数学人教版九年级上册2414圆周角第一课时14圆周角》
- 格式:pptx
- 大小:6.60 MB
- 文档页数:18
人教版义务教育课程标准实验教科书九年级上册
24.1.4圆周角(第1课时)教学设计
一、教材分析
1、地位作用:本课是人教版《数学》九年级(上)第24章:圆周角,是在圆的基本概念和性质以及圆心角概念和性质的基础上对圆周角的性质的探索,圆周角的性质在圆的有关证明、作图、计算中有着广泛的应用,在对圆与其他平面图形的研究中起着桥梁和纽带的作用.
2、教学目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.
3、教学重、难点
重点:经历探索“圆周角与圆心角的关系”的过程;
难点:了解圆周角的分类、用化归思想合情推理验证“圆周角与圆心角的关系”
突破难点的方法:观察发现,总结方法。
二、教学准备:课件、圆规、三角板、多媒体投影仪
三、教学过程
是我们前面学习过的什么
如果顶点不在圆心而在圆上,则得到如右图的新的角
【讨论】如何验证第二和第三种情况?
人教版数学九年级上册24.1.4 圆周角(第一课时)教案设计。
《24.1.4 圆周角》教案第1课时圆周角的概念和圆周角定理教学目标1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角。
2.通过学生的探索过程,培养学生的动手操作、自主探索和合作交流的能力。
3.通过操作交流等活动,培养学生互相帮助、团结协作、互相讨论的团队精神,培养学生学习数学的兴趣。
教学重点圆周角定理及其推论的探究与应用。
教学难点圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用。
课时安排1课时教学方法启发引导、合作探究、拓展新知课前准备课件、课本等教学过程一、导入新知活动:请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?点评:1.我们把顶点在圆心的角叫圆心角.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这节课,我们就一起来学习《圆周率的概念和圆周角定理》。
(板书课题)二、探究新知(一)师生互动,启发猜想1.摆一摆:一条弧对的圆心角有几个,圆周角有几个?学生利用手中的学具和皮筋,通过由实验、观察等方法可得出:一条弧对的圆心角只有一个,圆周角有无数个;2.找一找:圆心与圆周角有几种位置关系?充分的活动交流后,教师挑选有代表性的几个小组派代表在展台上展示图片,说明圆心与圆周角的位置关系:①圆心O在∠BAC的内部②圆心O在∠BAC的一边上③圆心O在∠BAC的外部请同学们思考除这三种位置关系外是否还有遗漏?分别做出这三个图中的圆心角∠BOC,①圆心O在∠BAC的内部②圆心O在∠BAC的一边上③圆心O在∠BAC的外部3.量一量:同一条弧所对的圆周角∠BAC与圆心角∠BOC的度数,你有什么发现?(二)观察猜想,寻找规律1.教师出示同一条弧所对圆周角为90°,圆心角为180°和同一条弧所对圆周角为45°,圆心角为90°的特殊情况的图形.提出问题:在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系.由于情况特殊,学生观察、测量后,容易得出:对着同一条弧的圆周角是圆心角的一半.2.教师提出:在一般情况下,对着同一条弧的圆周角还是圆心角的一半吗?通过上面的特例,学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半.(三)动手画图,证明定理1.猜想是否正确,还有待证明.教师引导学生结合命题,画出图形,写出已知、求证.2.先分小组交流画出的图形,议一议:所画图形是否相同?所画图形是否合理?3.利用实物投影在全班交流,得到三种情况.若三种位置关系未出现全,教师利用电脑演示同一条弧所对圆周角的顶点在圆周上运动的过程,得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系,得到圆心角的顶点在圆周角的一边上、内部、外部三种情况.4.引导学生选一种最特殊、最容易证明的“圆心角的顶点在圆周角的一边上”进行证明,写出证明过程,教师点评.5.引导学生通过添加辅助线,把“圆心角的顶点在圆周角的内部、外部”转化成“圆心角的顶点在圆周角的一边上”的情形,进行证明,若学生不能构造过圆周角和圆心角顶点的直径,教师给予提示.然后小组交流讨论,上台展示证明过程,教师点评证明过程.6.将“命题”改为“定理”,即“圆周角定理”.三、随堂练习1.教材第88页练习第1题.2.如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.3.如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.答案:1.略;2.120°;3.120°.四、归纳新知1.圆周角概念及定理.2.类比从一般到特殊的数学方法及分类讨论、转化与化归的数学思想.五、教后反思。