高三文科数学一轮模拟试题
- 格式:doc
- 大小:433.00 KB
- 文档页数:8
高三文科数学模拟试卷含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三文科数学模拟试卷含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三文科数学模拟试卷含答案(word版可编辑修改)的全部内容。
文科数学试卷参考答案及评分标准一、选择题:1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2x y =B . ()2lg 1y x x =++C . 22x x y -=+D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 若抛物线1262222=+=y x px y 的焦点与椭圆的右焦点重合,则p 的值为 A .-4 B .4 C .-2 D .26。
已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=x C .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为A .223π+B .4232π+-22 2 22 2 俯视图 正视图侧视图(第7题图)C .627π+D .6272π+- 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为A .5B .5C .25D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10。
一、选择题(每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. πC. 0.1010010001…(1后面跟着0的个数依次增加)D. -32. 函数f(x) = 2x - 1在定义域内是()A. 增函数B. 减函数C. 奇函数D. 偶函数3. 已知复数z满足|z - 1| = 2,则复数z的取值范围对应的图形是()A. 圆B. 矩形C. 线段D. 菱形4. 已知等差数列{an}的前n项和为Sn,若a1 = 1,S10 = 55,则公差d是()A. 1B. 2C. 3D. 45. 若log2x + log2(x + 1) = 3,则x的值为()A. 2B. 4C. 8D. 166. 下列函数中,定义域为实数集R的是()A. y = √(x^2 - 1)B. y = 1/xC. y = |x|D. y = √(-x)7. 已知向量a = (2, -3),向量b = (-1, 2),则向量a与向量b的数量积是()A. 7B. -7C. 1D. -18. 下列命题中,正确的是()A. 对于任意实数x,x^2 ≥ 0B. 函数y = x^3在R上单调递增C. 对于任意实数x,log2x > 0D. 函数y = 2^x在R上单调递减9. 在直角坐标系中,点A(1, 2),点B(-1, -2),则线段AB的中点坐标是()A. (0, 0)B. (1, 1)C. (-1, -1)D. (0, -1)10. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(-1) = 0,f(1) = 0,则f(0)的值为()A. 0B. aC. bD. c二、填空题(每小题5分,共25分)11. 若sinα = 1/2,则cos(2α)的值为__________。
12. 已知等比数列{an}的第一项a1 = 2,公比q = 3,则第5项an =__________。
13. 函数y = (x - 1)^2 + 1的图像的对称轴是__________。
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且f(1) = 2,f'(2) = 3,f(3) = 6,则a的值为()A. 1B. 2C. 3D. 42. 若等差数列{an}的前n项和为Sn,且a1 + a2 + a3 = 12,a4 + a5 + a6 = 18,则数列{an}的公差d为()A. 1B. 2C. 3D. 43. 已知函数f(x) = log2(x - 1) + 3,其定义域为()A. (1, +∞)B. (0, +∞)C. (-∞, 1)D. (-∞, 0)4. 在直角坐标系中,若点A(2, 3)关于直线y = x + 1的对称点为B,则点B的坐标为()A. (1, 2)B. (3, 1)C. (2, 1)D. (1, 3)5. 若向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的夹角θ的余弦值为()A. -1/5B. 1/5C. 2/5D. -2/56. 已知函数f(x) = x^3 - 3x + 1,则f'(x)的零点为()A. -1B. 1C. 0D. 27. 在三角形ABC中,角A、B、C的对边分别为a、b、c,且a = 3,b = 4,c = 5,则角A的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/28. 已知函数f(x) = e^x - x,则f(x)在x = 0处的导数值为()A. 1B. 0C. -1D. e9. 在等比数列{an}中,若a1 = 2,公比q = 3,则数列{an}的前5项和S5为()A. 62B. 63C. 64D. 6510. 若复数z满足|z - 1| = |z + 1|,则复数z在复平面内的几何位置为()A. 实轴上B. 虚轴上C. 第一象限D. 第二象限二、填空题(本大题共5小题,每小题5分,共25分)11. 已知函数f(x) = (x - 1)^2 + 2,则f(x)的最小值为______。
高三数学文科模拟试题一、选择题(本题共8小题,每小题5分,共40分。
每小题只有一个选项符合题意)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = x^3C. y = x^2 + 1D. y = x + 12. 已知圆的方程为(x-1)^2 + (y-2)^2 = 9,该圆的圆心坐标是?A. (1, 2)B. (-1, 2)C. (1, -2)D. (-1, -2)3. 函数f(x) = 2x + 3在区间[1, 3]上的最大值是?A. 5B. 7C. 8D. 114. 若直线l的斜率为2,且过点(1, 3),则直线l的方程为?A. y = 2x + 1B. y = 2x - 1C. y = -2x + 5D. y = -2x - 15. 已知向量a = (3, -1),向量b = (2, 4),则向量a与向量b的数量积为?A. 10B. -2C. 8D. -106. 函数y = sin(x) + cos(x)的值域是?A. [-1, 1]B. [0, 2]C. [-√2, √2]D. [1, √2]7. 已知等差数列{an}的首项a1 = 2,公差d = 3,则该数列的前5项和S5为?A. 25B. 40C. 55D. 708. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程为?A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±xD. y = ±√2x二、填空题(本题共4小题,每小题5分,共20分)9. 已知抛物线y^2 = 4x的焦点坐标为______。
10. 函数f(x) = x^2 - 4x + 3的对称轴为直线x = ______。
11. 已知三角形ABC的三边长分别为a, b, c,且a^2 + b^2 = c^2,若a = 3, b = 4,则c = ______。
12. 已知正弦函数y = sin(2x)的周期为π,则该函数的最小正周期为______。
高三文科数学模拟试题含答案高三文科数学模拟试题本试卷共150分,考试时间120分钟。
第Ⅰ卷(选择题,共50分)一、选择题(共10小题,每小题5分,共50分。
在每小题中,只有一项是符合题目要求的)1.复数3+ i的虚部是()。
A。
2.B。
-1.C。
2i。
D。
-i2.已知集合A={-3,-2,0,1,2},集合B={x|x+2<0},则A∩(CRB) =()。
A。
{-3,-2,0}。
B。
{0,1,2}。
C。
{-2,0,1,2}。
D。
{-3,-2,0,1,2}3.已知向量a=(2,1),b=(1,x),若2a-b与a+3b共线,则x=()。
A。
2.B。
11/22.C。
-1.D。
-24.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()。
A。
4π/3.B。
π。
C。
3π/2.D。
2π5.将函数f(x)=sin2x的图像向右平移π/6个单位,得到函数g(x)的图像,则它的一个对称中心是()。
A。
(π/6,0)。
B。
(π/3,0)。
C。
(π/2,0)。
D。
(π,0)6.执行如图所示的程序框图,输出的s值为()。
开始是否输出结束A。
-10.B。
-3.C。
4.D。
57.已知圆C:x^2+2x+y^2=1的一条斜率为1的切线l1,若与l1垂直的直线l2平分该圆,则直线l2的方程为()。
A。
x-y+1=0.B。
x-y-1=0.C。
x+y-1=0.D。
x+y+1=08.在等差数列{an}中,an>0,且a1+a2+⋯+a10=30,则a5⋅a6的最大值是()。
A。
4.B。
6.C。
9.D。
369.已知变量x,y满足约束条件2x-y≤2,x-y+1≥0,设z=x^2+y^2,则z的最小值是()。
A。
1.B。
2.C。
11.D。
3210.定义在R上的奇函数f(x),当x≥0时,f(x)=2,当x<0时,f(x)=1-|x-3|,则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()。
陕西省2025届高三第一次模拟联考文科数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|-1≤x<2},B={x|0≤x≤3},则A∩B=()A. B. C. D.【答案】B【解析】【分析】利用集合的交集的定义,干脆运算,即可求解.【详解】由题意,集合A={x|-1≤x<2},B={x|0≤x≤3},∴A∩B={x|0≤x<2}.故选:B.【点睛】本题主要考查了集合的交集运算,其中解答中熟记集合的交集定义和精确运算是解答的关键,着重考查了运算与求解实力,属于基础题.2.复数i(1+2i)的模是()A. B. C. D.【答案】D【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式,即可求解.【详解】由题意,依据复数的运算可得,所以复数的模为,故选D.【点睛】本题主要考查了复数代数形式的乘除运算,考查复数模的求法,其中解答中熟记复数的运算,以及复数模的计算公式是解答的关键,着重考查了运算与求解实力,属于基础题。
3.若抛物线y2=2px的焦点坐标为(2,0),则准线方程为()A. B. C. D.【答案】A【解析】【分析】抛物线y2=2px的焦点坐标为(2,0),求得的值,即可求解其准线方程.【详解】由题意,抛物线y2=2px的焦点坐标为(2,0),∴,解得p=4,则准线方程为:x=-2.故选:A.【点睛】本题主要考查了抛物线的标准方程及其性质,其中解答中熟记抛物线的标准方程,及其简洁的几何性质,合理计算是解答的关键,着重考查了运算与求解实力,属于基础题.4.一个空间几何体的三视图如图所示,则该几何体的表面积为()A. 64B.C. 80D.【答案】B【解析】【分析】依据三视图画出几何体的直观图,推断几何体的形态以及对应数据,代入公式计算即可.【详解】几何体的直观图是:是放倒的三棱柱,底面是等腰三角形,底面长为4,高为4的三角形,棱柱的高为4,所求表面积:.故选:B.【点睛】本题主要考查了几何体的三视图,以及几何体的体积计算,其中解答中推断几何体的形态与对应数据是解题的关键,着重考查了推理与计算实力,属于基础题。
高三模拟考试数学试卷(文科)一、选择题:本大题共12 小题,每题5 分,共60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的. 1.函数f ( x )=的定义域为()A .(﹣ ∞, 0]B .(﹣ ∞, 0)C .( 0, )D .(﹣ ∞, )2.复数 的共轭复数是 ()A .1﹣ 2iB . 1+2iC .﹣ 1+2iD .﹣ 1﹣ 2i3.已知向量 =( λ, 1), =( λ +2, 1),若 | + |=| ﹣|,则实数 λ的值为 ()A .1B . 2C .﹣ 1D .﹣ 24.设等差数列 {a } 的前 n 项和为 S ,若 a=9, a =11,则 S 等于()nn469 A .180 B . 90C . 72D . 105.已知双曲线 ﹣ =1(a > 0, b > 0)的离心率为 ,则双曲线的渐近线方程为 ( )A .y= ±2xB . y= ± xC . y= ± xD . y= ± x6.以下命题正确的个数是 ( )A . “在三角形 ABC 中,若 sinA > sinB ,则 A > B ”的抗命题是真命题; B .命题 p : x ≠2或 y ≠3,命题 q : x+y ≠5则 p 是 q 的必需不充分条件;C . “?x ∈R , x 3﹣x 2+1≤ 0的”否定是 “?x ∈R ,x 3﹣ x 2+1>0”;aba bD . “若 a > b ,则 2 > 2 ﹣ 1”的否命题为 “若 a ≤b,则 2 ≤2﹣ 1”. A .1 B . 2 C . 3D . 47.已知某几何体的三视图以以以下图,则这个几何体的外接球的表面积等于()A .B. 16πC. 8πD.8.按以以以下图的程序框图运转后,输出的结果是63,则判断框中的整数M 的值是 ()A .5B. 6C.7D.89.已知函数f( x) =+2x,若存在满足0≤x0≤3的实数x0,使得曲线y=f ( x)在点( x0, f( x0))处的切线与直线有一个负号) ()x+my ﹣10=0垂直,则实数m 的取值范围是(三分之一前A .C. D .10.若直线2ax﹣ by+2=0 ( a> 0, b> 0)恰好均分圆22﹣4y+1=0 的面积,则的x +y +2x最小值 ()A .B.C. 2D. 411.设不等式组表示的地域为12 2≤1表示的平面地域为Ω2Ω ,不等式x +y.若Ω1 与Ω2 有且只有一个公共点,则m 等于 ()A .﹣B.C.±D.12.已知函数 f ( x) =sin( x+)﹣在上有两个零点,则实数m 的取值范围为()A .B .D.二、填空题:本大题共 4 小题,每题 5 分.13.设函数 f (x) =,则方程f( x) =的解集为__________ .14.现有 10 个数,它们能构成一个以随机抽取一个数,则它小于8 的概率是1 为首项,﹣ 3 为公比的等比数列,若从这__________.10 个数中15.若点 P( cos α, sin α)在直线y=﹣ 2x 上,则的值等于__________.16. 16、如图,在正方体 ABCD ﹣ A 1B1C1D1中, M 、N 分别是棱 C1D1、 C1C 的中点.以下四个结论:①直线 AM 与直线 CC1订交;②直线 AM 与直线 BN 平行;③直线 AM 与直线 DD 1异面;④直线 BN 与直线 MB 1异面.此中正确结论的序号为__________ .(注:把你以为正确的结论序号都填上)三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.在△ ABC 中,角 A ,B , C 的对应边分别是 a, b, c 满足 b 2+c2=bc+a2.(Ⅰ )求角 A 的大小;(Ⅱ )已知等差数列 {a n1 2 48}} 的公差不为零,若 a cosA=1 ,且 a ,a,a 成等比数列,求 {的前 n 项和 S n.18.如图,四边形 ABCD 为梯形, AB ∥ CD,PD ⊥平面 ABCD ,∠BAD= ∠ADC=90°,DC=2AB=2a , DA=,E 为 BC 中点.(1)求证:平面 PBC⊥平面 PDE;(2)线段 PC 上能否存在一点 F,使 PA∥平面 BDF ?如有,请找出详尽地点,并进行证明;若无,请解析说明原由.19.在中学生综合素质讨论某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校 2014-2015学年高一年级有男生500 人,女生 400 人,为了认识性别对该维度测评结果的影响,采纳分层抽样方法从2014-2015 学年高一年级抽取了45 名学生的测评结果,并作出频数统计表以下:表 1:男生等级优秀合格尚待改进频数15x5表 2:女生等级优秀合格尚待改进频数153y(1)从表二的非优秀学生中随机采纳 2 人讲话,求所选 2 人中恰有 1 人测评等级为合格的概率;(2)从表二中统计数据填写下面2×2 列联表,并判断能否有90%的掌握以为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计参照数据与公式:K2=,此中n=a+b+c+d .临界值表:P( K2>k0)k020.已知椭圆 C :( a > b >0)的右焦点 F 1 与抛物线 y 2=4x 的焦点重合,原点到过点 A (a , 0),B ( 0,﹣ b )的直线的距离是.(Ⅰ )求椭圆 C 的方程;(Ⅱ )设动直线 l=kx+m 与椭圆 C 有且只有一个公共点P ,过 F 11的垂线与直线l 交于作 PF 点 Q ,求证:点 Q 在定直线上,并求出定直线的方程.21.已知函数 f ( x ) =x 2﹣ ax ﹣ alnx ( a ∈R ). (1)若函数 f ( x )在 x=1 处获得极值,求 a 的值.(2)在( 1)的条件下,求证: f ( x ) ≥﹣ + ﹣ 4x+;(3)当 x ∈B .(﹣ ∞, 0)C .( 0, )D .(﹣ ∞, )1.考点:函数的定义域及其求法. 专题:函数的性质及应用.解析:依据函数 f ( x )的解析式,列出不等式,求出解集即可.解答:解: ∵ 函数 f (x ) =,∴ l g (1﹣ 2x ) ≥0,即 1﹣ 2x ≥1, 解得 x ≤0;∴ f (x )的定义域为(﹣ ∞, 0].应选: A .讨论:此题观察了依据函数的解析式,求函数定义域的问题,是基础题目.2.复数的共轭复数是 ()A .1﹣ 2iB . 1+2iC .﹣ 1+2iD .﹣ 1﹣ 2i考点:复数代数形式的乘除运算;复数的基本看法. 专题:计算题.解析:第一进行复数的除法运算,分子和分母同乘以分母的共轭复数,获得 a+bi 的形式,依据复数的共轭复数的特色获得结果.解答:解:因为,所以其共轭复数为 1+2i .应选 B讨论:此题主要观察复数的除法运算以及共轭复数知识, 此题解题的要点是先做出复数的除法运算,获得复数的代数形式的标准形式,此题是一个基础题.3.已知向量 =( λ, 1), =( λ +2,1),若 | + |=| ﹣ |,则实数 λ的值为 ( )A .1B.2C.﹣ 1D.﹣ 2考点:平面向量数目积的运算.专题:平面向量及应用.解析:先依据已知条件获得,带入向量的坐标,此后依据向量坐标求其长度并带入即可.解答:解:由得:;带入向量的坐标便获得:|( 2λ +2,22 2) | =|(﹣2,0)| ;∴( 2 λ +2)2+4=4 ;∴解得λ=﹣ 1.应选 C.讨论:观察向量坐标的加法与减法运算,依据向量的坐标能求其长度.4.设等差数列 {a } 的前 n 项和为 S ,若 a =9, a =11,则 S 等于 ()n n469A .180B.90C. 72D. 10考点:等差数列的前n 项和;等差数列的性质.专题:计算题.解析:由 a4=9, a6=11 利用等差数列的性质可得a1+a9=a4+a6=20 ,代入等差数列的前n 项和公式可求.解答:解:∵ a46=9,a =11由等差数列的性质可得a 1+a9=a4+a6=20应选 B讨论:此题主要观察了等差数列的性质若m+n=p+q ,则 a m+a n=a p+a q和数列的乞降.解题的要点是利用了等差数列的性质:利用性质可以简化运算,减少计算量.5.已知双曲线﹣=1(a> 0, b> 0)的离心率为,则双曲线的渐近线方程为()A . y= ±2xB . y= ±x C. y= ± x D. y= ±x考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.解析:运用离心率公式,再由双曲线的a ,b ,c 的关系,可得 a , b 的关系,再由渐近线方 程即可获得. 解答: 解:由双曲线的离心率为,则 e= =,即 c= a ,b= == a ,由双曲线的渐近线方程为 y=x ,即有 y= x .应选 D .讨论:此题观察双曲线的方程和性质,观察离心率公式和渐近线方程的求法,属于基础题.6.以下命题正确的个数是 ( )A . “在三角形ABC 中,若 sinA > sinB ,则 A > B ”的抗命题是真命题;B .命题 p : x ≠2或 y ≠3,命题 q : x+y ≠5则 p 是 q 的必需不充分条件;C . “?x ∈R , x 3﹣x 2+1≤ 0的”否定是 “?x ∈R ,x 3﹣ x 2+1>0”;aba bD . “若 a > b ,则 2 > 2 ﹣ 1”的否命题为 “若 a ≤b,则 2 ≤2﹣ 1”.A .1B . 2C . 3D . 4 考点:命题的真假判断与应用. 专题:简单逻辑.解析: A 项依据正弦定理以及四种命题之间的关系即可判断;B 项依据必需不充分条件的看法即可判断该命题能否正确;C 项依据全称命题和存在性命题的否定的判断;D 项写出一个命题的否命题的要点是正确找出原命题的条件和结论. 解答:解:关于 A 项 “在△ ABC 中,若 sinA > sinB ,则 A > B ”的抗命题为 “在 △ABC 中,若 A >B ,则 sinA > sinB ”,若 A >B ,则 a > b ,依据正弦定理可知 sinA >sinB , ∴ 抗命题是真命题, ∴A 正确;关于 B 项,由 x ≠2,或 y ≠3,得不到 x+y ≠5,比方 x=1 , y=4, x+y=5 ,∴ p 不是 q 的充分条件; 若 x+y ≠5,则必定有 x ≠2且 y ≠3,即能获得 x ≠2,或 y ≠3, ∴ p 是 q 的必需条件;∴p 是 q 的必需不充分条件,所以 B 正确;关于 C 项, “?x ∈R , x 3﹣x 2+1≤ 0的”否定是 “? x ∈R , x 3﹣ x 2+1> 0”;所以 C 不对.abab关于 D 项, “若 a >b ,则 2 > 2 ﹣1”的否命题为 “若 a ≤b,则 2 ≤2﹣ 1”.所以 D 正确. 应选: C .讨论:此题主要观察各种命题的真假判断,涉及的知识点好多,综合性较强.7.已知某几何体的三视图以以以下图,则这个几何体的外接球的表面积等于 ( )A .B . 16πC . 8πD .考点:由三视图求面积、体积. 专题:空间地点关系与距离.解析: 由三视图知,几何体是一个正三棱柱, 三棱柱的底面是一边长为2 的正三角形, 侧棱长是 2,先求出其外接球的半径,再依据球的表面公式即可做出结果.解答:解:由三视图知,几何体是一个正三棱柱,三棱柱的底面是边长为2 的正三角形,侧棱长是 2,如图,设 O 是外接球的球心, O 在底面上的射影是 D ,且 D 是底面三角形的重心,AD 的长是底面三角形高的三分之二∴AD=× =,在直角三角形OAD中, AD=, OD==1∴OA==则这个几何体的外接球的表面积4π×O A 2=4π×=应选: D .讨论: 此题观察由三视图求几何体的表面积, 此题是一个基础题, 题目中包括的三视图比较简单,几何体的外接球的表面积做起来也特别简单,这是一个易得分题目.8.按以以以下图的程序框图运转后,输出的结果是 63,则判断框中的整数 M 的值是 ( )A .5B . 6C . 7D . 8考点:程序框 . :算法和程序框 .解析:依据 意,模 程序框 的运转 程,得出S 算了5 次,从而得出整数M 的 .解答:解:依据 意,模 程序框 运转 程, 算S=2×1+1 ,2×3+1 , 2×7+1 , 2×15+1 , 2×31+1, ⋯ ; 当 出的 S 是 63 ,程序运转了 5 次,∴判断框中的整数 M=6 .故 : B .点 : 本 考 了程序框 的运转 果的 , 解 模 程序框 的运转 程, 以便得出正确的 .9.已知函数 f ( x ) =+2x ,若存在 足 0≤x≤3的 数 x ,使得曲 y=f ( x )在点( x 0, f ( x 0)) 的切 与直 x+my 10=0 垂直, 数 m 的取 范 是(三分之一前有一个 号) ( )A .C .D .考点:利用 数研究曲 上某点切 方程;直 的一般式方程与直 的垂直关系.: 数的看法及 用;直 与 .解析:求出函数的 数,求出切 的斜率,再由两直 垂直斜率之1,获得 4x 02x 0 +2=m ,再由二次函数求出最 即可.解答:解:函数 f ( x )=+2x 的 数 f ′( x ) = x 2+4x+2 .2,曲 f ( x )在点( x 0, f ( x 0)) 的切 斜率 4x 0 x 0 +2因为切 垂直于直 x+my 10=0, 有 4x 0 x 02+2=m ,因为 0≤x 00 02 0 2+6,≤3,由 4xx +2= ( x 2)称 x 0=2,当且 当 x 0=2,获得最大 6;当 x 0=0 ,获得最小 2.故 m 的取 范 是.应选: C .讨论: 此题观察导数的几何意义: 曲线在某点处的切线的斜率, 观察两直线垂直的条件和二次函数最值的求法,属于中档题.10.若直线 2ax ﹣ by+2=0 ( a > 0, b > 0)恰好均分圆 x 2+y 2+2x ﹣4y+1=0 的面积,则的最小值()A .B .C .2D .4考点:直线与圆的地点关系;基本不等式. 专题:计算题;直线与圆.解析:依据题意,直线 2ax ﹣by+2=0 经过已知圆的圆心,可得a+b=1,由此代换得:=(a+b )()=2+ ( +),再联合基本不等式求最值,可得的最小值.解答: 解: ∵ 直线 2ax ﹣ by+2=0 ( a > 0, b > 0)恰好均分圆 x 2+y 2+2x ﹣4y+1=0 的面积,∴圆 x 2+y 2 +2x ﹣ 4y+1=0 的圆心(﹣ 1, 2)在直线上,可得﹣ 2a ﹣ 2b+2=0 ,即 a+b=1 所以,=(a+b )( )=2+ ( + )∵ a > 0, b > 0,∴ + ≥2=2,当且仅当 a=b 时等号成立由此可得的最小值为 2+2=4故答案为: D讨论: 此题给出直线均分圆面积, 求与之有关的一个最小值. 重视观察了利用基本不等式求最值和直线与圆地点关系等知识,属于中档题.11.设不等式组 表示的地域为1 2 2 2Ω ,不等式 x +y ≤1表示的平面地域为 Ω .若Ω1 与 Ω2 有且只有一个公共点,则m 等于 ()A .﹣B .C . ±D .考点:简单线性规划.专题:不等式的解法及应用.解析:作出不等式组对应的平面地域,利用 Ω1 与 Ω2 有且只有一个公共点,确立直线的位置即可获得结论 解答:解:( 1)作出不等式组对应的平面地域,若Ω1 与 Ω2 有且只有一个公共点,则圆心 O 到直线 mx+y+2=0 的距离 d=1,即d==1,即m 2=3,解得 m=.应选: C.讨论:此题主要观察线性规划的应用,利用直线和圆的地点关系是解决此题的要点,利用数形联合是解决此题的基本数学思想.12.已知函数 f ( x) =sin( x+)﹣在上有两个零点,则实数m 的取值范围为() A.B.D.考点:函数零点的判判断理.专题:函数的性质及应用.解析:由 f ( x) =0 得 sin( x+)=,此后求出函数y=sin ( x+)在上的图象,利用数形联合即可获得结论.解答:解:由 f( x) =0 得 sin( x+)=,作出函数y=g( x) =sin( x+)在上的图象,如图:由图象可知当x=0 时, g( 0)=sin=,函数 g( x)的最大值为1,∴要使 f( x)在上有两个零点,则,即,应选: B讨论:此题主要观察函数零点个数的应用,利用三角函数的图象是解决此题的要点.二、填空:本大共 4 小,每小 5 分.13.函数 f( x)=,方程f( x)=的解集{1,} .考点:函数的零点.:函数的性及用.解析:合指数函数和数函数的性,解方程即可.解答:解:若 x≤0,由 f( x)=得f(x)=2x==2﹣1,解得 x= 1.若 x> 0,由 f (x) = 得 f( x) =|log2x|= ,即 log2x= ±,由 log2x= ,解得 x=.由 log2x=,解得x== .故方程的解集 { 1,} .故答案: { 1,} .点:本主要考分段函数的用,利用指数函数和数函数的性及运算是解决本的关.14.有 10 个数,它能构成一个以 1 首, 3 公比的等比数列,若从10 个数中随机抽取一个数,它小于8 的概率是.考点:等比数列的性;古典概型及其概率算公式.:等差数列与等比数列;概率与.解析:先由意写出成等比数列的 10 个数,此后找出小于 8 的的个数,代入古典概的算公式即可求解解答:解:由意成等比数列的10 个数: 1, 3,( 3)2,( 3)3⋯( 3)9此中小于8 的有: 1, 3,( 3)3,( 3)5,( 3)7,( 3)9共 6 个数10 个数中随机抽取一个数,它小于8 的概率是 P=故答案:点:本主要考了等比数列的通公式及古典概率的算公式的用,属于基15.若点 P( cos α, sin α)在直y= 2x 上,的等于.考点:二倍角的余弦;运用引诱公式化简求值.专题:三角函数的求值.解析:把点 P 代入直线方程求得 tan α的值,原式利用引诱公式化简后,再利用全能公式化简,把 tan α的值代入即可.解答:解:∵点 P( cosα, sin α)在直线y=﹣ 2x 上,∴s in α=﹣2cos ,α即 tan α=﹣2,则 cos( 2α+)=sin2α===﹣.故答案为:﹣讨论:此题观察了二倍角的余弦函数公式,以及运用引诱公式化简求值,娴熟掌握公式是解此题的要点.16. 16、如图,在正方体 ABCD ﹣ A 1B1C1D1中, M 、N 分别是棱 C1D1、 C1C 的中点.以下四个结论:①直线 AM 与直线 CC1订交;②直线 AM 与直线 BN 平行;③直线 AM 与直线 DD 1异面;④直线 BN 与直线 MB 1异面.此中正确结论的序号为③④.(注:把你以为正确的结论序号都填上)考点:棱柱的结构特色;异面直线的判断.专题:计算题;压轴题.解析:利用两条直线是异面直线的判断方法来考据①③④ 的正误,② 要证明两条直线平行,从图形上发现这两条直线也是异面关系,获得结论.解答:解:∵直线 CC1在平面 CC1D1D 上,而 M ∈平面 CC1D1D, A ?平面 CC1D1D,∴直线 AM 与直线 CC1异面,故①不正确,∵直线 AM 与直线 BN 异面,故②不正确,∵直线 AM 与直线 DD 1既不订交又不平行,∴直线 AM 与直线 DD 1异面,故③正确,利用①的方法考据直线 BN 与直线 MB 1异面,故④正确,总上可知有两个命题是正确的,故答案:③④点:本考异面直的判断方法,考两条直的地点关系,两条直有三种地点关系,异面,订交或平行,注意判断常出的一个法,两条直没有交点,两条直平行,种法是的.三、解答(解答写出文字明,明程或演算步.)17.在△ ABC 中,角 A ,B , C 的分是a, b, c 足 b 2+c2=bc+a2.(Ⅰ )求角 A 的大小;(Ⅱ )已知等差数列 {a n}1 2 48}的公差不零,若 a cosA=1 ,且 a ,a,a 成等比数列,求 {的前 n 和 S n.考点:数列的乞降;等比数列的性;余弦定理.:等差数列与等比数列.解析:(Ⅰ)由已知条件推出=,所以 cosA= ,由此能求出 A=.(Ⅱ )由已知条件推出(2a1+3d) =( a1+d)( a1+7d),且 d≠0,由此能求出 a n=2n ,从而得以==,而能求出 {} 的前 n 和 S n.解答:解:(Ⅰ)∵ b 222 +c a =bc,∴=,∴c osA= ,∵A ∈(0,π),∴A=.(Ⅱ ) {a n} 的公差d,∵a1cosA=1 ,且 a2, a4, a8成等比数列,∴a1==2,且=a2?a8,∴( a1+3d)2=( a1+d)( a1+7d),且 d≠0,解得 d=2 ,∴a n=2n ,∴==,∴S n=( 1)+() +() +⋯+()=1=.点:本考角的大小的求法,考数列的前n 和的求法,是中档,解要真,注意裂乞降法的合理运用.18.如图,四边形ABCD 为梯形, AB ∥ CD,PD ⊥平面 ABCD ,∠BAD= ∠ADC=90°,DC=2AB=2a , DA=,E为BC中点.(1)求证:平面 PBC⊥平面 PDE;(2)线段 PC 上能否存在一点 F,使 PA∥平面 BDF ?如有,请找出详尽地点,并进行证明;若无,请解析说明原由.考点:平面与平面垂直的判断;直线与平面平行的判断.专题:空间地点关系与距离.解析:( 1)连接 BD ,即可获得 BD=DC ,而 E 又是 BC 中点,从而获得 BC ⊥DE,而由 PD⊥平面 ABCD 即可获得 BC ⊥PD,从而得出 BC ⊥平面 PDE ,依据面面垂直的判判断理即可得出平面PBC⊥平面 PDE;(2)连接AC ,交BD于 O,依据相似三角形的比率关系即可获得AO=,从而在PC 上找 F,使得PF=,连接OF,从而可说明PA∥平面BDF ,这样即找到了满足条件的 F 点.解答:解:( 1)证明:连接BD ,∠ BAD=90°,;∴B D=DC=2a , E 为 BC 中点,∴ BC ⊥DE;又 PD⊥平面 ABCD , BC ? 平面 ABCD ;∴BC ⊥ PD, DE∩ PD=D;∴BC ⊥平面 PDE;∵BC ? 平面 PBC;∴平面 PBC⊥平面 PDE;(2)如上图,连接 AC ,交 BD 于 O 点,则:△AOB ∽△ COD ;∵DC=2AB ;∴;∴;∴在 PC 上取 F,使;连接 OF,则 OF∥ PA,而 OF? 平面 BDF ,PA? 平面 BDF ;∴PA∥平面 BDF .讨论:观察直角三角形边的关系,等腰三角形中线也是高线,以及线面垂直的性质,线面垂直的判判断理,相似三角形边的比率关系,线面平行的判判断理.19.在中学生综合素质讨论某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校 2014-2015学年高一年级有男生500 人,女生400 人,为了认识性别对该维度测评结果的影响,采纳分层抽样方法从2014-2015 学年高一年级抽取了 45 名学生的测评结果,并作出频数统计表以下:表 1:男生等级优秀合格尚待改进频数15x5表 2:女生等级优秀合格尚待改进频数153y(1)从表二的非优秀学生中随机采纳 2 人讲话,求所选 2 人中恰有 1 人测评等级为合格的概率;(2)从表二中统计数据填写下面2×2 列联表,并判断能否有90%的掌握以为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计参照数据与公式:K2=,此中n=a+b+c+d .临界值表:P( K 2> k0)k0考点:独立性检验.专题:概率与统计.解析:( 1)依据分层抽样,求出x 与y,获得表 2 中非优秀学生共 5 人,从这 5 人中任选2人的全部可能结果共10 种,此中恰有 1 人测评等级为合格的状况共 6 种,所以概率为;(2)依据 1﹣ 0.9=0.1 , P ( K 2≥) == =1.125 <,判断出没有 90%的掌握以为 “测评结果优秀与性别有关”.解答:解:( 1)设从 2014-2015 学年高一年级男生中抽出 m 人,则 = ,m=25∴ x =25 ﹣ 15﹣ 5=5 , y=20 ﹣ 18=2表 2 中非优秀学生共 5 人,记测评等级为合格的 3 人为 a ,b ,c ,尚待改进的2 人为则从这 5 人中任选 2 人的全部可能结果为A ,B ,(a , b ),(a , c ),( a ,A ),(a , B ),( b , c ),( b , A ),( b ,B ),(c , A ),( c , B ),( A ,B )共 10 种,记事件 C 表示 “从表二的非优秀学生 5 人中随机采纳 2 人,恰有 1 人测评等级为合格 ”则 C 的结果为:(a , A ),( a , B ),( b ,A ),(b , B ),( c , A ),( c ,B ),共 6 种,∴P ( C ) = = ,故所求概率为 ;( 2)男生 女生总计 优秀 15 1530 非优秀 10515 总计25 2045∵1﹣ 0.9=0.1 , P ( K 2≥) == =1.125 <∴没有 90%的掌握以为 “测评结果优秀与性别有关 ”.讨论:此题观察了古典概率模型的概率公式,独立性检验,属于中档题.20.已知椭圆 C :( a > b >0)的右焦点 F 1 与抛物线 y 2=4x 的焦点重合,原点到过点 A (a , 0),B ( 0,﹣ b )的直线的距离是 .(Ⅰ )求椭圆 C 的方程;(Ⅱ )设动直线 l=kx+m 与椭圆 C 有且只有一个公共点 P ,过 F 1 作 PF 1 的垂线与直线 l 交于点 Q ,求证:点 Q 在定直线上,并求出定直线的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.解析:( Ⅰ)由抛物线的焦点坐标求得2 2c=1,联合隐含条件获得 a =b +1,再由点到直线的距 离公式获得关于 a , b 的另一关系式,联立方程组求得 a , b 的值,则椭圆方程可求;(Ⅱ )联立直线方程和椭圆方程,消去y 获得( 4k 2+3) x 2+8kmx+4m 2﹣ 12=0 ,由鉴识式等 于 0 整理获得 4k 2﹣ m 2+3=0,代入( 4k 2+3)x 2+8kmx+4m 2﹣ 12=0 求得 P 的坐标,此后写出直线 F1Q 方程为,联立方程组,求得 x=4 ,即说明点 Q 在定直线 x=4 上.解答:(Ⅰ )解:由抛物线的焦点坐标为(1, 0),得 c=1,所以 a 2=b2+1 ①,直线 AB:,即 bx﹣ ay﹣ ab=0.∴原点 O 到直线 AB 的距离为② ,联立①②,解得: a 2=4, b2=3,∴椭圆 C 的方程为;(Ⅱ )由,得方程(4k2+3)x2+8kmx+4m2﹣12=0,(*)由直线与椭圆相切,得 m≠0且△=64k 2m2﹣ 4( 4k2+3 )( 4m2﹣ 12)=0,整理得: 4k 2﹣ m2+3=0 ,将 4k 2+3=m2,即 m2﹣ 3=4k2代入( * )式,得 m2x2+8kmx+16k2=0,即( mx+4k )2=0,解得,∴,又 F1(1,0),∴,则,∴直线 F1,Q 方程为联立方程组,得 x=4 ,∴点 Q 在定直线x=4 上.讨论:此题观察了椭圆方程的求法,观察了点到直线距离公式的应用,线的关系,训练了两直线交点坐标的求法,是中档题.观察了直线和圆锥曲21.已知函数(1)若函数f ( x) =x2﹣ ax﹣ alnx( a∈R).f( x)在 x=1 处获得极值,求 a 的值.(2)在(1)的条件下,求证: f ( x)≥﹣+﹣ 4x+;(3)当x∈解答:(1)解:,由题意可得 f ′( 1) =0,解得a=1;经检验, a=1 时(2)证明:由(f ( x)在 x=1 处获得极值,所以1)知, f( x) =x2﹣ x﹣ lnx .a=1.令,由,可知g( x)在(0,1)上是减函数,在(1, +∞)上是增函数,所以g( x)≥g( 1) =0 ,所以成立;(3)解:由x∈=8×=4.讨论:此题主要观察把极坐标方程化为直角坐标方程的方法,两角和差的余弦公式,属于基础题.24.已知函数 f ( x) =|2x﹣ a|+a.(1)若不等式 f( x)≤6的解集为(2)在( 1)的条件下,若存在实数{x| ﹣ 2≤x≤3},务实数a的值;n 使 f( n)≤m﹣f(﹣ n)成立,务实数m 的取值范围.考点:带绝对值的函数;绝对值不等式.专题:计算题;压轴题.解析:( 1)由 |2x﹣ a|+a ≤6得 |2x﹣ a| ≤6﹣a,再利用绝对值不等式的解法去掉绝对值,联合条件得出 a 值;(2)由( 1)知 f( x) =|2x﹣ 1|+1,令φ( n) =f ( n) +f (﹣ n),化简φ( n)的解析式,若存在实数 n 使 f ( n)≤m﹣ f (﹣ n)成立,只须 m 大于等于φ( n)的最大值即可,从而求出实数 m 的取值范围.解答:解:( 1)由 |2x﹣ a|+a ≤6得|2x﹣ a| ≤6﹣a,∴a﹣ 6 ≤ 2x﹣ a ≤6﹣ a,即 a﹣ 3 ≤ x ≤3,∴a﹣ 3=﹣ 2,∴a=1.(2)由( 1)知 f( x) =|2x﹣ 1|+1,令φ( n) =f ( n)+f (﹣ n),则φ( n) =|2n﹣ 1|+|2n+1|+2=∴φ(n)的最小值为4,故实数 m 的取值范围是 [4, +∞).讨论:此题观察绝对值不等式的解法,表现了等价转变的数学思想,表达式是解题的要点.利用分段函数化简函数。
2023届高三一轮复习联考(四)全国卷8.已知函数J(x)=屈s in(2x+0)—cos(2x+0),0 E(气],且f(O)=l,则0=re_6.A产4.B亢_3.c产2.D文科数学试题注意事项:l.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交 回。
考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x lx2<l},B = {x I O<x<2},则AnB=A.(—1, 2)2.(2+i)(2—3i)=A.l—i3.下列命题中的假命题是迈A.3 x E R, s in x=— 2A.—2B.25.函数f(x)=cos x+sin 2x的图象可能是yB.(—1,0)B.7—IyC.(O, 1)C.l—4iB.3 xER,ln x=—lC.'efxER,x2>0D.'efxER,3气>04.已知数列{a n}是各项均为正数的等差数列,a s=10,且a4• a6=96,则公差为C.—2或2D.4y yAXB c D16.已知a=lg—,b=cos l,c=z-2,则a,b,c的大小关系为2A.a<b<cB.a<c<bC.b<a<cxD.Cl,2)D.7—4iD.b<c<a.,7.如图,正方形ABCD中,E、F分别为AB、A D的中点,且BF=入B E+AXDµBD,则入十µ的值是1 EA.1B.—23D.2C.—2 B CX 2 y 2 ',9直线l:y=瓦x与椭圆C:勹+—=1交于P,Q两点,F是椭圆C的右焦点,且PP·QF=a z, b20,则椭圆的离心率为A.4—2祁B.2点—3C.点—l10.已知正数a,b满足矿+2矿=1,则a矿的最大值是A. 屈屈B. C.— D.—11如图所示,在正方体ABCD—A1B1C卫中,O,F分别为BD,AA]的中D,点,设二面角F—D10—B的平面角为a直线O F与平面B B丸D所成A,'\ \B角为p,则::;:三:高三三三三:三<言昙三三:个立体,被任一平行千这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等.上述原理在中国被称为祖睢原理,国外则一般称之为卡瓦列利原理.已知y将双曲线C:三——=1与直线y=土2围成的图形绕y轴8 2旋转一周得到一个旋转体E,则旋转体E的体积是昼2D二、填空题:本题共4小题,每小题5分,共20分。
高三数学模拟试题(一)一、选择题(5×10=50分)1. 设集合{}2|230A x x x =--<,{}|14B x x =≤≤,则AB =( )A .{}|13x x ≤<B .{}|13x x ≤≤C .{}|34x x <≤D . {}|34x x ≤≤ 2.若命题:|1|4p x +≤,命题2:56q x x <-,则p q ⌝⌝是的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 3.已知向量(1,),(1,),a n b n a b b ==--若2与垂直,则||a =( ) A .1B .2C .2D .44.过点)2,1(与圆221x y +=相切的直线方程是( ) A .1x =B .3450x y -+=C .34501x y x -+==或D .54301x y x -+==或5.已知函数⎩⎨⎧=x x x f 3log )(2 00≤>x x ,则))41((f f = ( )A .9B .19C .9-D .91-6.ABC ∆中,三边之比4:3:2::=c b a ,则最大角的余弦值等于( ) A .41 B .87 C .21- D .41-7.已知焦点在x 轴上的椭圆22219x y a +=的离心率是12e =,则a 的值为( ) A .23 B .3 C .32 D .12 8.若不等式4)2(2)2(2<-+-x a x a 的解集为R ,则实数a 的取值范围是( ) A .)2,2(- B .]2,2(- C .),2()2,(+∞--∞ D .)2,(-∞9.函数236()(04)1x x f x x x ++=≤≤+的最小值为( ) A .2 B .1 C .6 D .510. 已知函数()2sin()f x x ωϕ=+(0,0π)ωϕ><<的图象如图所示,则ω等于( )A .13 B .1 C .32D .2二、填空题(5×5=25分)11.若点(),9a 在函数3xy =的图象上,则tan6a π= 12.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是13.设y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥-≥+,1,1,1x y x y x 则y x z 2-=的最小值是_______14.已知数列{}n a 为等差数列,且28143,a a a ++=则()2313log a a +=_______ 15.若扇形的面积和弧长都是10,则这个扇形中心角的弧度数是____三、解答题(75分)16.(本题满分13分)已知集合{}|||2A x x a =-<,26|12x B x x +⎧⎫=>⎨⎬+⎩⎭. (1)求集合A 和集合B(2)若A B R =,求a 的取值范围17.(本小题满分13分)等比数列{}n a 中,已知142,16a a == (1)求数列{}n a 的通项公式(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S18.(本小题满分12分)已知向量a =(sin ,cos())x x π-,b =(2cos ,2cos )x x ,函数()1f x =⋅a b+.(1)求π()4f -的值;(2)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值,并求出相应的x 的值.19.(本小题满分13分)如图所示,已知三棱锥BPC A -中,,,AP PC AC BC M ⊥⊥为AB 中点D 为PB 中点,且PMB ∆为正三角形。
一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()。
A. (-∞, -√3] ∪ [√3, +∞)B. (-∞, √3] ∪ [√3, +∞)C. (-∞, -√3) ∪ (√3, +∞)D. (-∞, -√3) ∪ (-√3, √3) ∪ (√3, +∞)2. 下列命题中正确的是()。
A. 对于任意的实数x,都有x^2 ≥ 0B. 对于任意的实数x,都有x^3 ≥ 0C. 对于任意的实数x,都有x^4 ≥ 0D. 对于任意的实数x,都有x^5 ≥ 03. 已知等差数列{an}的首项a1 = 1,公差d = 2,则数列{an^2}的前n项和S_n 为()。
A. n(n+1)(2n+1)B. n(n+1)(2n+2)C. n(n+1)(2n+3)D. n(n+1)(2n+4)4. 下列函数中,是偶函数的是()。
A. f(x) = x^2 - 1B. f(x) = x^3 + 1C. f(x) = x^4 - xD. f(x) = x^5 - x5. 在△ABC中,角A、B、C的对边分别为a、b、c,若a^2 + b^2 = c^2,则△ABC是()。
A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形二、填空题(每小题5分,共25分)6. 函数f(x) = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, 2),则a、b、c的值分别为______。
7. 在等比数列{an}中,首项a1 = 3,公比q = 2,则第5项an = ______。
8. 已知函数f(x) = log2(x+1),若f(x)的值域为[1, 3],则x的取值范围为______。
9. 在△ABC中,角A、B、C的对边分别为a、b、c,若a+b+c=12,且a^2 + b^2 = 52,则c的值为______。
10. 设向量a = (1, 2),向量b = (2, 1),则向量a·b的值为______。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.已知复数z 满足2
(2)1i z -⋅=,则z 的虚部为
(A )
325i (B )325 (C )425i (D )425
2.已知集合2
{|},{1,0,1}A x x a B ===-,则1a =是A B ⊆的
(A )充分不必要条件(B )必要不充分条(C )充要条件(D )既不充分也不必要条件
3.设单位向量12,e e u r u u r 的夹角为120o
,122a e e =-r u r u u r ,则 ||a =r
(A )3 (B
(C )7 (D
4.已知等差数列{}n a 满足61020a a +=,则下列选项错误的是 (A )15150S =(B )810a =(C )1620a =(D )41220a a +=
5.一几何体的三视图如图所示,则该几何体的体积为 (A )43
π
-
(B )
8
3
(C )4π- (D
)12- 6.双曲线22
124
x y -=的顶点到其渐近线的距离为 (A
(B
(C
(D
7.周期为4的奇函数()f x 在[0,2]上的解析式为22,01
()log 1,12x x f x x x ⎧≤≤=⎨+<≤⎩,则
(2014)+(2015)f f =
(A )0 (B )1 (C )2 (D )3
8.已知,x y 满足约束条件224220220x y x y x y ⎧+≤⎪
--≤⎨⎪-+≥⎩
,则2z x y =+的最大值为
(A )2 (B
(C )4 (D
)
主视图
左视图
俯视图
第5题图
9.在ABC ∆中,内角C B A 、、的对边分别是c b a 、、,若22()6c a b =-+,ABC ∆的
C = (A ) (B ) (C ) (
D )
10.设()f x '为函数()f x 的导函数,已知2
1()()ln ,(1)2
x f x xf x x f '+==,则下列结论正
确的是
(A )()xf x 在(0,)+∞单调递增 (B )()xf x 在(1,)+∞单调递减 (C )()xf x 在(0,)+∞上有极大值
12 (D )()xf x 在(0,)+∞上有极小值12
第Ⅱ卷(非选择题 共100分)
二、填空题:本大题共5小题,每小题5分,共25分.
11.右面的程序框图输出的S 的值为_____________.
12.在区间[2,4]-上随机取一个点x ,若x 满足2x m ≤的概率为
14
则m =____________.
13.若点(,9)a 在函数x y =的图象上,则a =_______.
14.已知0,0x y >>且22x y +=,则2214
x y
+的最小值为15.函数2
13
()|2|122
f x x x x =-+-+的零点个数为___________.
三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.
3π
23
π6
π
56π
16.(本小题满分12分) 已知向量)2,cos (sin ),1,cos 2(x x x ωωω-=-=)0(>ω,
函数3)(+⋅=n m x f ,若函数)(x f 的图象的两个相邻对称中心的距离为2
π. (Ⅰ)求函数)(x f 的单调增区间; (Ⅱ)将函数)(x f 的图象先向左平移
4
π
个单位,然后纵坐标不变,横坐标缩短为原来的21倍,得到函数)(x g 的图象,当]2
,6[π
π∈x 时,求函数)(x g 的值域.
17.(本小题满分12分)一汽车厂生产A,B,C 三类轿车,某月的产量如下表(单位:辆):
按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (Ⅰ)求a 的值;
(Ⅱ)用分层抽样的方法在A ,B 类轿车中抽取一个容量为5的样本.将该样本看成一
个总体,从中任取2辆,求至少有1辆A 类轿车的概率; (Ⅲ)用随机抽样的方法从A,B 两类轿车中各抽
取4辆,进行综合指标评分,经检测它们 的得分如图,比较哪类轿车综合评分比较 稳定.
18.(本小题满分12分)已知 {}n a 是各项都为正数的数列,其前 n 项和为 n S ,且n S 为n a
1 2 9 4 2 3
6 3 8 5
A 类轿车得分
B 类轿车得分
与
1
n
a 的等差中项. (Ⅰ)求证:数列2
{}n S 为等差数列;
(Ⅱ)求数列{}n a 的通项公式;
(Ⅲ)设(1),n
n n
b a -=求{}n b 的前100项和.
19.(本小题满分12分)如图:¼BCD 是直径为的半圆,O 为圆心,C 是»BD 上一点,
且»»2BC
CD =.DF CD ⊥,且2DF =
,BF =,E 为FD 的中点,Q 为BE 的中点,R 为FC 上一点,且3FR RC =. (Ⅰ) 求证: 面BCE ⊥面CDF ; (Ⅱ)求证:QR ∥平面BCD ;
(Ⅲ)求三棱锥F BCE -的体积.
20.(本小题满分13分)已知函数(),ln x
f x ax x
=
+1x >. (Ⅰ)若()f x 在()1,+∞上单调递减,求实数a 的取值范围;
B
E
D
(Ⅱ)若2a =,求函数()f x 的极小值;
(Ⅲ)若方程(2)ln 0x m x x -+=在(1,]e 上有两个不等实根,求实数m 的取值范围.
21.(本小题满分14分)已知椭圆22
22:1(0)x y C a b a b
+=>>的离心率3e =,它的一
个顶点在抛物线2
x =的准线上.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设1122(,),(,)A x y B x y 是椭圆C 上两点,已知1122(,),(,)x y x y
m n a b a b
==u r r ,
且0m n ⋅=u r r
.
(ⅰ)求OA OB ⋅u u u r u u u r
的取值范围;
(ⅱ)判断OAB ∆的面积是否为定值?若是,求出该定值,不是请说明理由.。