={−1, 1, 2}中随机选取一个数记为k ,从集合B ={−2, 1, 2}中随机选取一个数记为b ,则直线y =kx +b 不经过第三象限的概率为( )A 29B 13C 49D 59 6. 在同一个坐标系中画出函数y =a x ,y =sinax 的部分图象,其中a >0且a ≠1,则下列所给图象中可能正确的是( )A B CD7. 已知函数f(x)={x 2+ax +1,x ≥1ax 2+x +1,x <1则“−2≤a ≤0”是“f(x)在R 上单调递增”的( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 既不充分也不必要8. 若直线l 被圆C:x 2+y 2=2所截的弦长不小于2,则l 与下列曲线一定有公共点的是( )A (x −1)2+y 2=1B x 22+y 2=1C y =x 2D x 2−y 2=1二、填空题(共6小题,每小题3分,满分30分)9. 计算21+i =________.10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1,s 2,s 3,则它们的大小关系为________.(用“>”连接)11. 如图,在正方体ABCD −A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P −ABC 的主视图与左视图的面积的比值为________.12. 已知函数f(x)=xe x ,则f′(x)=________;函数f(x)图象在点(0, f(0))处的切线方程为________.13. 已知向量a →=(x, 2),b →=(l, y),其中x ,y ≥0.若a →⋅b →≤4,则y −x 的取值范围为________. 14. 如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x ,△CPD 的面积为f(x).则f(x)的定义域为________;f(x)的最大值为________.三、解答题(共6小题,满分80分)15. 在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知tanB =12,tanC =13,且c =(1)求tan(B+C);(2)求a的值.16. 数列{a n}的前n项和为S n,若a1=2且S n=S n−1+2n(n≥2, n∈N∗).(1)求S n;(2)是否存在等比数列{b n}满足b1=a1,b2=a3,b3=a9?若存在,则求出数列{b n}的通项公式;若不存在,则说明理由.17. 如图,梯形ABCD和正△PAB所在平面互相垂直,其中AB // DC,AD=CD=12AB,且O为AB中点.(I)求证:BC // 平面POD;(II)求证:AC⊥PD.18. 已知函数f(x)=1x+alnx(a≠0, a∈R)(I)若a=1,求函数f(x)的极值和单调区间;(II)若在区间[1, e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.19. 已知椭圆C:x2a2+y2b2=1(a>b>0)经过点M(1,32),其离心率为12.(1)求椭圆C的方程;(2)设直线l与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点.求O到直线距离的l最小值.20. 已知每项均是正整数的数列a1,a2,a3,…a100,其中等于i的项有k i个(i=1, 2, 3…),设b j=k1+k2+...k j(j=1, 2, 3…),g(m)=b1+b2+...b m−100m(m=1, 2, 3…).(Ⅰ)设数列k1=40,k2=30,k3=20,k4=10,k5=…=k100=0,求g(1),g(2),g(3),g(4);(II)若a1,a2,a3,…,a100中最大的项为50,比较g(m),g(m+1)的大小;(Ⅲ)若a1+a2+...a100=200,求函数g(m)的最小值.2011年北京市海淀区高考数学一模试卷(文科)答案1. B2. A3. B4. C5. A6. D8. B9. 1−i10. s 1>s 2>s 311. 112. (1+x)e x ,y =x13. [−4, 2]14. (2, 4),2√215. 解:(1)因为tanB =12,tanC =13,tan(B +C)=tanB+tanC 1−tanBtanC , 代入得到,tan(B +C)=12+131−12×13=1;(2)因为A =180∘−B −C ,所以tanA =tan[180∘−(B +C)]=−tan(B +C)=−1,又0∘<A <180∘,所以A =135∘.因为tanC =13>0,且0∘<C <180∘, 所以sinC =√1010, 由a sinA =c sinC ,得a =√5.16. 解:(1)因为S n =S n−1+2n ,所以有S n −S n−1=2n 对n ≥2,n ∈N ∗成立即a n =2n 对n ≥2成立,又a 1=S 1=2⋅1,所以a n =2n 对n ∈N ∗成立所以a n+1−a n =2对n ∈N ∗成立,所以{a n }是等差数列,所以有S n =a 1+a n 2⋅n =n 2+n ,n ∈N ∗(2)存在.由(1),a n =2n ,n ∈N ∗对成立所以有a 3=6,a 9=18,又a 1=2,所以由b 1=a 1,b 2=a 3,b 3=a 9,则b 2b 1=b3b 2=3 所以存在以b 1=2为首项,公比为3的等比数列{b n },其通项公式为b n =2⋅3n−1.17.证明:(I)因为O 为AB 中点,所以BO =12AB ,又AB // CD,CD=12AB,所以有CD=BO,CD // BO,所以ODCB为平行四边形,所以BC // OD,又DO⊂平面POD,BC⊄平面POD,所以BC // 平面POD.(II)连接OC.因为CD=BO=AO,CD // AO,所以ADCO为平行四边形,又AD=CD,所以ADCO为菱形,所以AC⊥DO,因为正三角形PAB,O为AB中点,所以PO⊥AB,又因为平面ABCD⊥平面PAB,平面ABCD∩平面PAB=AB,所以PO⊥平面ABCD,而AC⊂平面ABCD,所以PO⊥AC,又PO∩DO=O,所以AC⊥平面POD.又PD⊂平面POD,所以AC⊥PD.18. 解:(I)因为f′(x)=−1x2+ax=ax−1x2,当a=1,f′(x)=x−1x2,令f′(x)=0,得x=1,又f(x)的定义域为(0, +∞),f′(x),f(x)随x的变化情况如下表:f(x)的单调递增区间为(1, +∞),单调递减区间为(0, 1);(II)因为f′(x)=−1x2+ax=ax−1x2,且a≠0,令f′(x)=0,得到x=1a,若在区间[1, e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1, e]上的最小值小于0即可.(1)当a<0时,f′(x)<0对x∈(0, +∞)成立,所以,f(x)在区间[1, e]上单调递减,故f(x)在区间[1, e]上的最小值为f(e)=1e +alne=1e+a,由1e +a<0,得a<−1e,即a∈(−∞,−1e)(2)当a>0时,①若e ≤1a ,则f ′(x)≤0对x ∈[1, e]成立, 所以f(x)在区间[1, e]上单调递减,所以,f(x)在区间[1, e]上的最小值为f(e)=1e +alne =1e +a >0, 显然,f(x)在区间[1, e]上的最小值小于0不成立②若1<1a <e ,即1>a >1e 时,则有所以f(x)在区间[1, e]上的最小值为f(1a )=a +aln 1a ,由f(1a )=a +aln 1a =a(1−lna)<0, 得1−lna <0,解得a >e ,即a ∈(e, +∞)舍去;当0<1a <1,即a >1,即有f(x)在[1, e]递增,可得f(1)取得最小值,且为1,f(1)>0,不成立.综上,由(1)(2)可知a <−1e 符合题意.19. 解:(1)由已知,e 2=a 2−b 2a 2=14, 所以3a 2=4b 2,①又点M(1,32)在椭圆C 上, 所以1a 2+94b 2=1,②由①②解之,得a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1. (2)当直线l 有斜率时,设y =kx +m 时, 则由{y =kx +mx 24+y 23=1.消去y 得,(3+4k 2)x 2+8kmx +4m 2−12=0,△=64k 2m 2−4(3+4k 2)(4m 2−12)=48(3+4k 2−m 2)>0,③ 设A 、B 、P 点的坐标分别为(x 1, y 1)、(x 2, y 2)、(x 0, y 0),则:x 0=x 1+x 2=−8km 3+4k 2,y 0=y 1+y 2=k(x 1+x 2)+2m =6m3+4k 2, 由于点P 在椭圆C 上,所以x 024+y 023=1.从而16k 2m2(3+4k2)2+12m2(3+4k2)2=1,化简得4m2=3+4k2,经检验满足③式.又点O到直线l的距离为:d=√1+k2=√34+k2√1+k2=√1−14(1+k2)≥√1−14=√32.当且仅当k=0时等号成立,当直线l无斜率时,由对称性知,点P一定在x轴上,从而P点为(−2, 0),(2, 0),直线l为x=±1,所以点O到直线l的距离为1,所以点O到直线l的距离最小值为√32.20. (I)∵ 数列k1=40,k2=30,k3=20,k4=10,∴ b1=40,b2=70,b3=90,b4=100,∴ g(1)=−60,g(2)=−90,g(3)=−100,g(4)=−100;(II)∵ g(m+1)−g(m)=b m+1−100,根据b j的含义,知b m+1≤100,∴ g(m+1)−g(m)≤0,即g(m)≥g(m+1),当且仅当b m+1=100时取等号;又∵ a1,a2,a3,…,a100中最大的项为50,∴ 当m≥50时,b m=100,∴ g(1)>g(2)>...>g(49)=g(50)=g(51)=…,即当1<m<49时,g(m)>g(m+1),当m≥49时,有g(m)=g(m+1);(III)设M为{a1, a2, ...a100}中的最大值,由(II)知,g(m)的最小值为g(M);则g(M)=b1+b2+b3+...+b M−100M=(b1−100)+(b2−100)+(b3−100)+...+(b M−1−100)=(−k2−k3−...−k M)+(−k3−k4−...−k M)+(−k4−k5...−k M)+...+(−k M)=−[k2+2k3+...+(M−1)k M]=−(k1+2k2+3k3+...+Mk M)+(k1+k2+...+k M)=−(a1+a2+a3+...+a100)+b M=−(a1+a2+a3+...+a100)+100∵ a1+a2+a3+...+a100=200,∴ g(M)=−100,∴ g(m)最小值为−100.另由题易知M的最大值为101,∴ g(m)的最小值为g(101)=−100.。
2024北京海淀高三一模数 学本试卷共9页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合 题目要求的一项。
1. 已知全集{}22U x x =−≤≤,集合{}12A x x =−≤<,则U C A =A.(2,1)−−B.[2,1]−−C.{}(2,1)2−−D.{}[2,1)2−−2. 若复数z 满足i 1i z ⋅=+,则z 的共轭复数z =A.1i +B.1i −C.1i −+D.1i −−3. 已知{}n a 为等差数列,n S 为其前n 项和. 若122a a =,公差0d ≠,0m S =,则m 的值为A.4B.5C.6D.74. 已知向量,a b 满足||2=a ,(2,0)=b ,且||2+=a b ,则,<>=a bA.π6B.π3 C .2π3D.5π65. 若双曲线2222 1 (0,0)x y a b a b−=>>上的一点到焦点(的距离比到焦点的距离大b ,则该双曲线的方程为A.2214x y −=B.2212x y −= C.2212y x −= D.2214y x −= 6. 设,αβ是两个不同的平面,,l m 是两条直线,且m α⊂,l α⊥. 则“l β⊥”是“//m β”的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7. 已知3, 0()lg(1),0x x f x x x ⎧≤=⎨+>⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为A.1,1B.1,2C.2,1D.2,28. 在平面直角坐标系xOy 中,角α以Ox 为始边,终边在第三象限. 则 A.sin cos tan ααα−≤ B.sin cos tan ααα−≥C.sin cos tan ααα⋅<D.sin cos tan ααα⋅>9. 函数()f x 是定义在(4,4)−上的偶函数,其图象如图所示,(3)0f =. 设()f x '是()f x 的导函数,则关于x 的不等式(1)()0f x f x '+⋅≥的解集是A.[0,2]B.[3,0][3,4)−C.(5,0][2,4)−D.(4,0][2,3)−10. 某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1 . 通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半. 于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,11211122111,2A A A A OA ==.若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r *(,cm)r ∈N 单位:至少为A.6B.7C.8D.9第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
2013年北京市海淀区高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•海淀区一模)集合A={x∈N|x≤6},B={x∈N|x2﹣3x>0},则A∩B=()A.{1,2} B.{3,4,5} C.{4,5,6} D.{3,4,5,6}考点:交集及其运算.专题:计算题.分析:求出集合A,B中不等式的解集中的自然数解,根据交集的定义,求出得到两个集合的交集.解答:解:A={x∈N|x≤6}={0,1,2,3,4,5,6},B={x∈N|x2﹣3x>0}={x|x>3,x∈N},∴A∩B={4,5,6},故选C.点评:此题是个基础题.本题属于以不等式的解集为平台,求集合的交集的基础题,也是高考常会考的题型.做题时应注意理解集合B的元素.2.(5分)(2013•海淀区一模)等差数列{a n}中,a2=3,a3+a4=9 则a1a6的值为()A.14 B.18 C.21 D.27考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由等差数列的通项公式可得,a3+a4=2a2+5d=9,a1+d=3,解方程可求a1,d,即可求解a1a6解答:解:由等差数列的通项公式可得,a3+a4=2a2+5d=9,a1+d=3解方程可得,a1=2,d=1∴a1a6=2×7=14故选A点评:本题主要考查了等差数列的通项公式的简单应用,属于基础试题3.(5分)(2013•海淀区一模)某程序的框图如图所示,执行该程序,若输入的x值为5,则输出的y值为()A.B.1C.2D.﹣1考点:程序框图.专题:图表型.分析:按照程序框图的流程写出前几次循环的结果,并判断每次得到的结果是否满足判断框中的条件,直到满足,执行输出y,可得答案.解答:解:经过第一次循环得到x=3,不满足判断框中的条件;经过第二次循环得到x=1,不满足判断框中的条件;经过第三次循环得到x=﹣1,满足判断框中的条件;执行“是”,y=2﹣1=,输出y值为.故选A.点评:本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.属于基础题.4.(5分)(2013•海淀区一模)已知a>0,下列函数中,在区间(0,a)上一定是减函数的是()A.f(x)=ax+b B.f(x)=x2﹣2ax+1 C.f(x)=a x D.f(x)=log a x考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:题目给出的函数分别是一次函数、二次函数,指数函数及对数函数,在a>0时,逐一分析各函数在(0,a)上的单调性即可得到正确答案.解答:解:∵a>0,则函数f(x)=ax+b的斜率大于0,直线f(x)=ax+b的倾斜为锐角,函数f(x)=ax+b在定义域R上为增函数,不满足在区间(0,a)上一定是减函数;对于函数f(x)=x2﹣2ax+1,图象是开口向上的抛物线,对称轴为x=a,所以该函数在区间(0,a)上一定是减函数;对于函数f(x)=a x,当0<a<1时,该函数在R上为减函数,当a>1时,函数在R上为增函数;对于函数f(x)=log a x,当0<a<1时,函数在R上为减函数,当a>1时,函数在R上为增函数;故满足a>0,在区间(0,a)上一定是减函数的是f(x)=x2﹣2ax+1.故选B.点评:本题考查了函数的单调性及证明,考查了基本初等函数性质,属基础题型.5.(5分)(2013•海淀区一模)不等式组表示面积为1的直角三角形区域,则k的值为()A.0B.1C.2D.3考点:二元一次不等式(组)与平面区域.专题:不等式的解法及应用.分析:先作出不等式组表示的平面区域,根据已知条件可表示出平面区域的面积,然后结合已知可求k.解答:解:作出不等式组表示的平面区域,如图所示,由题意可得A(1,3),B(,),C(1,k)∴S△ABC=AC•d(d为B到AC的距离)=×(3﹣k)×(﹣1)=1,∴k=1.故选B.点评:本题主要考查了二元一次不等式组表示平面区域,属于基础试题.6.(5分)(2013•海淀区一模)命题P:∃α∈R,sin(π﹣α)=cosα;命题q:∀m>0,双曲线﹣=1的离心率为.则下面结论正确的是()A.P是假命题B.¬q是真命题C.p∧q是假命题D.p∨q是真命题考点:特称命题;全称命题.专题:计算题.分析:由于可判断命题p为真命题,而命题q为真命题,再根据复合命题的真假判定,一一验证选项即可得正确结果.解答:解:当时,Rsin(π﹣α)=cosα,故命题p为真命题,∵双曲线﹣=1中a=b=|m|=m,∴c==m∴e==,故命题q为真命题.∴¬p为假命题,¬q是假命题,p∨q是真命题;故选D.点评:本题主要考查了命题真假判断的应用,简单复合命题的真假判断,属于基础试题.7.(5分)(2013•海淀区一模)已知曲线f(x)=lnx在点(x0,f(x0))处的切线经过点(0,1),则x0的值为()A.B.e2C.e D.10考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:求出曲线方程的导函数,根据曲线方程设出切点坐标,把设出的切点横坐标代入导函数中表示出的导函数值即为切线的斜率,由切点坐标和斜率表示出切线方程,把点(0,1)的坐标代入切线方程中即可求出切点的横坐标即可.解答:解:对y=lnx求导得:y′=,切点坐标为(x0,lnx0),所以切线的斜率k=,则切线方程为:y﹣lnx0=(x﹣x0),把点(0,1)代入切线方程得:1﹣lnx0=(﹣x0),解得x0=e2,故选B.点评:本题的解题思想是设出切点的坐标,把切点的横坐标代入曲线方程的导函数中求出切线的斜率,进而写出切线方程,然后把原点坐标代入切线方程求出切点的横坐标,从而确定出切线的方程.8.(5分)(2013•海淀区一模)抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当△FPM为等边三角形时,其面积为()A.2B.4C.6D.4考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用抛物线的定义得出PM垂直于抛物线的准线,设P(,m),求出△PMF的边长,写出有关点的坐标,利用两点距离的公式得到FM,列出方程求出m的值,得到等边三角形的边长,从而求出其面积.解答:解:据题意知,△PMF为等边三角形,PF=PM,∴PM⊥抛物线的准线,设P(,m),则M(﹣1,m),等边三角形边长为1+,F(1,0)所以由PM=FM,得1+=,解得m=2,∴等边三角形边长为4,其面积为4故选D.点评:本题主要考查了抛物线的简单性质,直线与抛物线的综合问题.考查了学生综合把握所学知识和基本的运算能力.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•海淀区一模)在复平面上,若复数a+bi(a,b∈R)对应的点恰好在实轴上,则b= 0.考点:复数的代数表示法及其几何意义.专题:计算题.分析:利用复数的几何意义和点在实轴上的特点即可得出.解答:解:由复数的几何意义可知:复数a+bi(a,b∈R)对应的点为(a,b),∵此点恰好在实轴上,∴b=0.故答案为0.点评:正确理解复数的几何意义是解题的关键.10.(5分)(2013•海淀区一模)若向量,满足||=||=|+|=1,则•的值为﹣.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的数量积运算即可得出.解答:解:∵向量,满足||=||=|+|=1,∴,化为,即1,解得.故答案为.点评:熟练掌握向量的数量积运算是解题的关键.11.(5分)(2013•海淀区一模)某几何体的三视图如图所示,则它的体积为16.考点:由三视图求面积、体积.专题:计算题.分析:判断三视图复原的几何体的形状,画出图形,利用三视图的数据求出几何体的体积即可.解答:解:几何体是底面为下底为4,上底为2,高为4的直角梯形,几何体的高为4的四棱锥,顶点在底面的射影是底面直角梯形高的中点,几何体的体积为:V=S底×h==16.故答案为:16.点评:本题考查三视图与几何体直观图的关系,判断几何体的形状以及数据对应值是解题关键.12.(5分)(2013•海淀区一模)在△ABC中,若a=4,b=2,cosA=,则c=4.考点:正弦定理;同角三角函数间的基本关系;两角和与差的正弦函数.专题:解三角形.分析:由余弦定理可得16=4+c2﹣4c•,解方程求得c的值.解答:解:在△ABC中,∵a=4,b=2,cosA=,由余弦定理可得a2=b2+c2﹣2bc•cosA,即16=4+c2﹣4c•,化简可得(c﹣4)(c+3)=0,解得c=4,或c=﹣3(舍去),故答案为4.点评:本题主要考查余弦定理的应用,一元二次方程的解法,属于中档题.13.(5分)(2013•海淀区一模)已知函数f(x)=有三个不同的零点,则实数a的取值范围是a>4.考点:根的存在性及根的个数判断;函数的零点与方程根的关系.专题:函数的性质及应用.分析:由题意可得函数f(x)的图象与x轴有三个不同的交点,结合图象求出实数a的取值范围.解答:解:由题意可得函数f(x)的图象与x轴有三个不同的交点,如图所示:等价于当x≥0时,方程2x﹣a=0有一个根,且x<0时,方程x2+ax+a=0有两个根,即⇒a>4.故实数a的取值范围是a>4.故答案为:a>4.点评:本题主要考查函数的零点与方程的根的关系,体现了化归与转化、数形结合的数学思想,属于中档题.14.(5分)(2013•海淀区一模)已知函数y=f(x),任取t∈R,定义集合:A t={y|y=f(x)},点P (t,f(t)),Q(x,f(x))满足|PQ|}.设M t,m t分别表示集合A t中元素的最大值和最小值,记h(t)=M t﹣m t.则(1)若函数f(x)=x,则h(1)=2;(2)若函数f(x)=sin x,则h(t)的最小正周期为2.考点:函数的周期性.专题:新定义;函数的性质及应用.分析:(1)若函数f(x)=x,则点P(t,t),Q(x,x),根据|PQ|,求得1﹣t≤x≤t+1,即M t =1+t,m t =1﹣t,由此可得h(1)的值.(2)若函数f(x)=sin x,画出函数的图象,分析点P在曲线上从A接近B,从B接近C,从C接近D时,从D接近E时,h(t)值的变化情况,从而得到h(t)的最小正周期.解答:解:(1)若函数f(x)=x,则点P(t,t),Q(x,x),∵|PQ|,∴≤,化简可得|x﹣t|≤1,﹣1≤x﹣t≤1,即1﹣t≤x≤t+1,即M t =1+t,m t =1﹣t,∵h(t)=M t﹣m t ,h(1)=(1+1)﹣(1﹣1)=2.(2)若函数f(x)=sin x,此时,函数的最小正周期为=4,点P(t,sin),Q(x,sin),如图所示:当点P在A点时,点O在曲线OAB上,M t=1,m t=0,h(t)=M t﹣m t=1.当点P在曲线上从A接近B时,h(t)逐渐增大,当点P在B点时,M t=1,m t=﹣1,h(t)=M t﹣m t=2.当点P在曲线上从B接近C时,h(t)逐渐见减小,当点P在C点时,M t=1,m t=0,h(t)=M t﹣m t=1.当点P在曲线上从C接近D时,h(t)逐渐增大,当点P在D点时,M t=1,m t=﹣1,h(t)=M t﹣m t=2.当点P在曲线上从D接近E时,h(t)逐渐见减小,当点P在E点时,M t=1,m t=0,h(t)=M t﹣m t=1.…依此类推,发现h(t)的最小正周期为2,故答案为2.点评:本题主要考查函数的周期性,体现了数形结合以及分类讨论的数学思想,属于基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•海淀区一模)已知函数f(x)=2﹣(sinx﹣cosx)2.(Ⅰ)求f()的值和f(x)的最小正周期;(Ⅱ)求函数在区间[﹣,]上的最大值和最小值.考点:二倍角的余弦;二倍角的正弦;三角函数的周期性及其求法;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:(I)利用特殊角的三角函数值即可得到,利用倍角公式和两角和差的正弦公式和周期公式即可得出;(II)由时,得到,再利用正弦函数的单调性即可得到最值.解答:解:(I)=2﹣1=1.∵函数f(x)=2﹣(sinx﹣cosx)2=2﹣=2﹣(1+=1﹣=cos2x+==∴函数f(x)的周期为.(II)当时,,所以当时,函数取得最小值;当时,函数取得最大值.点评:熟练掌握特殊角的三角函数值、倍角公式和两角和差的正弦公式和周期公式、正弦函数的单调性是解题的关键.16.(13分)(2013•甘肃三模)在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(I)求该考场考生中“阅读与表达”科目中成绩为A的人数;(II)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.考点:众数、中位数、平均数;古典概型及其概率计算公式.专题:概率与统计.分析:(I)根据“数学与逻辑”科目中成绩等级为B的考生人数,结合样本容量=频数÷频率得出该考场考生人数,再利用频率和为1求出等级为A的频率,从而得到该考场考生中“阅读与表达”科目中成绩等级为A的人数.(II)利用平均数公式即可计算该考场考生“数学与逻辑”科目的平均分.(III)通过列举的方法计算出选出的2人所有可能的情况及这两人的两科成绩等级均为A的情况;利用古典概型概率公式求出随机抽取两人进行访谈,这两人的两科成绩等级均为A的概率.解答:解:(I)因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有10÷0.25=40人…(2分)所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为40(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3…(4分)(II)该考场考生“数学与逻辑”科目的平均分为:[1×(40×0.2)+2×(40×0.1)+3×(40×0.375)+4×(40×0.25)+5×(40×0.075)]=2.9…(8分)(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,所以还有2人只有一个科目得分为A…(9分)设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件…(11分)设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,则P(B)=.…(13分)点评:本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.17.(14分)(2013•海淀区一模)在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且.(Ⅰ)求证:BD⊥PC;(Ⅱ)求证:MN∥平面PDC;(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.考点:直线与平面平行的判定;直线与平面垂直的判定;反证法与放缩法.专题:证明题;空间位置关系与距离.分析:(Ⅰ)通过证明BD⊥平面PAC,然后证明BD⊥PC;(Ⅱ)通过证明线段成比例证明MN∥PD,利用直线平面平行的判定定理证明MN∥平面PDC;(Ⅲ)利用反证法证明直线l∥CD,推出CD∥AB与CD与AB不平行矛盾从而说明直线l 与直线CD不平行.解答:解:(I)证明:(I)因为△ABC是正三角形,M是AC中点,所以BM⊥AC,即BD⊥AC…(1分)又因为PA⊥平面ABCD,BD⊂平面ABCD,PA⊥BD…(2分)又PA∩AC=A,所以BD⊥平面PAC…(4分)又PC⊂平面PAC,所以BD⊥PC…(5分)(Ⅱ)在正三角形ABC中,BM=…(6分)在△ACD,因为M为AC中点,DM⊥AC,所以AD=CD∠CAD=30°,所以,DM=,所以BM:MD=3:1…(8分)所以BN:NP=BM:MD,所以MN∥PD…(9分)又MN⊄平面PDC,PD⊂平面PDC,所以MN∥平面PDC…(11分)(Ⅲ)假设直线l∥CD,因为l⊂平面PAB,CD⊄平面PAB,所以CD∥平面PAB…(12分)又CD⊂平面ABCD,平面PAB∩平面ABCD=AB,所以CD∥AB…(13分)这与CD与AB不平行,矛盾所以直线l与直线CD不平行…(14分)点评:本题考查在与平面垂直与平行的判定定理的应用,反证法的应用,考查空间想象能力与逻辑推理能力.18.(13分)(2013•海淀区一模)函数f(x)=x3﹣kx,其中实数k为常数.(I)当k=4时,求函数的单调区间;(II)若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.考点:利用导数研究函数的单调性;函数的零点.专题:导数的综合应用.分析:(I)先求原函数的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可;(II)将题中条件:“函数f(x)的图象与直线y=k只有一个公共点,”等价于“g(x)=f(x)﹣k,所以g(x)只有一个零点”,利用导数求得原函数的极值,最后要使g(x)的其图象和x轴只有一个交点,得到关于k的不等关系,从而求实数k的取值范围.解答:解:(I)因为f′(x)=x2﹣k…(2分)当k=4时,f′(x)=x2﹣4,令f′(x)=x2﹣4=0,所以x=﹣2或x=2f′(x),f(x)随x的变化情况如下表:x (﹣∞,﹣2)﹣2 (﹣2,2) 2 (2,+∞)f′(x)+ 0 ﹣0 +f(x)增极大值减极小值增…(4分)所以f(x)的单调递增区间是(﹣∞,﹣2),(2,+∞)单调递减区间是(﹣2,2)…(6分)(II)令g(x)=f(x)﹣k,所以g(x)只有一个零点…(7分)因为g′(x)=f′(x)=x2﹣k当k=0时,g(x)=x3,所以g(x)只有一个零点0 …(8分)当k<0时,g′(x)=x2﹣k>0对x∈R成立,所以g(x)单调递增,所以g(x)只有一个零点…(9分)当k>0时,令g′(x)=f′(x)=x2﹣k=0,解得x=或x=﹣…(10分)所以情况如下表:x (﹣∞,﹣﹣(﹣,)(,+∞))g′(x)+ 0 ﹣0 +g(x)增极大值减极小值增g(x)有且仅有一个零点等价于g(﹣)<0…(11分)即g(﹣)=k<0,解得0<k<…(12分)综上所述,k的取值范围是k<…(13分)点评:本小题主要考查函数单调性的应用、利用导数研究函数的单调性、导数在极值问题中的应用、不等式的解法等基础知识,考查运算求解能力,转化思想.19.(14分)(2013•海淀区一模)已知圆M:(x﹣)2+y2=,若椭圆C:+=1(a>b>0)的右顶点为圆M的圆心,离心率为.(I)求椭圆C的方程;(II)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(I)由圆心M得到.利用椭圆的离心率及b2=a2﹣c2即可得出椭圆的标准方程;(II)把直线l的方程与椭圆的方程联立,消去y得到关于x的一元二次方程,利用根与系数的关系及弦长公式即可得到|AB|,利用垂径定理及半径、弦长的一半、弦心距三者之间的关系即可得到|GH|,进而得出k.解答:解:(I)设椭圆的焦距为2c,由圆心M得到.∵,∴c=1.∴b2=a2﹣c2=1.所以椭圆C:.(II)设A(x1,y1),B(x2,y2).由直线l与椭圆C交于两点A,B,则消去y得到(1+2k2)x2﹣2=0,则x1+x2=0,.∴|AB|==.点M到直线l的距离.则|GH|=.显然,若点H也在线段AB上,则由对称性可知,直线y=kx就是y轴,矛盾.∵|AG|=|BH|,∴|AB|=|GH|.∴,解得k2=1,即k=±1.点评:熟练掌握椭圆与圆的标准方程及其性质、直线与曲线相交问题转化为把直线l的方程与曲线的方程联立得到一元二次方程、利用根与系数的关系及弦长公式、垂径定理及半径、弦长的一半、弦心距三者之间的关系是解题的关键.20.(13分)(2013•海淀区一模)设A(x A,y A),B(x B,y B)为平面直角坐标系上的两点,其中x A,y A,Bx B,y B∈Z.令△x=x B﹣x A,△y=y B﹣y A,若|△x|+|△y=3,且|△x|﹣|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)为一个定点,点列{P i}满足:P i=i(P i﹣1),其中i=1,2,3,…,n,求|P0P n|的最小值.考点:圆的标准方程;两点间的距离公式.专题:直线与圆.分析:(I)由题意可得|△x|=1,|△y|=2;或|△x|=2,|△y|=1,由此可得点(0,0)的“相关点”有8个.再根据+=5,可得这些可能值对应的点在以(0,0)为圆心,以为半径的圆上.(II)设M(x M,y M),由条件推出|x M﹣9|+|y M﹣3|=3,|x M﹣5|+|y M﹣3|=3,由此求得点M的坐标.(III)分当n=1、当n=2k,当n=2k+1,且k∈N*时,三种情况,分别求得|P0P n|的最小值,综合可得结论.解答:解:(I)因为|△x|+|△y=3,且|△x|﹣|△y|≠0,|△x|与|△y|为非零整数,故|△x|=1,|△y|=2;或|△x|=2,|△y|=1,所以点(0,0)的“相关点”有8个,分别为:(1,2)、(1,﹣2)、(﹣1,2)、(﹣1,﹣2)、(2,1)、(2,﹣1)、(﹣2,1)、(﹣2,﹣1).…(1分)又因为(△x)2+(△y)2=5,即+=5,所以,这些可能值对应的点在以(0,0)为圆心,以为半径的圆上.…(3分)(II)设M(x M,y M),因为M=i(H),L=i(M),所以有|x M﹣9|+|y M﹣3|=3,|x M﹣5|+|y M﹣3|=3,…(5分)所以|x M﹣9|=|x M﹣5|,所以x M=7,故y M=2 或y M=4,所以M(7,2),或M(7,4).…(7分)(III)当n=2k,且k∈N*时,|P0P n|的最小值为0.例如:P0(x0,y0),P1(x0+1,y0),P2((x0,y0),显然,P0=i(P1),P1=i(P2),此时,|P0P2|=0.…(8分)当n=1时,可知,|P0P n|的最小值为.…(9分)当n=3 时,对于点P,按照下面的方法选择“相关点”,可得P3(x0,y0+1):由P0(x0,y0),依次找出“相关点”分别为P1(x0+2,y0+1),P2(x0+1,y0+3),P3(x0,y0+1).此时,|P0P3|=1,故|P0P n|的最小值为1.…(11分)然后经过3次变换回到P3(x0,y0+1),故|P0P n|的最小值为1.当n=2k+1,k>1,k∈N*时,经过2k次变换回到初始点P0(x0,y0),故经过2k+1次变换回到P3(x0,y0+1),故|P0P n|的最小值为1.综上,当n=1 时,|P0P n|的最小值为.当当n=2k,k∈N*时,|P0P n|的最小值为0,当n=2k+1,k∈N*时,|P0P n|的最小值为1.…(13分)点评:本题主要考查圆的方程,两点间的距离公式,体现了分类讨论的数学思想,属于中档题.。
高中数学学习材料金戈铁骑整理制作2016年北京市海淀区高考数学一模试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x∈z|﹣2≤x<3},B={x|﹣2≤x<1},则A∩B=()A.{﹣2,﹣1,0}B.{﹣2,﹣1,0,1} C.{x|﹣2<x<1}D.{x|﹣2≤x<1}2.已知向量,若,则t=()A.1 B.3 C.±3 D.﹣33.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为()A.﹣1 B.1 C.﹣i D.i4.若x,y 满足,则z=x+y的最大值为()A.B.3 C.D.45.某三棱锥的三视图如图所示,则其体积为()A.B.C.D.6.已知点P(x0,y0)在抛物线W:y2=4x上,且点P到W的准线的距离与点P到x轴的距离相等,则x0的值为()A.B.1 C.D.27.已知函数f(x)=,则“α=”是“函数f(x)是偶函数“的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是()工作一二三四五效益机器甲15 17 14 17 15乙22 23 21 20 20丙9 13 14 12 10丁7 9 11 9 11戊13 15 14 15 11A.甲只能承担第四项工作 B.乙不能承担第二项工作C.丙可以不承担第三项工作D.获得的效益值总和为78二、填空题共6小题,每小题5分,共30分.9.函数f(x)=的定义域为______.10.已知数列{a n}的前n项和为S n,且,则a2﹣a1=______.11.已知l为双曲线C:﹣=1的一条渐近线,其倾斜角为,且C的右焦点为(2,0),则C的右顶点为______,C的方程为______.12.在2这三个数中,最小的数是______.13.已知函数f(x)=sin(2x+φ),若,则函数f(x)的单调增区间为______.14.给定正整数k≥2,若从正方体ABCD﹣A1B1C1D1的8个顶点中任取k个顶点,组成一个集合M={X1,X2,…,X k},均满足∀X i,X j∈M,∃X l,X t∈M,使得直线X i X j⊥X l X t,则k的所有可能取值是______.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.在△ABC 中,∠C=,a=6.(Ⅰ)若c=14,求sinA的值;(Ⅱ)若△ABC的面积为3,求c的值.16.已知数列{a n}是等比数列,其前n项和为S n,满足S2+a1=0,a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n>2016?若存在,求出符合条件的n的最小值;若不存在,说明理由.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N 分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.18.一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(Ⅰ)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(Ⅱ)这10名同学中男生和女生的国学素养测试成绩的方差分别为,,试比较与的大小(只需直接写出结果);(Ⅲ)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)19.已知椭圆C: +=1(a>b>0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P是椭圆C上的动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由.20.已知函数f(x)=.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的零点和极值;(3)若对任意x1,x2∈[a,+∞),都有f(x1)﹣f(x2)≥﹣成立,求实数a的最小值.2016年北京市海淀区高考数学一模试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x∈z|﹣2≤x<3},B={x|﹣2≤x<1},则A∩B=()A.{﹣2,﹣1,0}B.{﹣2,﹣1,0,1} C.{x|﹣2<x<1}D.{x|﹣2≤x<1}【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x∈Z|﹣2≤x<3}={﹣2,﹣1,0,1,2},B={x|﹣2≤x<1},∴A∩B={﹣2,﹣1,0},故选:A.2.已知向量,若,则t=()A.1 B.3 C.±3 D.﹣3【考点】平面向量共线(平行)的坐标表示.【分析】由向量共线可得t的方程,解方程可得.【解答】解:∵向量,且,∴1×9﹣t2=0,解得t=±3故选:C3.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为()A.﹣1 B.1 C.﹣i D.i【考点】程序框图.【分析】由已知中的程序框图及已知中输入z=i,可得:进入循环的条件为n≤5,即n=1,2,…,5,模拟程序的运行结果,即可得到输出的S值.【解答】解:模拟执行程序,可得z=i,n=1不满足条件n >5,S=i 1,n=2不满足条件n >5,S=i 2,n=3不满足条件n >5,S=i 3,n=4不满足条件n >5,S=i 4,n=5不满足条件n >5,S=i 5,n=6满足条件n >5,退出循环,输出S=i 5=i .故选:D .4.若x ,y 满足,则z=x +y 的最大值为( )A .B .3C .D .4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图:由z=x +y 得y=﹣x +y ,平移y=﹣x +y ,由图象知当直线y=﹣x +y 经过点A 直线的截距最大,此时z 最大,由得,即A (1,3),则z=+3=,故选:C .5.某三棱锥的三视图如图所示,则其体积为( )A.B.C.D.【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个三棱锥,由三视图之间的关系求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个三棱锥,底面是一个三角形:即俯视图:底是2、高是侧视图的底边,三棱锥的高是侧视图和正视图的高1,∴几何体的体积V==,故选:A.6.已知点P(x0,y0)在抛物线W:y2=4x上,且点P到W的准线的距离与点P到x轴的距离相等,则x0的值为()A.B.1 C.D.2【考点】抛物线的简单性质.【分析】求得抛物线的焦点和准线方程,运用抛物线的定义可得点P到W的准线的距离即为P到W的焦点F的距离,由题意可得|PF|=|y0|,即可得到x0=1.【解答】解:抛物线W:y2=4x的焦点为(1,0),准线方程为x=﹣1,由抛物线的定义可得点P到W的准线的距离即为P到W的焦点F的距离,由题意可得|PF|=|y0|,则PF⊥x轴,可得x0=1,故选:B.7.已知函数f(x)=,则“α=”是“函数f(x)是偶函数“的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】函数f(x)是偶函数,则sin(x+α)=cos(﹣x+α),可得sin(x+α)=,化简解出即可判断出结论.【解答】解:函数f(x)是偶函数,则sin(x+α)=cos(﹣x+α),可得sin(x+α)=,∴x+α+2kπ=+x﹣α,或π﹣(x+α)+2kπ=+x﹣α,解得,(k∈Z).∴α=”是“函数f(x)是偶函数”的充分不必要条件.故选:A.8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是()工作效益一二三四五机器甲15 17 14 17 15乙22 23 21 20 20丙9 13 14 12 10丁7 9 11 9 11戊13 15 14 15 11A.甲只能承担第四项工作 B.乙不能承担第二项工作C.丙可以不承担第三项工作D.获得的效益值总和为78【考点】进行简单的合情推理.【分析】由表知道,五项工作后获得的效益值总和最大为17+23+14+11+15=80,但不能同时取得,再分类讨论,得出乙若不承担第二项工作,承担第一项,甲承担第二项工作,则戊承担第四项工作,即可得出结论.【解答】解:由表知道,五项工作后获得的效益值总和最大为17+23+14+11+15=80,但不能同时取得.要使总和最大,甲可以承担第一或四项工作,丙只能承担第三项工作,丁则不可以承担第三项工作,所以丁承担第五项工作;乙若承担第四项工作;戊承担第一项工作,此时效益值总和为17+23+14+11+13=78;乙若不承担第二项工作,承担第一项,甲承担第二项工作,则戊承担第四项工作,此时效益值总和为17+22+14+11+15=79,所以乙不承担第二项工作,故选:B.二、填空题共6小题,每小题5分,共30分.9.函数f(x)=的定义域为[1,+∞).【考点】函数的定义域及其求法.【分析】根据函数f(x)的解析式,列出使解析式有意义的不等式,求出解集即可.【解答】解:∵函数f(x)=,∴2x﹣2≥0,即2x≥2;解得x≥1,∴f(x)的定义域为[1,+∞).故答案为:[1,+∞).10.已知数列{a n}的前n项和为S n,且,则a2﹣a1=2.【考点】数列递推式.【分析】通过,利用a2﹣a1=S2﹣2S1计算即得结论.【解答】解:∵,∴a2﹣a1=(a1+a2)﹣2a1=S2﹣2S1=(4﹣8)﹣2(1﹣4)=2,故答案为:2.11.已知l为双曲线C:﹣=1的一条渐近线,其倾斜角为,且C的右焦点为(2,0),则C的右顶点为(,0),C的方程为﹣=1.【考点】双曲线的简单性质.【分析】由题意可得c=2,求出渐近线方程,解方程可得a,b,即可得到右顶点和双曲线的方程.【解答】解:由题意可得c=2,即a2+b2=4,一条渐近线的斜率为k==tan=1,解得a=b=,则双曲线的右顶点为(,0),C的方程为﹣=1.故答案为:(,0),﹣=1.12.在2这三个数中,最小的数是.【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵=>1,log32>=,∴在2这三个数中,最小的数是.故答案为:.13.已知函数f(x)=sin(2x+φ),若,则函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【考点】正弦函数的图象.【分析】由条件可得+φ=2kπ+,且﹣+φ=2kπ﹣,k∈Z,求得φ的值,可得f (x)的解析式,再利用正弦函数的单调性得出结论.【解答】解:∵函数f(x)=sin(2x+φ),若,则函数的周期为π,f()=sin(+φ)=1,f(﹣)=sin(﹣+φ)=﹣1,故+φ=2kπ+,且﹣+φ=2kπ﹣,k∈Z,即φ=2kπ+,k∈Z.故取φ=,f(x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,故答案为:[kπ﹣,kπ+],k∈Z.14.给定正整数k≥2,若从正方体ABCD﹣A1B1C1D1的8个顶点中任取k个顶点,组成一个集合M={X1,X2,…,X k},均满足∀X i,X j∈M,∃X l,X t∈M,使得直线X i X j⊥X l X t,则k的所有可能取值是6,7,8.【考点】棱柱的结构特征.【分析】由题意,∀X i,X j∈M,∃X l,X t∈M,使得直线X i X j⊥X l X t,则k至少要取6,可以保证由四点共面,即可得出结论.【解答】解:由题意,∀X i,X j∈M,∃X l,X t∈M,使得直线X i X j⊥X l X t,则k至少要取6,即可保证有四点共面,由正方形的性质,四点共面时,∃X l,X t∈M,使得直线X i X j⊥X l X t,∴k的所有可能取值是6,7,8.故答案为:6,7,8.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.在△ABC 中,∠C=,a=6.(Ⅰ)若c=14,求sinA的值;(Ⅱ)若△ABC的面积为3,求c的值.【考点】正弦定理;余弦定理.【分析】(I)利用正弦定理解出;(II)根据面积计算b,再利用余弦定理解出c.【解答】解:(Ⅰ)在△ABC中,由正弦定理得:,即,∴.(Ⅱ)∵=.∴b=2.由余弦定理得:c2=a2+b2﹣2a•b•cosC=4+36﹣2×=52.∴.16.已知数列{a n}是等比数列,其前n项和为S n,满足S2+a1=0,a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n>2016?若存在,求出符合条件的n的最小值;若不存在,说明理由.【考点】数列的求和;等比数列的通项公式.【分析】(Ⅰ)通过设数列{a n}的公比为q,利用2a1+a1q=0及a1≠0可知q=﹣2,进而通过a3=12可知首项a1=3,计算即得结论;(Ⅱ)通过(I)、利用等比数列的求和公式计算可知S n>2016等价于(﹣2)n<﹣2015,分n为奇数、偶数两种情况讨论即可.【解答】解:(Ⅰ)设数列{a n}的公比为q,因为S2+a1=0,所以2a1+a1q=0,因为a1≠0,所以q=﹣2,又因为,所以a1=3,所以;(Ⅱ)结论:符合条件的n的最小值为11.理由如下:由(I)可知,令S n>2016,即1﹣(﹣2)n>2016,整理得(﹣2)n<﹣2015,当n为偶数时,原不等式无解;当n为奇数时,原不等式等价于2n>2015,解得n≥11;综上所述,所以满足S n>2016的正整数n的最小值为11.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N 分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.【考点】点、线、面间的距离计算;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)通过证明BC⊥平面PAB,即可证明平面PBC⊥平面PAB;(Ⅱ)在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC,利用线面平行的判定定理,证明MN∥平面ABCD;(Ⅲ)AM的长就是点A到MN的距离,A到直线MN距离的最小值就是A到线段PB的距离.【解答】证明:(Ⅰ)在正方形ABCD中,AB⊥BC.….因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.….又AB∩PA=A,AB,PA⊂平面PAB,….所以BC⊥平面PAB.….因为BC⊂平面PBC,所以平面PBC⊥平面PAB.….(Ⅱ)由(Ⅰ)知,BC⊥平面PAB,PB⊂平面PAB,所以BC⊥PB.….在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC,….又BC⊂平面ABCD,MN⊄平面ABCD,….所以MN∥平面ABCD.….解:(Ⅲ)因为MN∥BC,所以MN⊥平面PAB,….而AM⊂平面PAB,所以MN⊥AM,….所以AM的长就是点A到MN的距离,….而点M在线段PB上所以A到直线MN距离的最小值就是A到线段PB的距离,在Rt△PAB中,AB=3,PA=4,所以A到直线MN的最小值为.….18.一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(Ⅰ)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(Ⅱ)这10名同学中男生和女生的国学素养测试成绩的方差分别为,,试比较与的大小(只需直接写出结果);(Ⅲ)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)【考点】列举法计算基本事件数及事件发生的概率;极差、方差与标准差.【分析】(Ⅰ)设这10名同学中男女生的平均成绩分别为.利用茎叶图能求出该班男、女生国学素养测试的平均成绩.(Ⅱ)女生国学素养测试成绩的方差大于男生国学素养成绩的方差.(Ⅲ)设“两名同学的成绩均为优良”为事件A,男生按成绩由低到高依次编号为a1,a2,a3,a4,女生按成绩由低到高依次编号为b1,b2,b3,b4,b5,b6,由此利用列举法能求出这两名同学的国学素养测试成绩均为优良的概率.【解答】解:(Ⅰ)设这10名同学中男女生的平均成绩分别为.则….….∴该班男、女生国学素养测试的平均成绩分别为73.75,76.(Ⅱ)女生国学素养测试成绩的方差大于男生国学素养成绩的方差.….(Ⅲ)设“两名同学的成绩均为优良”为事件A,….男生按成绩由低到高依次编号为a1,a2,a3,a4,女生按成绩由低到高依次编号为b1,b2,b3,b4,b5,b6,则从10名学生中随机选取一男一女两名同学共有24种取法….(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a1,b5),(a1,b6),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(a2,b5),(a2,b6),(a3,b1),(a3,b2),(a3,b3),(a3,b4),(a3,b5),(a3,b6),(a4,b1),(a4,b2),(a4,b3),(a4,b4),(a4,b5),(a4,b6),其中两名同学均为优良的取法有12种取法….(a2,b3),(a2,b4),(a2,b5),(a2,b6),(a3,b3),(a3,b4),(a3,b5),(a3,b6),(a4,b2),(a4,b3),(a4,b4),(a4,b5),(a4,b6),所以,即两名同学成绩均为优良的概率为.….19.已知椭圆C : +=1(a >b >0)的离心率为,椭圆C 与y 轴交于A 、B 两点,|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点P 是椭圆C 上的动点,且直线PA ,PB 与直线x=4分别交于M 、N 两点,是否存在点P ,使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)运用椭圆的离心率公式,以及a ,b ,c 的关系,计算即可得到所求椭圆方程;(Ⅱ)设P (m ,n ),可得+n 2=1,可得A (0,1),B (0,﹣1),设M (4,s ),N (4,t ),运用三点共线的条件:斜率相等,求得M ,N 的坐标,再由直径所对的圆周角为直角,运用垂直的条件:斜率之积为﹣1,计算即可求得m ,检验即可判断是否存在.【解答】解:(Ⅰ)由题意可得e==,2b=2,即b=1,又a 2﹣c 2=1,解得a=2,c=,即有椭圆的方程为+y 2=1;(Ⅱ)设P (m ,n ),可得+n 2=1,即有n 2=1﹣,由题意可得A (0,1),B (0,﹣1),设M (4,s ),N (4,t ),由P ,A ,M 共线可得,k PA =k MA ,即为=,可得s=1+,由P ,B ,N 共线可得,k PB =k NB ,即为=,可得s=﹣1.假设存在点P ,使得以MN 为直径的圆经过点Q (2,0).可得QM ⊥QN ,即有•=﹣1,即st=﹣4.即有[1+][﹣1]=﹣4,化为﹣4m 2=16n 2﹣(4﹣m )2=16﹣4m 2﹣(4﹣m )2,解得m=0或8,由P,A,B不重合,以及|m|<2,可得P不存在.20.已知函数f(x)=.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的零点和极值;(3)若对任意x1,x2∈[a,+∞),都有f(x1)﹣f(x2)≥﹣成立,求实数a的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出f(x)的导数,求得切线的斜率和切点,即可得到所求切线的方程;(2)令f(x)=0,可得零点;由导数大于0,可得增区间;导数小于0,可得减区间,进而得到极小值,无极大值;(3)结合单调性,当a≥2时,f(x)在[a,+∞)递增,即有f(x)≥f(a)≥f(2)=﹣,运用不等式的性质,即可得到a的最小值为2.【解答】解:(1)函数f(x)=的导数为f′(x)=,可得在点(0,f(0))处的切线斜率为﹣2,切点为(0,1),即有切线的方程为y=﹣2x+1;(2)由f(x)=0,可得x=1,即零点为1;由x>2时,f′(x)>0,f(x)递增;当x<2时,f′(x)<0,f(x)递减.可得x=2处,f(x)取得极小值,且为﹣,无极大值;(3)由(2)可得f(2)取得极小值﹣,当a≥2时,f(x)在[a,+∞)递增,即有f(x)≥f(a)≥f(2)=﹣,由﹣≤f(x1)<0,0<﹣f(x2)<,可得>f(x1)﹣f(x2)≥﹣恒成立.即有a的最小值为2.2016年9月10日。
海淀区高三年级第二学期期中练习数 学(文)参考答案及评分标准 .4说明: 合理答案均可酌情给分,但不得超过原题分数.第Ⅰ卷 (选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案ACBCDABA第II 券(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.4 10.x y 82= 11.6 12.30 13.1214.π,π+12 15.(本小题满分13分)解:(I )由图可知,A=1 …………1分,24π=T 所以π2=T ……………2分 所以1=ω ……………3分又1)4sin()4(=+=ϕππf ,且22ππϕ-<<所以4πϕ=……………5分所以)4sin()(π+=x x f . ……………6分(II )由(I ))4sin()(π+=x x f ,所以)4()4()(ππ-⋅+=x f x f x g =sin()sin()4444x x ππππ++⋅-+sin()sin 2x x π=+ ……………8分cos sin x x =⋅ ……………9分 1sin 22x = ……………10分 因为]2,0[π∈x ,所以],0[2π∈x ,]1,0[2sin ∈x故:]21,0[2sin 21∈x ,当4π=x 时,)(x g 取得最大值21. …………… 13分 16. (本小题满分13分)解:(I )设“甲获得优惠券”为事件A …………… 1分因为假定指针停在任一位置都是等可能的,而题中所给的三部分的面积相等,所以指针停在20元,10元,0元区域内的概率都是31. …………… 3分 顾客甲获得优惠券,是指指针停在20元或10元区域,根据互斥事件的概率,有323131)(=+=A P , …………… 6分 所以,顾客甲获得优惠券面额大于0元的概率是23.(II )设“乙获得优惠券金额不低于20元”为事件B …………… 7分因为顾客乙转动了转盘两次,设乙第一次转动转盘获得优惠券金额为x 元, 第二次获得优惠券金额为y 元,则基本事件空间可以表示为:{(20,20),(20,10),(20,0),(10,20),(10,10),(10,0),(0,20),(0,10),(0,0)}Ω=,…………… 9分即Ω中含有9个基本事件,每个基本事件发生的概率为91. ………… 10分 而乙获得优惠券金额不低于20元,是指20x y +≥, 所以事件B 中包含的基本事件有6个, ………… 11分 所以乙获得优惠券额不低于20元的概率为3296)(==B P ………… 13分 答:甲获得优惠券面额大于0元的概率为32,乙获得优惠券金额不低于20元的概率为32. 17. (本小题满分14分)证明:(Ⅰ) 因为ABCD 为菱形,所以AB=BC又60ABC ∠=,所以AB=BC=AC , ……………1分 又M 为BC 中点,所以BC AM ⊥ …………… 2分而PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥ …………… 4分 又PA AM A =,所以BC ⊥平面AMN …………… 5分 (II )因为11331222AMC S AM CM ∆=⋅== …………… 6分 又PA ⊥底面,ABCD 2,PA = 所以1AN = 所以,三棱锥N AMC -的体积31=V AMC S AN ∆⋅ ………… 8分1331326=⨯⨯= ………… 9分 (III)存在 …………… 10分取PD 中点E ,连结NE ,EC,AE, 因为N ,E 分别为PA ,PD 中点,所以AD NE 21// …………… 11分 又在菱形ABCD 中,1//2CM AD 所以MC NE //,即MCEN 是平行四边形 …………… 12分 所以, EC NM //,又⊂EC 平面ACE ,⊄NM 平面ACE所以MN //平面ACE , …………… 13分 即在PD 上存在一点E ,使得//NM 平面ACE ,此时122PE PD ==. …………… 14分 18. (本小题满分14分) 解:(I )因为(1)0,(1)0f g ==,所以点)0,1(同时在函数)(),(x g x f 的图象上 …………… 1分 因为x a x g x x f ln )(,1)(2=-=, '()2f x x =, ……………3分'()ag x x=……………5分 由已知,得)1(')1('g f =,所以21a=,即2a = ……………6分(II )因为x a x x g x f x F ln 21)(2)()(2--=-=()0>x ……………7分所以xa x x a x x F )(222)('2-=-= ……………8分 当0<a 时,因为0>x ,且,02>-a x 所以0)('>x F 对0>x 恒成立,所以)(x F 在),0(+∞上单调递增,)(x F 无极值 ……………10分; 当0>a 时,令0)('=x F ,解得12,x a x a ==- ……………11分 所以当0x >时,'(),()F x F x 的变化情况如下表:x),0(a a (,)a +∞)('x F -0 +)(x F极小值……………13分 所以当a x =时,()F x 取得极小值,且a a a a a a a F ln 1ln 21)()(2--=--=. ……………14分综上,当0<a 时,函数)(x F 在),0(+∞上无极值;当0>a 时,函数()F x 在a x =处取得极小值a a a ln 1--.19. (本小题满分13分)解:(I )设椭圆C 的方程为22221,(0)x y a b a b +=>>,由题意可得 21==a c e ,又222c b a +=,所以2243a b =……………2分 因为椭圆C 经过(1,32),代入椭圆方程有 14349122=+a a解得2=a ……………4分所以1c = ,2413b =-=故椭圆C 的方程为 22143x y +=. ……………5分 (Ⅱ)解法一:当直线l x ⊥轴时,计算得到:33(1,),(1,)22A B ---,1113||||13222AOB S AB OF ∆=⋅⋅=⨯⨯=,不符合题意. ……………6分当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,0≠k由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y ,得 2222(34)84120k x k x k +++-= …………7分显然0∆>成立,设1122(,),(,)A x y B x y ,则21228,34k x x k +=-+ 212241234k x x k-⋅=+ ……………8分 又2212221221221)()()()(||x x k x x y y x x AB -+-=-+-=22221212121()1()4k x x k x x x x =+-=++-⋅422222644(412)1(34)34k k kk k -=+-++ ……………9分 即 222212112(1)||134k k AB k k ++=+=+又圆O 的半径2211r kk==++ ……………10分所以222221112(1)6||162||22343471AOBk k k S AB r k k k∆++=⋅⋅=⋅==+++……………11分 化简,得4217180k k +-=,即22(1)(1718)0k k -+=,解得2212181,17k k ==-(舍) ……………12分 所以,2221r k ==+,故圆O 的方程为:2212x y +=. ……………13分(Ⅱ)解法二:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x ,得 22(43)690t y ty +--= ……………7分因为0∆>恒成立,设1122(,),(,)A x y B x y , 则12122269,4343t y y y y t t+=⋅=-++ ……………8分 所以2121212||()4y y y y y y -=+-⋅22223636(43)43t t t =+++22143t t +=+ ……………9分 所以21122112||||2437AOBt S F O y y t ∆+=⋅⋅-==+ 化简得到4218170t t --=,即0)1)(1718(22=-+t t , 解得211,t =221718t =-(舍) …………11分又圆O 的半径为2211r tt==++ ……………12分所以2221r t ==+,故圆O 的方程为:2212x y += ……………13分.20.(本小题满分13分)解:(Ⅰ)因为 11a =,所以21123a a =+=,3115222a a =+=, 42127a a =+=, 52113222a a =+= …………3分 (Ⅱ)由题意,对于任意的正整数n ,121n n b a -=+,所以121n n b a +=+ …………4分 又122221(21)12(1)2n n n n a a a b -+=++=+=所以12n n b b += …………6分 又11112112b a a -=+=+= …………7分所以{}n b 是首项为2,公比为2的等比数列,所以2nn b = …………8分(III )存在. 事实上,对任意的*2,m k N ≥∈,在数列{}n a 中,2,21,22,221....,m m m m m a a a a +++-这连续的2m 项就构成一个等差数列 ……10分我们先来证明:“对任意的*2,n n N ≥∈,1*(0,2),n k k N -∈∈,有12212n n k k a -+=--” 由(II )得1212n n n b a -=+=,所以1221n na -=- . 当k 为奇数时,1121221222112222n n n k k k a a a ----++-+=+=+当k 为偶数时,112222221212n n n k k k a a a---+++=+=+记1,,21,,2kk k k k ⎧⎪⎪=⎨-⎪⎪⎩为偶数为奇数因此要证12212n nk k a -+=--,只需证明21112212n n k k a --+=--,其中2*11(0,2),n k k N -∈∈(这是因为若21112212n n k k a --+=--,则当211-=k k 时,则k 一定是奇数,有1121221222112222n n n k k k a a a ----++-+=+=+=212)22112(221)212(221111k k k n n n --=---+=--+--; 当21kk =时,则k 一定是偶数,有112222221212n n n k k k a a a ---+++=+=+=212)2212(21)212(21111kkk n n n --=--+=--+-- )如此递推,要证21112212n n k k a --+=--, 只要证明32222212n n k k a --+=--,其中11211,,21,,2k k k k k ⎧⎪⎪=⎨-⎪⎪⎩为偶数为奇数,3*22(0,2),n k k N -∈∈如此递推下去, 我们只需证明12222212n n k k a --+=--, 1*22(0,2),n n k k N --∈∈ 即1221115213222a +=--=-=,即352a =,由(I )可得, 所以对*2,n n N ≥∈,1*(0,2),n k k N -∈∈,有12212n n k ka -+=--, 对任意的*2,m m N ≥∈ ,12212m m i i a ++=--,1211212m m i i a ++++=--,其中*),12,0(N i i m ∈-∈, 所以21212m m i i a a +++-=-又1212-=+m m a ,2112112--=++m m a ,所以21212m m a a +-=- 所以2,21,22,221....,m m m m m a a a a +++-这连续的2m项, 是首项为1221m m a +=-,公差为12-的等差数列 . …………13分说明:当12m m >(其中**1122,,m m N m N ≥∈∈)时,因为1222212222222,...,,,-+++m m m m m a a a a构成一个项数为22m 的等差数列,所以从这个数列中任取连续的12m 项,也是一个项数为12m ,公差为12的等差数列.。
北京市高考数学一模试卷(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A.{x|2<x<3} B.{x|x>1} C.{x|1<x<2} D.{x|x>2}2.圆心为(0,1)且与直线y=2相切的圆的方程为()A.(x﹣1)2+y2=1 B.(x+1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=13.执行如图所示的程序框图,输出的x的值为()A.4 B.3 C.2 D.14.若实数a,b满足a>0,b>0,则“a>b”是“a+lna>b+lnb”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为()A.B.C.D.36.在△ABC上,点D满足,则()A.点D不在直线BC上B.点D在BC的延长线上C.点D在线段BC上D.点D在CB的延长线上7.若函数的值域为[﹣1,1],则实数a的取值范围是()A.[1,+∞) B.(﹣∞,﹣1] C.(0,1] D.(﹣1,0)8.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数z=a(1+i)﹣2为纯虚数,则实数a= .10.已知等比数列{a n}中,a2a4=a5,a4=8,则公比q= ,其前4项和S4= .11.若抛物线y2=2px的准线经过双曲线的左焦点,则实数p= .12.若x,y满足则的最大值是.13.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=,a的最小值是.14.阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为,你的理由是.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{a n}满足a1+a2=6,a2+a3=10.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n+a n+1}的前n项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.,b两种车型的用户比例为1:1,根据表格提供的信息,估计4月该地区租用两种车型的用户比例.17.在△ABC中,A=2B.(Ⅰ)求证:a=2bcosB;(Ⅱ)若b=2,c=4,求B的值.18.在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(Ⅰ)求证:PB∥平面FAC;(Ⅱ)求三棱锥P﹣EAD的体积;(Ⅲ)求证:平面EAD⊥平面FAC.19.已知椭圆C:=1(a>b>0)的左、右顶点分别为A,B,且|AB|=4,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点Q(4,0),若点P在直线x=4上,直线BP与椭圆交于另一点M.判断是否存在点P,使得四边形APQM为梯形?若存在,求出点P的坐标;若不存在,说明理由.20.已知函数f(x)=e x﹣x2+ax,曲线y=f(x)在点(0,f(0))处的切线与x 轴平行.(Ⅰ)求a的值;(Ⅱ)若g(x)=e x﹣2x﹣1,求函数g(x)的最小值;(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A.{x|2<x<3} B.{x|x>1} C.{x|1<x<2} D.{x|x>2}【考点】交集及其运算.【分析】解不等式求出集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|1<x<3},集合B={x|x2>4}={x|x<﹣2或x>2},则集合A∩B={x|2<x<3}.故选:A.2.圆心为(0,1)且与直线y=2相切的圆的方程为()A.(x﹣1)2+y2=1 B.(x+1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=1【考点】直线与圆的位置关系.【分析】根据题意设圆方程为x2+(y﹣1)2=r2,由圆心到直线的距离得到半径r,代入即可得到所求圆的方程【解答】解:设圆方程为x2+(y﹣1)2=r2,∵直线y=2与圆相切,∴圆心到直线的距离等于半径r,∴r=1故圆的方程为:x2+(y﹣1)2=1,故选:C3.执行如图所示的程序框图,输出的x的值为()A.4 B.3 C.2 D.1【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量x 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=0,y=5不满足条件=,执行循环体,x=1,y=4不满足条件=,执行循环体,x=2,y=2满足条件=,退出循环,输出x的值为2.故选:C.4.若实数a,b满足a>0,b>0,则“a>b”是“a+lna>b+lnb”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】据a,b的范围结合函数的单调性确定充分条件,还是必要条件即可.【解答】解:设f(x)=x+lnx,显然f(x)在(0,+∞)上单调递增,∵a>b,∴f(a)>f(b),∴a+lna>b+lnb,故充分性成立,∵a+lna>b+lnb”,∴f(a)>f(b),∴a>b,故必要性成立,故“a>b”是“a+lna>b+lnb”的充要条件,故选:C5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为()A.B.C.D.3【考点】由三视图求面积、体积.【分析】将该几何体放入在长方体中,且长、宽、高为2、1、1,该三棱锥中最长棱为长方体的一条对角线,即可得出结论.【解答】解:将该几何体放入在长方体中,且长、宽、高为2、1、1,该三棱锥中最长棱为长方体的一条对角线,长度为=,故选B.6.在△ABC上,点D满足,则()A.点D不在直线BC上B.点D在BC的延长线上C.点D在线段BC上D.点D在CB的延长线上【考点】向量的三角形法则.【分析】据条件,容易得出,可作出图形,并作,并连接AD′,这样便可说明点D和点D′重合,从而得出点D在CB的延长线上.【解答】解:==;如图,作,连接AD′,则:=;∴D′和D重合;∴点D在CB的延长线上.故选D.7.若函数的值域为[﹣1,1],则实数a的取值范围是()A.[1,+∞) B.(﹣∞,﹣1] C.(0,1] D.(﹣1,0)【考点】分段函数的应用.【分析】根据函数f(x)的解析式,讨论x≤a和x>a时,f(x)∈[﹣1,1],即可求出a的取值范围.【解答】解:函数的值域为[﹣1,1],当x≤a时,f(x)=cosx∈[﹣1,1],满足题意;当x>a时,f(x)=∈[﹣1,1],应满足0<≤1,解得x≥1;∴a的取值范围是[1,+∞).故选:A.8.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③【考点】进行简单的合情推理.【分析】根据最优化问题,即可判断出正确答案.【解答】解:因为A、D、E点各有一个工厂相连,B,C,各有两个工厂相连,把工厂看作“人”.可简化为“A,B,C,D,E处分别站着1,2,2,1,1个人(如图),求一点,使所有人走到这一点的距离和最小”.把人尽量靠拢,显然把人聚到B、C最合适,靠拢完的结果变成了B=4,C=3,最好是移动3个人而不要移动4个人.所以车站设在C点,且与各段小公路的长度无关故选C.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数z=a(1+i)﹣2为纯虚数,则实数a= 2 .【考点】复数代数形式的乘除运算.【分析】利用纯虚数的定义即可得出.【解答】解:复数z=a(1+i)﹣2=a﹣2+ai为纯虚数,∴a﹣2=0,a≠0,则实数a=2故答案为:2.10.已知等比数列{a n}中,a2a4=a5,a4=8,则公比q= 2 ,其前4项和S4= 15 .【考点】等比数列的前n项和;等比数列的通项公式.【分析】设等比数列{a n}的公比为q,由a2a4=a5,a4=8,可得q2=a2q3,=8,解得a2,q,利用求和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a2a4=a5,a4=8,∴q2=a2q3,=8,解得a2=q=2.∴a1=1.其前4项和S4==15.故答案为:2,15.11.若抛物线y2=2px的准线经过双曲线的左焦点,则实数p= 4 .【考点】抛物线的简单性质.【分析】求出抛物线的准线x=﹣经过双曲线的右焦点(﹣2,0),即可求出p.【解答】解:因为抛物线y2=2px的准线经过双曲线的左焦点,∴p>0,所以抛物线的准线为x=﹣,依题意,直线x=﹣经过双曲线的右焦点(﹣2,0),所以p=4故答案为:4.12.若x,y满足则的最大值是.【考点】简单线性规划.【分析】根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.【解答】解:满足约束条件的可行域如下图中阴影部分所示:则的几何意义表示平面区域内的点与点(0,0)的斜率的最大值,由解得A(1,)显然过A时,斜率最大,最大值是,故答案为:.13.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω= 2 ,a的最小值是.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】首先由图象最高点横坐标与零点的距离求函数的周期,从而由周期公式求ω,然后由图象过的已知点求出a.【解答】解:由已知函数图象得到π,所以T=π,所以=2,又y=f(x+a))=sinω(x+a)且(,1)在图象上,所以sin2(+a)=1,所以+2a=2kπ,k∈Z,所以k取0时a的最小值为;故答案为:2;.14.阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为①,你的理由是数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.【考点】收集数据的方法.【分析】根据题意,利用数据的收集,分类,归纳,分析可得结论【解答】解:选①,理由为:数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.故答案为:①;数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{a n}满足a1+a2=6,a2+a3=10.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n+a n+1}的前n项和.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列的通项公式即可得出.(II)利用等差数列的通项公式与求和公式即可得出.【解答】解:(Ⅰ)设数列{a n}的公差为d,因为a1+a2=6,a2+a3=10,所以a3﹣a1=4,所以2d=4,d=2.又a1+a1+d=6,所以a1=2,所以a n=a1+(n﹣1)d=2n.(Ⅱ)记b n=a n+a n+1,所以b n=2n+2(n+1)=4n+2,又b n+1﹣b n=4(n+1)+2﹣4n﹣2=4,所以{b n}是首项为6,公差为4的等差数列,其前n项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.,b两种车型的用户比例为1:1,根据表格提供的信息,估计4月该地区租用两种车型的用户比例.【考点】列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)依题意租到a型车的4人为A1,A2,A3,A4;租到b型车的3人为B1,B2,B3;设事件A为“7人中抽到2人,至少有一人租到a型车”,则事件为“7人中抽到2人都租到b型车”.利用列举法能求出抽取的2人中至少有一人在市场体验过程中租到a型车的概率.(Ⅱ)依题意,市场4月份租用a型车的比例为50%60%+50%50%=55%,租用b 型车的比例为50%40%+50%50%=45%,由此能同市场4月租用a,b型车的用户比例.【解答】解:(Ⅰ)依题意租到a型车的4人为A1,A2,A3,A4;租到b型车的3人为B1,B2,B3;设事件A为“7人中抽到2人,至少有一人租到a型车”,则事件为“7人中抽到2人都租到b型车”.如下列表格所示:从7人中抽出2人共有21种情况,事件发生共有3种情况,所以事件A概率.(Ⅱ)依题意,市场4月份租用a型车的比例为50%60%+50%50%=55%,租用b型车的比例为50%40%+50%50%=45%,所以市场4月租用a,b型车的用户比例为.17.在△ABC中,A=2B.(Ⅰ)求证:a=2bcosB;(Ⅱ)若b=2,c=4,求B的值.【考点】余弦定理的应用.【分析】(Ⅰ)由正弦定理,得,即可证明:a=2bcosB;(Ⅱ)若b=2,c=4,利用余弦定理,即可求B的值.【解答】(Ⅰ)证明:因为A=2B,所以由正弦定理,得,得,所以a=2bcosB.(Ⅱ)解:由余弦定理,a2=b2+c2﹣2bccosA,因为b=2,c=4,A=2B,所以16cos2B=4+16﹣16cos2B,所以,因为A+B=2B+B<π,所以,所以,所以.18.在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(Ⅰ)求证:PB∥平面FAC;(Ⅱ)求三棱锥P﹣EAD的体积;(Ⅲ)求证:平面EAD⊥平面FAC.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)连接BD,与AC交于点O,连接OF,推导出OF∥PB,由此能证明PB∥平面FAC.(Ⅱ)由PA⊥平面ABCD,知PA为棱锥P﹣ABD的高.由S△PAE=S△ABE,知,由此能求出结果.(Ⅲ)推导出AD⊥PB,AE⊥PB,从而PB⊥平面EAD,进而OF⊥平面EAD,由此能证明平面EAD⊥平面FAC.【解答】证明:(Ⅰ)连接BD,与AC交于点O,连接OF,在△PBD中,O,F分别是BD,PD的中点,所以OF∥PB,又因为OF⊂平面FAC,PB⊄平面FAC,所以PB∥平面FAC.解:(Ⅱ)因为PA⊥平面ABCD,所以PA为棱锥P﹣ABD的高.因为PA=AB=2,底面ABCD是正方形,所以=,因为E为PB中点,所以S△PAE=S△ABE,所以.证明:(Ⅲ)因为AD⊥平面PAB,PB⊂平面PAB,所以AD⊥PB,在等腰直角△PAB中,AE⊥PB,又AE∩AD=A,AE⊂平面EAD,AD⊂平面EAD,所以PB⊥平面EAD,又OF∥PB,所以OF⊥平面EAD,又OF⊂平面FAC,所以平面EAD⊥平面FAC.19.已知椭圆C:=1(a>b>0)的左、右顶点分别为A,B,且|AB|=4,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点Q(4,0),若点P在直线x=4上,直线BP与椭圆交于另一点M.判断是否存在点P,使得四边形APQM为梯形?若存在,求出点P的坐标;若不存在,说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由|AB|=4,得a=2.又,b2=a2﹣c2,联立解出即可得出.(Ⅱ)假设存在点P,使得四边形APQM为梯形.由题意知,显然AM,PQ不平行,可得AP∥MQ,,.设点M(x1,y1),P(4,t),过点M作MH⊥AB于H,可得,解得x1,代入椭圆方程,即可得出.【解答】解:(Ⅰ)由|AB|=4,得a=2.又因为,所以c=1,所以b2=a2﹣c2=3,所以椭圆C的方程为.(Ⅱ)假设存在点P,使得四边形APQM为梯形.由题意知,显然AM,PQ不平行,所以AP∥MQ,所以,所以.设点M(x1,y1),P(4,t),过点M作MH⊥AB于H,则有,所以|BH|=1,所以H(1,0),所以x1=1,代入椭圆方程,求得,所以P(4,±3).20.已知函数f(x)=e x﹣x2+ax,曲线y=f(x)在点(0,f(0))处的切线与x 轴平行.(Ⅰ)求a的值;(Ⅱ)若g(x)=e x﹣2x﹣1,求函数g(x)的最小值;(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求得f(x)的导数,可得切线的斜率,由条件可得a的方程,解方程可得a的值;(Ⅱ)求出g(x)的导数,可得单调区间和极值,且为最值;(Ⅲ)显然g(x)=f'(x),且g(0)=0,运用零点存在定理可得g(x)的零点范围,可设g(x)=f'(x)存在两个零点,分别为0,x0.讨论x<0时,0<x<x0时,x>x0时,g(x)的符号,可得f(x)的极值,进而得到f(x)在(﹣∞,0)上单调递增,即可得证.【解答】解:(Ⅰ)函数f(x)=e x﹣x2+ax的导数为:f′(x)=e x﹣2x+a,由已知可得f′(0)=0,所以1+a=0,得a=﹣1.(Ⅱ)g'(x)=e x﹣2,令g'(x)=0,得x=ln2,所以x,g'(x),g(x)的变化情况如表所示:.(Ⅲ)证明:显然g(x)=f'(x),且g(0)=0,由(Ⅱ)知,g(x)在(﹣∞,ln2)上单调递减,在(ln2,+∞)上单调递增.又g(ln2)<0,g(2)=e2﹣5>0,由零点存在性定理,存在唯一实数x0∈(ln2,2),满足g(x0)=0,即,,综上,g(x)=f'(x)存在两个零点,分别为0,x0.所以x<0时,g(x)>0,即f'(x)>0,f(x)在(﹣∞,0)上单调递增;0<x<x0时,g(x)<0,即f'(x)<0,f(x)在(0,x0)上单调递减;x>x0时,g(x)>0,即f'(x)>0,f(x)在(x0,+∞)上单调递增,所以f(0)是极大值,f(x0)是极小值,,因为g(1)=e﹣3<0,,所以,所以f(x0)>0,因此x≥0时,f(x)>0.因为f(0)=1且f(x)在(﹣∞,0)上单调递增,所以一定存在c<0满足f(c)>0,所以存在c<0,当x>c时,f(x)>0.。
高考数学一模试卷(文科)一、选择题(本大题共8小题,共40.0分)1.已知集合P={x|0≤x≤2},且M⊆P,则M可以是()A. {0,1}B. {1,3}C. {-1,1}D. {0,5}2.若x0是函数的零点,则()A. -1<x0<0B. 0<x0<1C. 1<x0<2D. 2<x0<43.若角α的终边在第二象限,则下列三角函数值中大于零的是()A. B. C. sin(π+α) D. cos(π+α)4.已知a<b,则下列结论中正确的是()A. ∀c<0,a>b+cB. ∀c<0,a<b+cC. ∃c>0,a>b+cD. ∃c>0,a<b+c5.抛物线W:y2=4x的焦点为F,点A在抛物线形上,且点A到直线x=-3的距离是线段AF长度的2倍,则线段AF的长度为()A. 1B. 2C. 3D. 46.某四棱锥的三视图如图所示,其中a+b=1,且a>b.若四个侧面的面积中最小的为,则a的值为()A.B.C.D.7.设{a n}是公比为q的等比数列,且a1>1,则“a n>1对任意n∈N*”成立”是“q≥1”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件8.某校实行选科走班制度,张毅同学的选择是地理、生物、政治这三科,且生物在B层班级.该校周一上午选科走班的课程安排如表所示,张毅选择三个科目的课各上4567二、填空题(本大题共6小题,共30.0分)9.已知i是虚数单位,若(1-i)(a+i)=2,a∈R,则a=______.10.在△ABC中,,则c=______,S△ABC=______.11.执行如图所示的程序框图,则输出的T值为______.12.已知向量=(1,-2),同时满足条件①∥,②的一个向量的坐标为______.13.已知椭圆和双曲线.经过C1的左顶点A和上顶点B的直线与C2的渐近线在第一象限的交点为P,且|AB|=|BP|,则椭圆C1的离心率e1=______,双曲线C2的离心率e2=______.14.设关于x,y的不等式组表示的平面区域为Ω.记区域Ω上的点与点A(0,-1)距离的最小值为d(k),则(I)当k=1时,d(1)=______;(Ⅱ)若d(k)≥2,则k的取值范围是______.三、解答题(本大题共6小题,共80.0分)15.已知等差数列{a n}的公差d=2,且a2+a5=2,{a n}的前n项和为S n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若S m,a9,a15成等比数列,求m的值.16.已知函数的图象经过点(O,l),部分图象如图所示.(Ⅰ)求a的值;(Ⅱ)求图中x0的值,并直接写出函数f(x)的单调递增区间.17.如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=CC1=2,点D,E,F分别为棱A1C1,B1C1,BB1的中点.(Ⅰ)求证:AB∥平面DEF;(Ⅱ)求证:平面ACB1⊥平面DEF;(Ⅲ)求三棱锥E-ACB1的体积.18.据《人民网》报道,“美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的420/0来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷值最大和最小的地区;(Ⅱ)在这十个地区中,任选一个地区,求该地区人工造林面积与造林总面积的比值不足50%的概率是多少?(Ⅲ)从上表新封山育林面积超过十万公顷的地区中,任选两个地区,求至少有一个地区退化林修复面积超过五万公顷的概率.19.已知函数.(Ⅰ)当a=6时,求函数f(x)在(0,+∞)上的单调区间;(Ⅱ)求证:当a<0时,函数f(x)既有极大值又有极小值.20.已知椭圆的左顶点为A(-2,0),两个焦点与短轴一个顶点构成等腰直角三角形,过点P(1,0)且与x轴不重合的直线l与椭圆交于M,N不同的两点.(Ⅰ)求椭圆P的方程;(Ⅱ)当AM与MN垂直时,求AM的长;(Ⅲ)若过点P且平行于AM的直线交直线于点Q,求证:直线NQ恒过定点.答案和解析1.【答案】A【解析】解:A.0∈M,1∈M,则M⊆P成立,B.3∉M,则M⊆P不成立,C.-1∉M,则M⊆P不成立,D.5∉M,则M⊆P不成立,故选:A.根据集合子集的定义进行判断即可.本题主要考查集合关系的判断,根据元素关系结合集合子集的子集的定义进行判断是解决本题的关键.2.【答案】C【解析】【分析】利用函数的连续性,结合零点判定定理推出结果即可.本题考查函数的零点判定定理的应用,是基本知识的考查.【解答】解:,函数在x>0时,是增函数,可得:f(1)=-1<0,f(2)=1-0,所以f(1)f(2)<0,∴函数的零点所在区间为:(1,2).故选:C.3.【答案】D【解析】解:角α的终边在第二象限,则sinα>0,cosα<0,对于A,=cosα<0,错误;对于B,cos()=-sinα<0,错误;对于C,sin(π+α)=--sinα<0,错误;对于D,cos(π+α)=-cosα>0,正确;故选:D.由角α的终边在第二象限,则sinα>0,cosα<0,利用诱导公式化简各个选项即可得解.本题主要考查了诱导公式的简单应用,属于基础题.4.【答案】D【解析】解:A若a=1,b=2,c=-1,满足a<b,但a>b+c不成立;B,若a=9.5,b=10,c=-1,a<b+c不成立;C,因加a<b,c>0,所以,a<b+c恒成立,故C错误,D.∃c>0,a<b+c成立,故选:D.根据不等式的关系,结合特称命题和全称命题的性质分别进行判断即可.本题主要考查特称命题和特称命题的判断,结合不等式的性质是解决本题的关键.5.【答案】B【解析】解:如图,由抛物线方程y2=4x,得焦点坐标为F(1,0),直线方程为x=-1,设A(x0,y0),则点A到直线x=-3的距离是x0+3,|AF|=x0+1,由题意可得:x0+3=2(x0+1),得x0=1.∴线段AF的长度为x0+1=1+1=2.故选:B.由题意画出图形,设A(x0,y0),则点A到直线x=-3的距离是x0+3,|AF|=x0+1,由题意可得:x0+3=2(x0+1),求得x0,再由抛物线焦半径公式求解.本题考查抛物线的简单性质,考查抛物线定义的应用,是中档题.6.【答案】B【解析】解:几何体的直观图如图:是长方体的一部分,P-ABCD,侧面积S PAB=,,S PCD=,S PCD=,四个侧面的面积中最小的为,可得,a+b=1,且a>b,解得a=,故选:B.画出几何体的直观图,利用三视图的数据求解侧面积,转化求解a即可.本题考查三视图求解几何体的侧面积,判断几何体的形状是解题的关键.7.【答案】C【解析】解:在等比数列中,若a n>1,即a n=a1q n-1>1,当q=1时,满足条件,当q≠1时,当n-1>0恒成立,则q>1,综上q≥1成立,反之当q≥1是,则a n=a1q n-1>1成立,即“a n>1对任意n∈N*”成立”是“q≥1”的充要条件,故选:C.根据等比数列的通项公式,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合等比数列的通项公式是解决本题的关键.8.【答案】B【解析】解:由于生物在B层,只有第2,3节有,故分2两类,若生物选第2节,地理有2种选法,其他任意选即可,故有2A22=4种,若生物选第3节,则地理只能选第一节,政治只能选第4节,自习选在第二节,故有1种,根据分类计数原理可得4+1=5种,故选:B.根据分类计数原理即可求出.本题考查了分类计数原理,关键是分类,属于基础题.9.【答案】1【解析】解:∵(1-i)(a+i)=(a+1)+(1-a)i=2,∴,即a=1.故答案为:1.利用复数代数形式的乘除运算化简,复数相等的条件列式求解a值.本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.10.【答案】6【解析】解:∵,∴由余弦定理可得:c2=a2+b2-2ab cos C=42+52-2×4×5×=36,解得:c=6,∴sin C==,∴S△ABC=ab sin C==.故答案为:.由已知利用余弦定理可求c的值,根据同角三角函数基本关系式可求sin C的值,利用三角形的面积公式即可计算得解.本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了转化思想,属于基础题.11.【答案】48【解析】解:T=2,x=2+2=4,T>40否,T=2×4=8,x=4+2=6,T>40否,T=6×8=48,x=6+2=8,T>40是,故输出T=48,故答案为:48根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.12.【答案】(-1,2)(答案不唯一)【解析】解:设=(x,y),由可得:y=-2x,=(1+x,-2+y),由,可得<,把y=-2x代入,可得(x+1)2+(-2x-2)2<5,化简可得x2+2x<5,解得:-2<x<0,取得x=-1,可得y=2,所以=(-1,2).故答案为:(-1,2).利用向量共线列出方程,利用向量的模转化求解x的值,推出结果.本题考查向量共线以及向量的坐标运算,是基本知识的考查.13.【答案】【解析】解:椭圆中a=2,b=1,所以c=,离心率e1=,A(-2,0),B(0,1),直线AB的方程为:y=x+1因为|AB|=|BP|,所以B为AP的中点,设P(x,y),则,解得,即P(2,2),双曲线的渐近方程为y=x,点P在渐近线上,所以2=,得m=1,双曲线中a=1,b=1,c=,即双曲线的离心率e2=,故答案为:,.根据椭圆标准方程求出椭圆的离心率,根据条件确定B是AP的中点,求出P的坐标,代入双曲线求出m的值即可求双曲线的离心率.本题主要考查双曲线离心率的计算,结合椭圆离心率和双曲线离心率的公式以及双曲线渐近线的性质是解决本题的关键.14.【答案】2 [0,+∞)【解析】解:(I)当k=1时,约束条件为,画出约束条件表示的平面区域,如图1所示,则区域Ω内的点与点A(0,-1)距离的最小值为|AB|=1-(-1)=2;(Ⅱ)由题意知,y=kx+1是过点(0,1)的直线,由图形知,若d(k)≥2,则k的取值范围是[0,+∞).故答案为:(Ⅰ)2,(Ⅱ)[0,+∞).(I)k=1时画出约束条件表示的平面区域,结合图形找出最优解,计算目标函数的最小值即可;(Ⅱ)由题意知y=kx+1是过点(0,1)的直线,结合题意画出图形,利用图形求出k 的取值范围.本题考查了线性规划的简单应用问题,也考查了数形结合的应用问题,是基础题.15.【答案】解:(Ⅰ)因为a5+a2=2,d=2所以2a1+5d=2a1+10=2,所以a1=-4所以a n=2n-6(Ⅱ)又a9=12,a15=24因为S m,a9,a15是等比数列,所以所以m2-5m-6=0得m=6,m=-1因为m∈N*,所以m=6【解析】本题考查的等差数列以及等比数列的应用,考查计算能力.(Ⅰ)利用条件求出a1,即可以得到数列通项公式;(Ⅱ)利用S m,a9,a15成等比数列,列出方程,即可求解m的值.16.【答案】解:(Ⅰ)根据函数的图象经过点(O,l),可得,所以,a=-1.(Ⅱ)∵=(2sin x+2cos x)cos x-1=2sin x cosx+2cos2x-1=sin2x+cos2x=,由图象得,所以,,f(x)=sin(2x+).令2kπ-≤2x+≤2kπ+,求得kπ-≤x≤kπ+,可得函数f(x)的单调增区间为,k∈Z.【解析】(Ⅰ)由题意根据图象经过点(O,l),求得a的值.(Ⅱ)根据五点法作图求出图中x0的值,再根据正弦函数的单调性写出函数f(x)的单调递增区间本题主要考查三角恒等变换,正弦函数的图象,正弦函数的单调性,属于中档题.17.【答案】解:(I)证明:因为三棱柱ABC-A1B1C1中,A1B1∥AB,又因为D,E分别为A1C1,B1C1的中点,所以DE∥A1B1,于是DE∥AB,又AB⊄平面DEF,DE⊂平面DEF,所以AB∥平面DEF.(II)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,AC⊂平面ABC,BC⊂平面ABC,∴CC1⊥AC,CC1⊥BC,又AC⊥BC,BC∩CC1=C,BC⊂平面BCC1B1,CC1⊂平面BCC1B1,∴AC⊥平面BCC1B1,又EF⊂平面BCC1B1,∴AC⊥EF,又BC=CC1=2,CC1⊥BC,∴侧面BCC1B1为正方形,故BC1⊥CB1,而E,F分别为B1C1,BB1的中点,连结BC1,∴EF‖BC1,∴EF⊥CB1,又AC∩CB1=C,AC⊂平面ACB1,CB1⊂平面ACB1,∴EF⊥平面ACB1,又EF⊂平面DEF,∴平面ACB1⊥平面DEF.(Ⅲ)S===1,∴.【解析】(I)根据中位线定理和平行公理可得AB∥DE,故而AB∥平面DEF;(II)证明EF⊥CB1,EF⊥AC得出EF⊥平面AB1C,故而平面ACB1⊥平面DEF;(III)代入棱锥的体积公式计算.本题考查了线面平行的判定,面面垂直的判定,棱锥的体积计算,属于中档题.18.【答案】解:(Ⅰ)人工造林面积与造林总面积比最大的地区为甘肃省,人工造林面积占造林总面积比最小的地区为青海省(Ⅱ)设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比比不足50%为事件A在十个地区中,有3个地区(重庆、新疆、青海)人工造林面积占总面积比不足50%,则(Ⅲ)设至少有一个地区退化林修复面积超过五万公顷为事件B新封山育林面积超过十万公顷有4个地区:内蒙、河北、新疆、青海,分别设为a1,a2,a3,a4,其中退化林修复面积超过五万公顷有2个地区:内蒙、河北即a1,a2从4个地区中任取2个地区共有6种情况,(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4)其中至少有一个地区退化林修复面积超过五万公顷共有5种情况,(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4)则.【解析】(Ⅰ)结合表格数据进行判断即可(Ⅱ)根据古典概型的概率公式进行计算即可(Ⅲ)利用列举法结合古典概型的概率公式进行求解即可本题主要考查概率的计算,结合古典概型的概率公式利用列举法是解决本题的关键.19.【答案】解:(Ⅰ)当a=6,且x>0时,,所以f'(x)=x2-5x+6=(x-2)(x-3),令f'(x)=0,得x=2,或x=3;x f'x f x所以()在(,)上的单调递增区间是(,),(,),单调递减区间是(2,3);(Ⅱ)当a<0时,若x<0,则,所以f'(x)=x2-5x-a=x(x-5)-a;因为x<0,a<0,所以f'(x)>0;若x>0,则,所以f'(x)=x2-5x+a;令f'(x)=0,△=25-4a>0,所以有两个不相等的实根x1,x2,且x1x2<0;不妨设x>0,所以当x变化时,f'(x),f(x)的变化情况如下表:因为函数f(x)图象是连续不断的,所以当a<0时,f(x)即存在极大值又有极小值.【解析】(Ⅰ)求a=6且x>0时f(x)的导数,利用导数判断f(x)的单调性,从而求得f(x)在(0,+∞)上的单调区间;(Ⅱ)由a<0时,讨论x<0和x>0时,利用导数研究函数f(x)的单调性,从而判断函数f(x)是否存在极大与极小值.本题考查了利用导数研究函数的单调性与极值问题,也考查了分类讨论思想与方程根的应用问题,是中档题.20.【答案】解:(Ⅰ)因为A(-2,0),所以a=2因为两个焦点与短轴一个顶点构成等腰直角三角形,所以b=c,又b2+c2=a2,所以,所以椭圆方程为(Ⅱ)设M(x m,y m),因为AM与MN垂直,所以点M在以AP为直径的圆上,又以AP为直径的圆的圆心为,半径为,方程为,,(舍)所以(Ⅲ)直线NQ恒过定点(2,0)设M(x1,y1),N(x2,y2),由题意,设直线MN的方程为x=my+1,由得(m2+2)y2+2my-3=0,显然,△>0,则,,因为直线PQ与AM平行,所以,则PQ的直线方程为,令,则,即,,直线NQ的方程为,=令y=0,得因为2my1y2=3(y1+y2),故,所以直线NQ恒过定点(2,0).【解析】(Ⅰ)由已知可得a=2,b=c,又b2+c2=a2,求得,即可得所以椭圆方程.(Ⅱ)设M(x m,y m),可得,解得,可得(Ⅲ)设M(x1,y1),N(x2,y2),由题意,设直线MN的方程为x=my+1,由得(m2+2)y2+2my-3=0,,,求得,,直线NQ的方程为,令y=0,得=2,即可.本题考查圆锥曲线、圆和直线的位置关系和综合应用,具有一定的难度,解题的关键是直线与椭圆的联立,确定直线NQ的方程.。
2023年北京市海淀区高考数学一模试卷1. 已知集合,,则( )A. B. C. D.2. 若,其中i是虚数单位,则( )A. B. 1 C. D. 33. 在等差数列中,,,则( )A. 9B. 11C. 13D. 154. 已知抛物线的焦点为F,点P在该抛物线上,且P的横坐标为4,则( )A. 2B. 3C. 4D. 55. 若,则( )A. B. 1 C. 15 D. 166. 已知直线与圆O:交于A,B两点,且为等边三角形,则m的值为( )A. B. C. D.7. 在中,,,的平分线交BC于点若则( )A. B. C. 2 D. 38. 已知二次函数,对任意的,有,则的图象可能是( )A. B.C. D.9.已知等比数列的公比为q,且,记……,则“且”是“为递增数列”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10. 刘老师沿着某公园的环形跑道周长大于按逆时针方向跑步,他从起点出发,并用软件记录了运动轨迹,他每跑1km,软件会在运动轨迹上标注出相应的里程数.已知刘老师共跑了11km,恰好回到起点,前5km的记录数据如图所示,则刘老师总共跑的圈数为( )A. 7B. 8C. 9D. 1011. 不等式的解集是______.12. 已知双曲线的渐近线方程为,则它的离心率为______ .13. 已知函数若在区间上单调递减,则的一个取值可以为______ .14. 设函数①当时,______ ;②若恰有2个零点,则a的取值范围是______ .15. 在中,,,D是边AC的中点,E是边AB上的动点不与A,B重合,过点E作AC的平行线交BC于点F,将沿EF折起,点B 折起后的位置记为点P,得到四棱锥,如图所示,给出下列四个结论:①平面PEF;②不可能为等腰三角形;③存在点E,P,使得;④当四棱锥的体积最大时,其中所有正确结论的序号是______ .16. 如图,直三棱柱中,,,,D是的中点.证明:平面BCD;求直线CD与平面所成角的正弦值.17. 在中,求;若的面积为,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求a的值.条件①:;条件②:;条件③:注:如果选择的条件不符合要求,第问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18. 网购生鲜蔬菜成为很多家庭日常消费的新选择.某小区物业对本小区三月份参与网购生鲜蔬菜的家庭的网购次数进行调查,从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取10户,分别记为4组和8组,这20户家庭三月份网购生鲜蔬菜的次数如图:假设用频率估计概率,且各户网购生鲜蔬菜的情况互不影响.从一单元参与网购生鲜蔬菜的家庭中随机抽取1户,估计该户三月份网购生鲜蔬菜次数大于20的概率;从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取1户,记这两户中三月份网购生鲜蔬菜次数大于20的户数为X,估计X的数学期望;从A组和B组中分别随机抽取2户家庭,记为A组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,为B组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,比较方差与的大小结论不要求证明19.已知椭圆的左、右顶点分别为,,上、下顶点分别为,,,四边形的周长为求椭圆E的方程;设斜率为k的直线l与x轴交于点P,与椭圆E交于不同的两点M,N,点M关于y轴的对称点为,直线与y轴交于点Q,若的面积为2,求k的值.20. 已知函数,当时,求曲线在点处的切线方程;求的单调区间;若存在,,使得,求a的取值范围.21. 已知数列给出两个性质:①对于中任意两项,在中都存在一项,使得;②对于中任意连续三项,,,均有分别判断一下两个数列是否满足性质①,并说明理由;有穷数列:;无穷数列:…若有穷数列满足性质①和性质②,且各项互不相等,求项数m的最大值;若数列满足性质①和性质②,且,,,求的通项公式.答案和解析1.【答案】A【解析】解:集合,,则故选:根据交集定义,找出两个集合的公共元素即可.本题考查集合的运算,属于基础题.2.【答案】B【解析】解:,则,,故选:根据复数相等,可得a,b的取值.本题考查复数的相等,属于基础题.3.【答案】C【解析】解:在等差数列中,,,,解得,,则故选:利用等差数列通项公式列方程组,求出首项和公差,由此能求出结果.本题考查等差数列的性质等基础知识,考查运算求解能力,是基础题.4.【答案】D【解析】解:抛物线方程为,,又点P在该抛物线上,且P的横坐标为4,故选:根据抛物线的几何性质,即可求解.本题考查抛物线的几何性质,属基础题.5.【答案】C【解析】解:设,则故选:设,再根据赋值法,即可求解.本题考查赋值法的应用,属基础题.6.【答案】D【解析】解:由题意,圆心到直线的距离为,,,故选:确定圆心到直线的距离为,利用点到直线的距离公式,建立方程,即可求出实数m的值.本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属基础题.7.【答案】B【解析】解:设,因为,,所以,又AD是的平分线,所以,,,又,所以,,所以故选:根据角平分线定理可得,利用三角形法则先将表示出来,再利用向量相等可求出,本题考查向量的表示,属于中档题.8.【答案】A【解析】解:二次函数,对任意的,有,令得,,即,故CD都不可能,对于B,二次函数的对称轴方程为,由图象可知,设的图象与x轴的两个交点为,,且,则,所以,所以,当时,,两者相矛盾,故B不可能.故选:由题意可得,所以CD都不可能,对于B,由图象可知,与时,相矛盾,所以B不可能.本题主要考查了二次函数的图象和性质,属于基础题.9.【答案】B【解析】解:①当,时,则,,充分性不成立,②若为递增数列,则,则,,当,时,则,则可能成立,当,时,则,则可能成立,当,时,则,则可能成立,当,时,则,则恒成立,且是为递增数列的必要不充分条件.故选:利用举实例判断充分性,利用等比数列的通项公式、充要条件的定义判定必要性.本题考查了等比数列的通项公式、充要条件的判定,考查了推理能力与计算能力,属于中档题.10.【答案】B【解析】解:设公园的环形道的周长为t,刘老师总共跑的圈数为x,,则由题意,所以,所以,因为,所以,又,所以,即刘老师总共跑的圈数为故选:利用环形道的周长与里程数的关系建立不等关系求出周长的范围,再结合跑回原点的长度建立方程,即可求解.本题考查不等关系,考查不等关系在实际中的应用,属于中档题.11.【答案】或【解析】解:不等式即为或,解得或则解集为或故答案为:或不等式即为或,由一次不等式的解法,即可得到解集.本题考查分式不等式的解法,可以运用符号法则或化为整式不等式,注意等价变形,属于基础题.12.【答案】2【解析】解:由题意,双曲线的渐近线方程为,故答案为:2利用双曲线的渐近线方程为,可得,结合离心率公式,即可求得结论.本题考查双曲线的几何性质,考查学生的计算能力,属于基础题.13.【答案】答案不唯一【解析】解:令,,可得,,的单调减区间为,,又在区间上单调递减,,,,,,,又,,可取故答案为:答案不唯一先求出在R上的单调减区间,再根据题意建立不等式组,即可求解.本题考查三角函数的单调性,不等式思想,属中档题.14.【答案】【解析】解:①当时,,;②令,得或,又,当,即时,,此时恰有2个零点,,;当时,易知恰有2个零点,1,;当,即时,要使恰有2个零点,则,,综合可得a的取值范围是故答案为:①1;②①代值计算,即可求解;②分类讨论,根据二次函数的性质,对数函数的性质,不等式思想,即可求解.本题考查函数值的求解,二次函数的性质,对数函数的性质,分类讨论,不等式思想,属中档题.15.【答案】①③【解析】解:①因为,平面PEF,平面PEF,所以平面PEF,故①正确;②因为是等腰直角三角形,所以也是等腰直角三角形,则,因为,,所以,且,当时,≌,所以,此时是等腰三角形,故②错误;③因为,且,,且平面PCF,平面PCF,所以平面PCF,平面ABC,所以平面平面PCF,且平面平面,如图,过点P作,连结DM,则平面ABC,平面ABC,所以,若,,平面PDM,平面PDM,所以平面PDM,平面PDM,所以,如图,,延长MD,交AB于点N,则和都是等腰直角三角形,则,点N到直线AC的距离等于,这样在翻折过程中,若能构成四棱锥,则,设,则,则,则存在点E,P,使得,故③正确:④当底面ACFE的面积一定时,平面平面PEF时,即平面ABC时,四棱锥的体积最大,设,,,,,得舍或,当,,函数单调递增,当,,函数单调递减,所以当时,函数取得最大值,此时,故④错误;故答案为:①③根据线面平行的判断定理,判断①;证明≌,即可判断②;利用垂直关系转化,结合反证法,即可判断③;表示四棱锥的体积后,利用导数计算最值,即可判断④.本题考查空间中线面的位置关系,利用导数求最值,属于难题.16.【答案】证明:在直三棱柱中,平面ABC,且,点C为坐标原点,CA、CB、所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系,点、、、,、、,所以,,,则,,因为,CB、平面BCD,因此,平面解:设平面的法向量为,,则,取,可得,所以,,,因此,CD与平面所成角的正弦值为【解析】以点C为坐标原点,CA、CB、所在直线分别为x、y、z轴建立空间直角坐标系,利用空间向量法证明平面BCD;利用空间向量法可求得直线CD与平面所成角的正弦值.本题考查空间向量的应用,属于中档题.17.【答案】解:因为,由正弦定理得,,又,所以,得到,又,所以,又,所以,得到,所以;选条件①:;由知,,根据正弦定理知,,即,所以角C有锐角或钝角两种情况,存在,但不唯一,故不选此条件.选条件②:;因为,所以,又,得到,代入,得到,解得,所以,由余弦定理得,,所以选条件③:;因为,所以,由,得到,又,由知,所以,又由正弦定理得,得到,代入,得到,解得,所以,由余弦定理得,,所以【解析】利用正弦定理:边转化角,再利用正弦的二倍角公式,即可求出结果;条件①,可得角C是锐角或钝角,不满足题设中的条件,故不选①;条件②,利用条件建立,边b与c的方程组,求出b与c,再利用余弦定理,即可求出结果;条件③,利用正弦定理,先把角转化成边,再结合条件建立,边b与c的方程组,求出b与c,利用余弦定理,即可求出结果.本题考查正余弦定理,属于中档题.18.【答案】解:设C事件为“该户三月份网购生鲜蔬菜次数大于20“,又在A组10户中超过20次的有3户,由样本估计总体可得所求概率为;由得:从一单元参与网购生鲜蔬菜的家庭中随机抽取1户,则该户网购生鲜蔬菜次数超过20次的概率为,同理:从二单元参与网购生鲜蔬菜的家庭中随机抽取1户,则该户网购生鲜蔬菜次数超过20次的概率为,,1,2,又,,,;根据题意可得,的取值可能为0,1,2,且得,服从超几何分布,又,,,,,,,,,,【解析】根据古典概型的概率公式,即可求解;根据题意可知,1,2,再分别求出对应的概率,从而可求解;根据方差公式计算,即可求解.本题考查根据样本估计总体,古典概型的概率公式,离散型随机变量的期望的求解,超几何分布列的期望与方差的求解,属中档题.19.【答案】解:依题意可得,解得,椭圆E的方程为;依题意,可设直线l的方程为,,,联立方程,可得,,即,,,在直线l的方程中,令,得,得,依题意得,得直线的方程为,令,得,,,,解得的值为【解析】依题意可得,求解即可;可设直线l的方程为,联立方程组可得,,求得的方程,进而可得,计算可得结论.本题考查椭圆方程的求法,考查直线与椭圆的位置关系,属中档题.20.【答案】解:当时,,则,,所以曲线在点处的切线的斜率为,所以曲线在点处的切线的方程为,当时,恒成立,则在R上单调递减,当时,令得,所以在上,单调递减,在上,单调递增,综上所述,当时,在R上单调递减,当时,在上单调递减,在上单调递增.在区间上的最大值为,最小值为,所以存在,使得成立,即或,当,,所以存在,使得成立,只需,由可知在区间上单调或先单调递减后递增,所以为与中的较大者,所以只需或,即可满足题意,即或,解得或,综上所述,a的取值范围为【解析】当时,,计算,由导数的几何意义可得曲线在点处的切线的斜率为,进而可得答案.求导得,分两种情况:当时,当时,分析的符号,的单调性.在区间上的最大值为,最小值为,存在,使得成立,即或,由于当,,只需,由可知在区间上单调或先单调递减后递增,为与中的较大者,只需或,即可得出答案.本题考查导数的综合应用,解题中需要理清思路,属于中档题.21.【答案】解:有穷数列:不满足性质①.令,则不是数列中的项,有穷数列不满足性质①;无穷数列:…满足性质①.对于任意的,,有,,令即可,无穷数列满足性质①.对于有穷数列,记其非零项中绝对值最大的一项为,绝对值最小的一项为,故令时,存在一项,即,再令时,存在一项,即,又,数列所有非零项的绝对值均为1,又数列的各项均不相等,其最多有0,,1,共3项,,构造数列:0,,1,其任意两项乘积均为0,,1之一,满足性质①,其连续三项满足,满足性质②,又其各项均不相等,该数列满足条件,此时,综上,项数m的最大值为首先证明:当,时,数列满足,,且,,2,3,,对于任意数列的连续三项,,,总有,即或,不论是哪种情形,均有:当时,,即,当时,,即,,性质得证.考虑,,三项,有或,若,则,此时令,有,由性质知不存在k,使得,且,只有,此时,,令时,,由性质知,只有或,当时,,此时令,,,但,即,由性质知不存在k,使得,,即,从而,经验证,数列:满足条件,下面证这是唯一满足条件的数列,假设是第一个不满足上述通项公式的项,则,当,时,只能为,令,,则,但,由性质,不存在k,使得,当,时,只能为,则,令,,则,但,由性质,不存在k,使得,不存在不满足上述通项公式的项,综上,数列的通项公式为【解析】利用性质①直接判断.对于有穷数列,记其非零项中绝对值最大的一项为,绝对值最小的一项为,令时,得,令时,得,由此能求出项数m的最大值.首先证明当,时,数列满足,,由此能求出数列的通项公式.本题考查数列的性质、新定义、分类讨论思想等基础知识,考查运算求解能力,是难题.。
2014年北京市海淀区高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.52−i=( )A.2−iB.2+iC.1+2iD.1−2i2. 已知集合A ={−1, 0, 1},B ={y|y =sin πx, x ∈A},则A ∩B =( ) A.{−1} B.{0} C.{1} D.⌀3. 抛物线y 2=8x 上到其焦点F 距离为5的点有( ) A.0个 B.1个 C.2个D.4个4. 平面向量a →,b →满足|a →|=2,|b →|=1且a →,b →的夹角为60∘则a →•(a →+b →)=( ) A.1 B.3C.5D.75. 函数f(x)=2x +sin x 的部分图象可能是( )A. B.C. D.6. 已知等比数列{a n }的前n 项和为S n ,且S 1,S 2+a 2,S 3成等差数列,则数列{a n }的公比为( ) A.1 B.2C.12D.37. 已知f(x)=a x 和g(x)=b x 是指数函数,则“f(2)>g(2)”是“a >b ”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8. 已知A(1, 0),点B 在曲线G:y =ln x 上,若线段AB 与曲线M:y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为( ) A.0 B.1 C.2 D.4二、填空题:本大题共6小题,每小题5分,共30分.双曲线x 2m−y 23=1的离心率为2,则m =________.李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是________在△ABC 中,a =3,b =5,C =120∘,则sin A sin B=________,c =________.某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型: ①f(x)=p ⋅q x (q >0, q ≠1); ②f(x)=log p x +q(p >0, q ≠1);③f(x)=x 2+px +q .能较准确反映商场月销售额f(x)与月份x 关系的函数模型为________(填写相应函数的序号),若所选函数满足f(1)=10,f(3)=2,则f(x)=________.一个空间几何体的三视图如图所示,该几何体的表面积为________.设不等式组{x+y+2≥0x+ay+2≤0表示的区域为Ω1,不等式x2+y2≤1表示的平面区域为Ω2.(1)若Ω1与Ω2有且只有一个公共点,则a=________;(2)记S(a)为Ω1与Ω2公共部分的面积,则函数S(a)的取值范围是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.已知函数f(x)=sin x−sin(x−π3)(1)求f(π6);(2)求f(x)在[−π2, π2]上的取值范围.某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(2)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.如图1,在Rt△ABC中,∠ABC=90∘,D为AC中点,AE⊥BD于E(不同于点D),延长AE交BC于F,将△ABD沿BD折起,得到三棱锥A1−BCD,如图2所示.(1)若M是FC的中点,求证:直线DM // 平面A1EF;(2)求证:BD⊥A1F;(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.已知函数f(x)=x ln x.(1)求f(x)的单调区间;(2)当k≤1时,求证:f(x)≥kx−1恒成立.已知A(x1, y1),B(x2, y2)是椭圆C:x2+2y2=4上两点,点M的坐标为(1, 0).(1)当A,B关于点M(1, 0)对称时,求证:x1=x2=1;(2)当直线AB经过点(0, 3)时,求证:△MAB不可能为等边三角形.在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)A(n):A1,A2,A3,…,A n与B(n):B1,B2,B3,…,B n,其中n≥3,若同时满足:①两点列的起点和终点分别相同;②线段A i A i+1⊥B i B i+1,其中i =1,2,3,…,n−1,则称A(n)与B(n)互为正交点列.(1)试判断A(3):A1(0, 2),A2(3, 0),A3(5, 2)与B(3):B1(0, 2),B2(2, 5),B3(5, 2)是否互为正交点列,并说明理由;(2)求证:A(4):A1(0, 0),A2(3, 1),A3(6, 0),A4(9, 1)不存在正交点列B(4);(3)是否存在无正交点列B(5)的有序整数点列A(5)?并证明你的结论.参考答案与试题解析2014年北京市海淀区高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】B【考点】复数代数形式的乘除运算【解析】直接由复数代数形式的除法运算化简求值.【解答】解:52−i =5(2+i)(2−i)(2+i)=10+5i5=2+i.故选:B.2.【答案】B【考点】交集及其运算【解析】根据集合A求得集合B,再根据两个集合的交集的定义求得A∩B.【解答】解:∵集合A={−1, 0, 1},B={y|y=sinπx, x∈A}={0},∴A∩B={0},故选:B.3.【答案】C【考点】抛物线的求解【解析】确定抛物线y2=8x的准线方程,利用抛物线的定义,可得结论.【解答】解:抛物线y2=8x的准线方程为x=−2,则抛物线顶点到准线的距离为2,因为抛物线到焦点的距离和到准线的距离相等,则根据抛物线的对称性可知抛物线y2=8x上到其焦点F距离为5的点有2个.故选:C.4.【答案】C 【考点】平面向量数量积的运算【解析】将a→⋅(a→+b→)展开代入数值即可.【解答】解:a→⋅(a→+b→)=a→2+a→⋅b→=22+2×1×cos60∘=5.故选:C.5.【答案】A【考点】函数的图象变换【解析】先判断出此函数是奇函数,再根据0<x<π2时,函数值为正即可找出可能的图象.【解答】解:函数f(x)=2x+sin x是奇函数,故其图象关于原点对称,故排除B;又当0<x<π2时,函数值为正,仅有A满足,故它的图象可能是A中的图.故选:A.6.【答案】D【考点】等比数列的性质等差数列的性质【解析】利用等比数列的前n项和公式表示出S1,S2,S3,然后根据S1,S2+a2,S3成等差数列,利用等差数列的性质列出关系式,将表示出的S1,S2,S3代入得到关于a1与q的关系式,由a1≠0,两边同时除以a1,得到关于q的方程,求出方程的解,即可得到公比q的值.【解答】解:∵S1,S2+a2,S3成等差数列,∴2(S2+a2)=S1+S3,又数列{a n}为等比数列,∴2(a1+2a1q)=a1+(a1+a1q+a1q2),整理得:a1q2−3a1q=0,又a1≠0,∴q2−3q=0,∵q≠0,解得:q=3.故选D.7.【答案】C【考点】必要条件、充分条件与充要条件的判断 【解析】根据指数函数的定义和单调性的性质,利用充分条件和必要条件的定义即可得到结论. 【解答】解:∵ f(x)=a x 和g(x)=b x 是指数函数, ∴ a >0且a ≠1,b >0且b ≠1,若“f(2)>g(2)”,则a 2>b 2,即a >b ,成立, 若a >b ,则f(2)>g(2)成立,∴ “f(2)>g(2)”是“a >b ”的充分必要条件, 故选:C . 8.【答案】 B【考点】对数函数的图象与性质 【解析】设线段AB 与曲线y =1x 的交点为C ,令点B(x, ln x),则点C(1+x 2, 12ln x).genju 点C 在函数y =ln x 的图象上,可得 ln x =41+x .故曲线G 关于曲线M 的关联点的个数,即为函数y =ln x 和曲线y =41+x 的交点的个数,数形结合可得结论. 【解答】解:如图所示:设线段AB 与曲线y =1x 的交点为C , 如图所示,令点B(x, ln x),则点C(1+x 2, 12ln x).由于点C 在函数y =ln x 的图象上,故有12ln x =21+x,即ln x =41+x .故曲线G 关于曲线M 的关联点的个数,即为函数y =ln x 和曲线y =41+x 的交点的个数.在同一个坐标系中,画出函数y =ln x 和曲线y =41+x 的图象, 数形结合可得函数y =ln x 和曲线y =41+x 的交点的个数为1, 故选:B .二、填空题:本大题共6小题,每小题5分,共30分. 【答案】 1【考点】双曲线的标准方程 【解析】 由已知条件推导出√m+3√m=2,由此能求出m 的值.【解答】 解:∵ 双曲线x 2m−y 23=1的离心率为2,∴√m+3√m=2,解得m =1.故答案为:1. 【答案】 方案三 【考点】 流程图的概念 【解析】分别计算各个方案,所用时间,即可得出结论. 【解答】方案一,所用时间为8+5+13+7+15+6=54分钟; 方案二,所用时间为8+15+7=30分钟; 方案三,所用时间为15+7=22分钟. 【答案】35,7【考点】 余弦定理 正弦定理【解析】直接利用正弦定理以及余弦定理求出所求结果即可. 【解答】解:由正弦定理可知sin Asin B =ab=35,由余弦定理可知:c2=a2+b2−2ab cos C=25+9−2×3×5×(−12)=49,∴c=7.故答案为:35,7.【答案】③,x2−8x+17【考点】对数函数、指数函数与幂函数的增长差异【解析】(1)欲找出能较准确反映商场2013年一月份到十二月份月销售额的模拟函数,主要依据是呈现先下降后上升的趋势,故可从三个函数的单调上考虑,前面两个函数没有出现一个递增区间和一个递减区间,应选f(x)=x2+px+q.(2)由题中条件:f(1)=10,f(3)=2,得方程组,求出p,q即可,从而得到f(x)的解析式.【解答】解(1)因为f(x)=pq x,f(x)=logqx+q是单调函数,f(x)=x2+px+q中,f′(x)=2x+3p,令f′(x)=0,得x=−32p,f(x)有一个零点,可以出现一个递增区间和一个递减区间,所以应选f(x)=x2+px+q模拟函数.(2)∵f(1)=10,f(3)=2,∴{1+p+q=109+3p+q=2解得,p=−8,q=17,∴f(x)=x2−8x+17故答案为:③,x2−8x+17【答案】152【考点】由三视图求体积【解析】由已知中的三视图可知:该几何体是以侧视图为底面的三棱柱,求出棱柱的底面面积,底面周长及棱柱的高,代入可得答案.【解答】解:由已知中的三视图可知:该几何体是以侧视图为底面的三棱柱,底面面积S=12×6×4=12,底面周长c=6+2√32+42=16,高ℎ=8,故这个零件的表面积为2S+cℎ=152,故答案为:152【答案】±√3,[0,π2).【考点】简单线性规划【解析】(1)作出不等式组对应的平面区域,利用Ω1与Ω2有且只有一个公共点,确定直线的位置即可得到结论;(2)作出Ω1与Ω2对应的平面区域,利用数形结合即可得到结论.【解答】解:(1)作出不等式组对应的平面区域,若Ω1与Ω2有且只有一个公共点,则圆心O到直线x+ay+2=0的距离d=1,即2√1+a2=1,即a2=3,解得a=±√3.(2)当不等式x2+y2≤1表示的平面区域为Ω2.若a=0时,Ω1与Ω2公共部分的区域面积最小为0,当a>0时,不等式组{x+y+2≥0x+ay+2≤0对应的平面区域在圆的下方,此时Ω1与Ω2公共部分的区域最大为半圆,面积为12×π×12=π2;若a<0,不等式组{x+y+2≥0x+ay+2≤0对应的平面区域在圆的上方,此时Ω1与Ω2公共部分的区域最大为半圆,面积为12×π×12=π2;总上S(a)∈[0,π2),三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 【答案】解:(1)由题意可得f(π6)=sinπ6−sin(π6−π3)=sinπ6−sin(−π6)=sinπ6+sinπ6=2sinπ6=1.(2)∵f(x)=sin x−12sin x+√32cos x=12sin x+√32cos x=sin(x+π3),∵−π2≤x≤π2,∴−π6≤x+π3≤5π6,−12≤sin(x+π3)≤1,所以,f(x)的取值范围是[−12,1].【考点】求两角和与差的正弦三角函数中的恒等变换应用【解析】(1)根据函数f(x)的解析式,直接求得f(π6)=sinπ6−sin(π6−π3)的值.(2)化简函数的解析式为f(x)=sin(x+π3),根据−π2≤x≤π2,利用正弦函数的定义域和值域求得f(x)的取值范围.【解答】解:(1)由题意可得f(π6)=sinπ6−sin(π6−π3)=sinπ6−sin(−π6)=sinπ6+sinπ6=2sinπ6=1.(2)∵f(x)=sin x−12sin x+√32cos x=12sin x+√32cos x=sin(x+π3),∵−π2≤x≤π2,∴−π6≤x+π3≤5π6,−12≤sin(x+π3)≤1,所以,f(x)的取值范围是[−12,1].【答案】解:(1)答对题目数小于9道的人数为55人,记“答对题目数大于等于9道”为事件A则P(A)=1−55100=0.45.(2)设答对题目数少于8道的司机为A、B、C、D、E,其中A、B为女司机,选出两人包含:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种情况,至少有1名女驾驶员的事件为AB、AC、AD、AE、BC、BD、BE共7种.记“随机选出的两人中至少有1名女驾驶员”为事件M,则P(M)=710=0.7.【考点】古典概型及其概率计算公式【解析】(1)求出出租车司机答对题目数大于等于9的人数,代入古典概型概率计算公式,可得答案.(2)求出从答对题目数少于8的出租车司机中任选出两人的情况总数和选出的两人中至少有一名女出租车司机的情况个数,代入古典概型概率计算公式,可得答案.【解答】解:(1)答对题目数小于9道的人数为55人,记“答对题目数大于等于9道”为事件A则P(A)=1−55100=0.45.(2)设答对题目数少于8道的司机为A、B、C、D、E,其中A、B为女司机,选出两人包含:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种情况,至少有1名女驾驶员的事件为AB、AC、AD、AE、BC、BD、BE共7种.记“随机选出的两人中至少有1名女驾驶员”为事件M,则P(M)=710=0.7.【答案】(1)证明:因为D,M分别为AC,CF中点,所以DM // EF,又EF⊂平面A1EF,DM⊄平面A1EF所以DM // 平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF,又A1F⊂平面A1EF所以BD⊥A1F.(3)解:直线A1B与直线CD不能垂直,因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF⊂平面CBD,所以EF⊥平面A1BD.因为A1B⊂平面A1BD,所以A1B⊥EF,又因为EF // DM,所以A1B⊥DM.假设A1B⊥CD,因为A1B⊥DM,CD∩DM=D,所以A1B⊥平面BCD,所以A1B⊥BD,这与∠A1BD为锐角矛盾所以直线A1B与直线CD不能垂直.【考点】平面与平面垂直的判定直线与平面平行的判定【解析】(1)由三角形中位线定理推导出DM // EF ,由此能证明DM // 平面A 1EF . (2)由已知条件推导出BD ⊥平面A 1EF ,由此能证明BD ⊥A 1F .(3)直线A 1B 与直线CD 不能垂直.假设A 1B ⊥CD ,能推导出A 1B ⊥BD ,这与∠A 1BD 为锐角矛盾. 【解答】(1)证明:因为D ,M 分别为AC ,CF 中点, 所以DM // EF ,又EF ⊂平面A 1EF ,DM ⊄平面A 1EF 所以DM // 平面A 1EF .(2)证明:因为A 1E ⊥BD ,EF ⊥BD ,且A 1E ∩EF =E ,所以BD ⊥平面A 1EF ,又A 1F ⊂平面A 1EF 所以BD ⊥A 1F .(3)解:直线A 1B 与直线CD 不能垂直, 因为平面A 1BD ⊥平面BCD ,平面A 1BD ∩平面BCD =BD ,EF ⊥BD ,EF ⊂平面CBD , 所以 EF ⊥平面A 1BD .因为A 1B ⊂平面A 1BD ,所以A 1B ⊥EF , 又因为EF // DM ,所以A 1B ⊥DM . 假设A 1B ⊥CD ,因为A 1B ⊥DM ,CD ∩DM =D , 所以A 1B ⊥平面BCD , 所以A 1B ⊥BD ,这与∠A 1BD 为锐角矛盾所以直线A 1B 与直线CD 不能垂直.【答案】 解:(1) 定义域为(0, +∞),f′(x)=ln x +1, 令f′(x)=0,得 x =1e ,f′(x)与f(x)的情况如下:所以f(x)的单调减区间为(0,1e ),单调增区间为(1e ,+∞) (2)方法一:要证x ln x ≥kx −1(x >0),即证ln x +1x ≥k ,设g(x)=ln x +1x,x >0,g′(x)=1x−1x 2=x−1x 2,g ′(x)与g(x)的情况如下:所以g(x)≥g(1)=1,即ln x +1x ≥1在x >0时恒成立,所以,当k ≤1时,ln x +1x ≥k ,所以x ln x +1≥kx ,即x ln x ≥kx −1, 所以,当k ≤1时,有f(x)≥kx .方法二:令g(x)=f(x)−(kx −1)=x ln x −kx +1,g′(x)=ln x +1−k , 令g′(x)=0,得x =e k−1, g′(x)与g(x)的情况如下:当k ≤1时,e k−1≤1,所以1−e k−1≥0 故g(x)≥0.即当k ≤1时,f(x)≥kx −1. 【考点】利用导数研究函数的单调性 导数求函数的最值【解析】(1)对f(x)求导,令f′(x)>0,得到单增区间;令f′(x)<0,得到单减区间. (2)可用两种方法证明之.方法一:要证x ln x ≥kx −1(x >0),即证ln x +1x≥k ,再令g(x)=ln x +1x,x >0,再通过求导确定其最小值进行证明.方法二:直接作差,令g(x)=f(x)−(kx −1)=x ln x −kx +1,依旧求导确定其性质从而进行证明. 【解答】 解:(1) 定义域为(0, +∞),f′(x)=ln x +1, 令f′(x)=0,得 x =1e ,f′(x)与f(x)的情况如下:所以f(x)的单调减区间为(0,1e),单调增区间为(1e,+∞)(2)方法一:要证x ln x ≥kx −1(x >0),即证ln x +1x≥k ,设g(x)=ln x +1x ,x >0,g′(x)=1x −1x 2=x−1x 2,g ′(x)与g(x)的情况如下:所以g(x)≥g(1)=1,即ln x +1x ≥1在x >0时恒成立, 所以,当k ≤1时,ln x +1x ≥k ,所以x ln x +1≥kx ,即x ln x ≥kx −1, 所以,当k ≤1时,有f(x)≥kx .方法二:令g(x)=f(x)−(kx −1)=x ln x −kx +1,g′(x)=ln x +1−k , 令g′(x)=0,得x =e k−1, g′(x)与g(x)的情况如下:, 当k ≤1时,e k−1≤1,所以1−e k−1≥0 故g(x)≥0.即当k ≤1时,f(x)≥kx −1. 【答案】 证明:(1)因为A ,B 在椭圆上,所以{x 12+2y 12=4,①x 22+2y 22=4.②因为A ,B 关于点M(1, 0)对称, 所以x 1+x 2=2,y 1+y 2=0,将x 2=2−x 1,y 2=−y 1代入②得(2−x 1)2+2y 12=4③, 由①和③消y 1解得x 1=1, 所以 x 1=x 2=1.(2)当直线AB 不存在斜率时,A(0,√2),B(0,−√2), 可得|AB|=2√2,|MA|=√3,△ABM 不是等边三角形. 当直线AB 存在斜率时,显然斜率不为0.设直线AB:y =kx +3,AB 中点为N(x 0, y 0),联立{x 2+2y 2=4y =kx +3消去y 得(1+2k 2)x 2+12kx +14=0,△=144k 2−4(1+2k 2)⋅14=32k 2−56, 由△>0,得到k 2>74①又x 1+x 2=−12k 1+2k 2,x 1⋅x 2=141+2k 2所以x 0=−6k1+2k 2,y 0=kx 0+3=31+2k 2, 所以 N(−6k 1+2k 2,31+2k 2)假设△ABM 为等边三角形,则有MN ⊥AB , 又因为M(1, 0), 所以k MN ×k =−1,即31+2k 2−6k1+2k 2−1×k =−1,化简 2k 2+3k +1=0,解得k =−1或k =−12这与①式矛盾,所以假设不成立.因此对于任意k 不能使得MN ⊥AB ,故△ABM 不能为等边三角形.【考点】 椭圆的定义 【解析】(1)利用A ,B 在椭圆上,A ,B 关于点M(1, 0)对称,得x 1=1,即可得证;(2)求出MA ,MB ,证明|MA|≠|MB|,即可证明:△MAB 不可能为等边三角形. 【解答】 证明:(1)因为A ,B 在椭圆上,所以{x 12+2y 12=4,①x 22+2y 22=4.②因为A ,B 关于点M(1, 0)对称,所以x 1+x 2=2,y 1+y 2=0,将x 2=2−x 1,y 2=−y 1代入②得(2−x 1)2+2y 12=4③, 由①和③消y 1解得x 1=1, 所以 x 1=x 2=1.(2)当直线AB 不存在斜率时,A(0,√2),B(0,−√2), 可得|AB|=2√2,|MA|=√3,△ABM 不是等边三角形. 当直线AB 存在斜率时,显然斜率不为0.设直线AB:y =kx +3,AB 中点为N(x 0, y 0),联立{x 2+2y 2=4y =kx +3消去y 得(1+2k 2)x 2+12kx +14=0,△=144k 2−4(1+2k 2)⋅14=32k 2−56, 由△>0,得到k 2>74①又x 1+x 2=−12k1+2k 2,x 1⋅x 2=141+2k 2 所以x 0=−6k1+2k 2,y 0=kx 0+3=31+2k 2,所以 N(−6k 1+2k 2,31+2k 2) 假设△ABM 为等边三角形,则有MN ⊥AB , 又因为M(1, 0), 所以k MN ×k =−1,即31+2k 2−6k1+2k 2−1×k =−1,化简 2k 2+3k +1=0,解得k =−1或k =−12这与①式矛盾,所以假设不成立.因此对于任意k 不能使得MN ⊥AB ,故△ABM 不能为等边三角形.【答案】 解:(1)有序整点列A 1(0, 2),A 2(3, 0),A 3(5, 2)与B 1(0, 2),B 2(2, 5),B 3(5, 2)互为正交点列.-------------------------理由如下:由题设可知 A 1A 2→=(3,−2),A 2A 3→=(2,2),B 1B 2→=(2,3),B 2B 3→=(3,−3), 因为 A 1A 2→⋅B 1B 2→=0,A 2A 3→⋅B 2B 3→=0所以 A 1A 2⊥B 1B 2,A 2A 3⊥B 2B 3.所以整点列A 1(0, 2),A 2(3, 0),A 3(5, 2)与B 1(0, 2),B 2(2, 5),B 3(5, 2)互为正交点列.---------------------------- (2)证明:由题意可得 A 1A 2→=(3,1),A 2A 3→=(3,−1),A 3A 4→=(3,1), 设点列B 1,B 2,B 3,B 4是点列A 1,A 2,A 3,A 4的正交点列,则可设B 1B 2→=λ1(−1,3),B 2B 3→=λ2(1,3),B 3B 4→=λ3(−1,3),λ1,λ2,λ3∈Z 因为A 1与B 1,A 4与B 4相同,所以有{−λ1+λ2−λ3①3λ1+3λ2+3λ3②因为λ1,λ2,λ3∈Z ,方程②不成立,所以有序整点列A 1(0, 0),A 2(3, 1),A 3(6, 0),A 4(9, 1)不存在正交点列.---------- (3)存在无正交点列的整点列A(5).-------------------------------------------当n =5时,设A i A i+1→=(a i ,b i ),a i ,b i ∈Z ,其中a i ,b i 是一对互质整数,i =1,2,3,4 若有序整点列B 1,B 2,B 3,B 4,B 5是点列A 1,A 2,A 3,A 4,A 5的正交点列,则B i B i+1→=λi (−b i ,a i ),i =1,2,3,4,由 ∑A i A i+1→4i=1=∑B i B i+1→4i=1 得{∑−4i=1λi b i =∑a i 4i=1,①∑λi 4i=1a i =∑b i4i=1.② 取A 1(0, 0),a i =3,i =1,2,3,4,b 1=2,b 2=−1,b 3=1,b 4=−1 由于B 1,B 2,B 3,B 4,B 5是整点列,所以有λi ∈Z ,i =1,2,3,4. 等式②中左边是3的倍数,右边等于1,等式不成立,所以存在无正交点列的整点列A(5).----------------------------------- 【考点】进行简单的合情推理【解析】(1)根据已知中中正交点列的定义,判断A(3):A 1(0, 2),A 2(3, 0),A 3(5, 2)与B(3):B 1(0, 2),B 2(2, 5),B 3(5, 2)是否满足条件,可得结论.(2)点列B 1,B 2,B 3,B 4是点列A 1,A 2,A 3,A 4的正交点列,进而根据正交点列的定义,得到假设不成立,进而说明A(4):A 1(0, 0),A 2(3, 1),A 3(6, 0),A 4(9, 1)不存在正交点列B(4);(3)有序整点列B 1,B 2,B 3,B 4,B 5是点列A 1,A 2,A 3,A 4,A 5的正交点列,利用正交点列的定义,构造方程组,进而根据方程组有解得答案.【解答】 解:(1)有序整点列A 1(0, 2),A 2(3, 0),A 3(5, 2)与B 1(0, 2),B 2(2, 5),B 3(5, 2)互为正交点列.-------------------------理由如下:由题设可知 A 1A 2→=(3,−2),A 2A 3→=(2,2),B 1B 2→=(2,3),B 2B 3→=(3,−3), 因为 A 1A 2→⋅B 1B 2→=0,A 2A 3→⋅B 2B 3→=0所以 A 1A 2⊥B 1B 2,A 2A 3⊥B 2B 3.所以整点列A 1(0, 2),A 2(3, 0),A 3(5, 2)与B 1(0, 2),B 2(2, 5),B 3(5, 2)互为正交点列.---------------------------- (2)证明:由题意可得 A 1A 2→=(3,1),A 2A 3→=(3,−1),A 3A 4→=(3,1), 设点列B 1,B 2,B 3,B 4是点列A 1,A 2,A 3,A 4的正交点列,则可设B 1B 2→=λ1(−1,3),B 2B 3→=λ2(1,3),B 3B 4→=λ3(−1,3),λ1,λ2,λ3∈Z 因为A 1与B 1,A 4与B 4相同,所以有{−λ1+λ2−λ3①3λ1+3λ2+3λ3②因为λ1,λ2,λ3∈Z ,方程②不成立,所以有序整点列A 1(0, 0),A 2(3, 1),A 3(6, 0),A 4(9, 1)不存在正交点列.---------- (3)存在无正交点列的整点列A(5).-------------------------------------------当n =5时,设A i A i+1→=(a i ,b i ),a i ,b i ∈Z ,其中a i ,b i 是一对互质整数,i =1,2,3,4 若有序整点列B 1,B 2,B 3,B 4,B 5是点列A 1,A 2,A 3,A 4,A 5的正交点列,则B i B i+1→=λi (−b i ,a i ),i =1,2,3,4,由 ∑A i A i+1→4i=1=∑B i B i+1→4i=1 得{∑−4i=1λi b i =∑a i 4i=1,①∑λi 4i=1a i =∑b i 4i=1.②取A 1(0, 0),a i =3,i =1,2,3,4,b 1=2,b 2=−1,b 3=1,b 4=−1 由于B 1,B 2,B 3,B 4,B 5是整点列,所以有λi ∈Z ,i =1,2,3,4. 等式②中左边是3的倍数,右边等于1,等式不成立,所以存在无正交点列的整点列A(5).-----------------------------------。
北京市海淀区2022届高三一模数学试题(含答案解析)北京市海淀区2022届高三一模数学试题学校:___________ 姓名:___________ 班级:___________ 考号:___________一、单选题1.已知集合 $A=\{x-1\leq x\leq 2\}$,$B=\{x|x>0\}$,则$A\cup B=$()A。
$\{x|x\leq 2\}$B。
$\{x|x\geq -1\}$C。
$\{x|x>-1\}$D。
$\{x|x>0\}$2.在复平面内,复数 $z$ 对应的点为 $(1,-1)$,则$z(1+i)=$()A。
$2$B。
$2i$C。
$-2i$D。
$-2$3.双曲线 $-y^2=1$ 的离心率为()A。
$\sqrt{3}$B。
$\sqrt{6}$C。
$\frac{\sqrt{23}}{3}$D。
$3$4.在 $(x-x_0)^4$ 的展开式中,$x^2$ 的系数为()A。
$-1$B。
$1$C。
$-4$D。
$4$5.下列说法中正确的是A。
平行于同一直线的两个平面平行B。
垂直于同一直线的两个平面平行C。
平行于同一平面的两条直线平行D。
垂直于同一平面的两个平面平行6.已知直线 $l:ax+by=1$ 是圆 $x^2+y^2-2x-2y=0$ 的一条对称轴,则 $ab$ 的最大值为()A。
$\frac{1}{4}$B。
$\frac{1}{2}$C。
$1$D。
$2$7.已知角 $\alpha$ 的终边绕原点 $O$ 逆时针旋转 $\pi$ 后与角 $\beta$ 的终边重合,且 $\cos(\alpha+\beta)=1$,则$\alpha$ 的取值可以为()A。
$\frac{\pi}{6}$B。
$\frac{\pi}{3}$C。
$\frac{2\pi}{3}$D。
$\frac{5\pi}{6}$8.已知二次函数 $f(x)$ 的图象如图所示,将其向右平移$2$ 个单位长度得到函数 $g(x)$ 的图象,则不等式$g(x)>\log_2x$ 的解集是()A。
2017年北京市海淀区高考数学一模试卷(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A.{x|2<x<3} B.{x|x>1} C.{x|1<x<2} D.{x|x>2}2.圆心为(0,1)且与直线y=2相切的圆的方程为()A.(x﹣1)2+y2=1 B.(x+1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=1 3.执行如图所示的程序框图,输出的x的值为()A.4 B.3 C.2 D.14.若实数a,b满足a>0,b>0,则“a>b”是“a+lna>b+lnb”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为()A. B. C.D.36.在△ABC上,点D满足,则()A.点D不在直线BC上B.点D在BC的延长线上C.点D在线段BC上D.点D在CB的延长线上7.若函数的值域为[﹣1,1],则实数a的取值范围是()A.[1,+∞) B.(﹣∞,﹣1] C.(0,1] D.(﹣1,0)8.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数z=a(1+i)﹣2为纯虚数,则实数a= .10.已知等比数列{a n}中,a2a4=a5,a4=8,则公比q= ,其前4项和S4= .11.若抛物线y2=2px的准线经过双曲线的左焦点,则实数p= .12.若x,y满足则的最大值是.13.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=,a的最小值是.14.阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为,你的理由是.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{a n}满足a1+a2=6,a2+a3=10.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n+a n+1}的前n项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b 两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.租用a型车租用b型车第3个月第4个月租用a型车60%50%租用b型车40%50%若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a,b两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在△ABC中,A=2B.(Ⅰ)求证:a=2bcosB;(Ⅱ)若b=2,c=4,求B的值.18.在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(Ⅰ)求证:PB∥平面FAC;(Ⅱ)求三棱锥P﹣EAD的体积;(Ⅲ)求证:平面EAD⊥平面FAC.19.已知椭圆C: =1(a>b>0)的左、右顶点分别为A,B,且|AB|=4,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点Q(4,0),若点P在直线x=4上,直线BP与椭圆交于另一点M.判断是否存在点P,使得四边形APQM为梯形?若存在,求出点P的坐标;若不存在,说明理由.20.已知函数f(x)=e x﹣x2+ax,曲线y=f(x)在点(0,f(0))处的切线与x轴平行.(Ⅰ)求a的值;(Ⅱ)若g(x)=e x﹣2x﹣1,求函数g(x)的最小值;(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.2017年北京市海淀区高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A.{x|2<x<3} B.{x|x>1} C.{x|1<x<2} D.{x|x>2}【考点】交集及其运算.【分析】解不等式求出集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|1<x<3},集合B={x|x2>4}={x|x<﹣2或x>2},则集合A∩B={x|2<x<3}.故选:A.2.圆心为(0,1)且与直线y=2相切的圆的方程为()A.(x﹣1)2+y2=1 B.(x+1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=1【考点】直线与圆的位置关系.【分析】根据题意设圆方程为x2+(y﹣1)2=r2,由圆心到直线的距离得到半径r,代入即可得到所求圆的方程【解答】解:设圆方程为x2+(y﹣1)2=r2,∵直线y=2与圆相切,∴圆心到直线的距离等于半径r,∴r=1故圆的方程为:x2+(y﹣1)2=1,故选:C3.执行如图所示的程序框图,输出的x的值为()A.4 B.3 C.2 D.1【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量x的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=0,y=5不满足条件=,执行循环体,x=1,y=4不满足条件=,执行循环体,x=2,y=2满足条件=,退出循环,输出x的值为2.故选:C.4.若实数a,b满足a>0,b>0,则“a>b”是“a+lna>b+lnb”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】据a,b的范围结合函数的单调性确定充分条件,还是必要条件即可.【解答】解:设f(x)=x+lnx,显然f(x)在(0,+∞)上单调递增,∵a>b,∴f(a)>f(b),∴a+lna>b+lnb,故充分性成立,∵a+lna>b+lnb”,∴f(a)>f(b),∴a>b,故必要性成立,故“a>b”是“a+lna>b+lnb”的充要条件,故选:C5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为()A. B. C.D.3【考点】由三视图求面积、体积.【分析】将该几何体放入在长方体中,且长、宽、高为2、1、1,该三棱锥中最长棱为长方体的一条对角线,即可得出结论.【解答】解:将该几何体放入在长方体中,且长、宽、高为2、1、1,该三棱锥中最长棱为长方体的一条对角线,长度为=,故选B.6.在△ABC上,点D满足,则()A.点D不在直线BC上B.点D在BC的延长线上C.点D在线段BC上D.点D在CB的延长线上【考点】向量的三角形法则.【分析】据条件,容易得出,可作出图形,并作,并连接AD′,这样便可说明点D和点D′重合,从而得出点D在CB的延长线上.【解答】解:==;如图,作,连接AD′,则:=;∴D′和D重合;∴点D在CB的延长线上.故选D.7.若函数的值域为[﹣1,1],则实数a的取值范围是()A.[1,+∞) B.(﹣∞,﹣1] C.(0,1] D.(﹣1,0)【考点】分段函数的应用.【分析】根据函数f(x)的解析式,讨论x≤a和x>a时,f(x)∈[﹣1,1],即可求出a的取值范围.【解答】解:函数的值域为[﹣1,1],当x≤a时,f(x)=cosx∈[﹣1,1],满足题意;当x>a时,f(x)=∈[﹣1,1],应满足0<≤1,解得x≥1;∴a的取值范围是[1,+∞).故选:A.8.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③【考点】进行简单的合情推理.【分析】根据最优化问题,即可判断出正确答案.【解答】解:因为A、D、E点各有一个工厂相连,B,C,各有两个工厂相连,把工厂看作“人”.可简化为“A,B,C,D,E处分别站着1,2,2,1,1个人(如图),求一点,使所有人走到这一点的距离和最小”.把人尽量靠拢,显然把人聚到B、C最合适,靠拢完的结果变成了B=4,C=3,最好是移动3个人而不要移动4个人.所以车站设在C点,且与各段小公路的长度无关故选C.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数z=a(1+i)﹣2为纯虚数,则实数a= 2 .【考点】复数代数形式的乘除运算.【分析】利用纯虚数的定义即可得出.【解答】解:复数z=a(1+i)﹣2=a﹣2+ai为纯虚数,∴a﹣2=0,a≠0,则实数a=2故答案为:2.10.已知等比数列{a n}中,a2a4=a5,a4=8,则公比q= 2 ,其前4项和S4= 15 .【考点】等比数列的前n项和;等比数列的通项公式.【分析】设等比数列{a n}的公比为q,由a2a4=a5,a4=8,可得q2=a2q3,=8,解得a2,q,利用求和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a2a4=a5,a4=8,∴q2=a2q3, =8,解得a2=q=2.∴a1=1.其前4项和S4==15.故答案为:2,15.11.若抛物线y2=2px的准线经过双曲线的左焦点,则实数p= 4 .【考点】抛物线的简单性质.【分析】求出抛物线的准线x=﹣经过双曲线的右焦点(﹣2,0),即可求出p.【解答】解:因为抛物线y2=2px的准线经过双曲线的左焦点,∴p>0,所以抛物线的准线为x=﹣,依题意,直线x=﹣经过双曲线的右焦点(﹣2,0),所以p=4故答案为:4.12.若x,y满足则的最大值是.【考点】简单线性规划.【分析】根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.【解答】解:满足约束条件的可行域如下图中阴影部分所示:则的几何意义表示平面区域内的点与点(0,0)的斜率的最大值,由解得A(1,)显然过A时,斜率最大,最大值是,故答案为:.13.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω= 2 ,a的最小值是.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】首先由图象最高点横坐标与零点的距离求函数的周期,从而由周期公式求ω,然后由图象过的已知点求出a.【解答】解:由已知函数图象得到π,所以T=π,所以=2,又y=f(x+a))=sinω(x+a)且(,1)在图象上,所以sin2(+a)=1,所以+2a=2kπ,k∈Z,所以k取0时a的最小值为;故答案为:2;.14.阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为①,你的理由是数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数人,要远远少于乘车每百万人中死亡人数.【考点】收集数据的方法.【分析】根据题意,利用数据的收集,分类,归纳,分析可得结论【解答】解:选①,理由为:数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数人,要远远少于乘车每百万人中死亡人数.故答案为:①;数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数人,要远远少于乘车每百万人中死亡人数三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{a n}满足a1+a2=6,a2+a3=10.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n+a n+1}的前n项和.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列的通项公式即可得出.(II)利用等差数列的通项公式与求和公式即可得出.【解答】解:(Ⅰ)设数列{a n}的公差为d,因为a1+a2=6,a2+a3=10,所以a3﹣a1=4,所以2d=4,d=2.又a1+a1+d=6,所以a1=2,所以a n=a1+(n﹣1)d=2n.(Ⅱ)记b n=a n+a n+1,所以b n=2n+2(n+1)=4n+2,又b n+1﹣b n=4(n+1)+2﹣4n﹣2=4,所以{b n}是首项为6,公差为4的等差数列,其前n项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b 两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.租用a型车租用b型车第3个月第4个月租用a型车60%50%租用b型车40%50%若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a,b两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.【考点】列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)依题意租到a型车的4人为A1,A2,A3,A4;租到b型车的3人为B1,B2,B3;设事件A为“7人中抽到2人,至少有一人租到a型车”,则事件为“7人中抽到2人都租到b型车”.利用列举法能求出抽取的2人中至少有一人在市场体验过程中租到a型车的概率.(Ⅱ)依题意,市场4月份租用a型车的比例为50%60%+50%50%=55%,租用b型车的比例为50%40%+50%50%=45%,由此能同市场4月租用a,b型车的用户比例.【解答】解:(Ⅰ)依题意租到a型车的4人为A1,A2,A3,A4;租到b型车的3人为B1,B2,B3;设事件A为“7人中抽到2人,至少有一人租到a型车”,则事件为“7人中抽到2人都租到b型车”.如下列表格所示:从7人中抽出2人共有21种情况,事件发生共有3种情况,所以事件A概率.(Ⅱ)依题意,市场4月份租用a型车的比例为50%60%+50%50%=55%,租用b型车的比例为50%40%+50%50%=45%,所以市场4月租用a,b型车的用户比例为.17.在△ABC中,A=2B.(Ⅰ)求证:a=2bcosB;(Ⅱ)若b=2,c=4,求B的值.【考点】余弦定理的应用.【分析】(Ⅰ)由正弦定理,得,即可证明:a=2bcosB;(Ⅱ)若b=2,c=4,利用余弦定理,即可求B的值.【解答】(Ⅰ)证明:因为A=2B,所以由正弦定理,得,得,所以a=2bcosB.(Ⅱ)解:由余弦定理,a2=b2+c2﹣2bccosA,因为b=2,c=4,A=2B,所以16cos2B=4+16﹣16cos2B,所以,因为A+B=2B+B<π,所以,所以,所以.18.在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(Ⅰ)求证:PB∥平面FAC;(Ⅱ)求三棱锥P﹣EAD的体积;(Ⅲ)求证:平面EAD⊥平面FAC.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)连接BD,与AC交于点O,连接OF,推导出OF∥PB,由此能证明PB∥平面FAC.(Ⅱ)由PA⊥平面ABCD,知PA为棱锥P﹣ABD的高.由S△PAE=S△ABE,知,由此能求出结果.(Ⅲ)推导出AD⊥PB,AE⊥PB,从而PB⊥平面EAD,进而OF⊥平面EAD,由此能证明平面EAD⊥平面FAC.【解答】证明:(Ⅰ)连接BD,与AC交于点O,连接OF,在△PBD中,O,F分别是BD,PD的中点,所以OF∥PB,又因为OF?平面FAC,PB?平面FAC,所以PB∥平面FAC.解:(Ⅱ)因为PA⊥平面ABCD,所以PA为棱锥P﹣ABD的高.因为PA=AB=2,底面ABCD是正方形,所以=,因为E为PB中点,所以S△PAE=S△ABE,所以.证明:(Ⅲ)因为AD⊥平面PAB,PB?平面PAB,所以AD⊥PB,在等腰直角△PAB中,AE⊥PB,又AE∩AD=A,AE?平面EAD,AD?平面EAD,所以PB⊥平面EAD,又OF∥PB,所以OF⊥平面EAD,又OF?平面FAC,所以平面EAD⊥平面FAC.19.已知椭圆C: =1(a>b>0)的左、右顶点分别为A,B,且|AB|=4,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点Q(4,0),若点P在直线x=4上,直线BP与椭圆交于另一点M.判断是否存在点P,使得四边形APQM为梯形?若存在,求出点P的坐标;若不存在,说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由|AB|=4,得a=2.又,b2=a2﹣c2,联立解出即可得出.(Ⅱ)假设存在点P,使得四边形APQM为梯形.由题意知,显然AM,PQ 不平行,可得AP∥MQ,,.设点M(x1,y1),P(4,t),过点M作MH⊥AB于H,可得,解得x1,代入椭圆方程,即可得出.【解答】解:(Ⅰ)由|AB|=4,得a=2.又因为,所以c=1,所以b2=a2﹣c2=3,所以椭圆C的方程为.(Ⅱ)假设存在点P,使得四边形APQM为梯形.由题意知,显然AM,PQ不平行,所以AP∥MQ,所以,所以.设点M(x1,y1),P(4,t),过点M作MH⊥AB于H,则有,所以|BH|=1,所以H(1,0),所以x1=1,代入椭圆方程,求得,所以P(4,±3).20.已知函数f(x)=e x﹣x2+ax,曲线y=f(x)在点(0,f(0))处的切线与x轴平行.(Ⅰ)求a的值;(Ⅱ)若g(x)=e x﹣2x﹣1,求函数g(x)的最小值;(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求得f(x)的导数,可得切线的斜率,由条件可得a的方程,解方程可得a的值;(Ⅱ)求出g(x)的导数,可得单调区间和极值,且为最值;(Ⅲ)显然g(x)=f'(x),且g(0)=0,运用零点存在定理可得g(x)的零点范围,可设g(x)=f'(x)存在两个零点,分别为0,x0.讨论x <0时,0<x<x0时,x>x0时,g(x)的符号,可得f(x)的极值,进而得到f(x)在(﹣∞,0)上单调递增,即可得证.【解答】解:(Ⅰ)函数f(x)=e x﹣x2+ax的导数为:f′(x)=e x﹣2x+a,由已知可得f′(0)=0,所以1+a=0,得a=﹣1.(Ⅱ)g'(x)=e x﹣2,令g'(x)=0,得x=ln2,所以x,g'(x),g(x)的变化情况如表所示:x(﹣∞,ln2)ln2(ln2,+∞)g'(x)﹣0+g(x)递减极小值递增所以g(x)的极小值,且为最小值为g(ln2)=e ln2﹣2ln2﹣1=1﹣2ln2.(Ⅲ)证明:显然g(x)=f'(x),且g(0)=0,由(Ⅱ)知,g(x)在(﹣∞,ln2)上单调递减,在(ln2,+∞)上单调递增.又g(ln2)<0,g(2)=e2﹣5>0,由零点存在性定理,存在唯一实数x0∈(ln2,2),满足g(x0)=0,即,,综上,g(x)=f'(x)存在两个零点,分别为0,x0.所以x<0时,g(x)>0,即f'(x)>0,f(x)在(﹣∞,0)上单调递增;0<x<x0时,g(x)<0,即f'(x)<0,f(x)在(0,x0)上单调递减;x>x0时,g(x)>0,即f'(x)>0,f(x)在(x0,+∞)上单调递增,所以f(0)是极大值,f(x0)是极小值,,因为g(1)=e﹣3<0,,所以,所以f(x0)>0,因此x≥0时,f(x)>0.因为f(0)=1且f(x)在(﹣∞,0)上单调递增,所以一定存在c<0满足f(c)>0,所以存在c<0,当x>c时,f(x)>0.2017年4月25日。