九年级数学圆周角
- 格式:ppt
- 大小:325.00 KB
- 文档页数:6
九年级下册数学圆周角定理一、圆周角定理的定义圆周角定理指的是,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
用数学表达式表示为:在同圆或等圆中,若弧AB与弧CD相等,则AB所对的圆周角∠ACB = CD所对的圆周角∠ADC,且∠ACB = ∠ADC = ∠AOB / 2(其中O为圆心,A、B、C、D为各点)。
二、圆周角定理的证明证明圆周角定理可以采用以下步骤:1. 根据题目给出的条件,作直径上的圆周角。
2. 连接圆心和圆周角的顶点,并将直径平分该角。
3. 由于直径平分该角,所以该角是直角的一半。
4. 由于直角的一半是45度,所以该圆周角等于45度。
5. 根据等腰三角形的性质,我们可以证明圆周角所对的弧等于半圆的弧。
6. 由此可以得出结论,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
三、圆周角定理的应用圆周角定理是解决几何问题的重要工具之一,它可以应用于以下方面:1. 确定圆的中心:通过测量同弧所对的圆周角的大小,可以确定圆的中心。
2. 计算角度:通过圆周角定理,可以计算出圆中任意角度的大小。
3. 证明等腰三角形:利用圆周角定理可以证明等腰三角形的一些性质和判定方法。
4. 解决几何问题:利用圆周角定理可以解决一些与圆有关的几何问题。
四、圆周角定理的推论1. 同弧或等弧所对的圆周角相等;反之,同弧或等弧所对的圆周角相等。
2. 在同圆或等圆中,相等的圆周角所对的弧相等;反之,在同圆或等圆中,相等的弧所对的圆周角相等。
3. 在同圆或等圆中,如果两个圆周角分别是α和β,那么它们所对的弧也满足|α - β| = |⊙o中相等的弧间的比例差|。
这些推论也可以应用于多个等圆的公共点处的情况。
第五节圆周角知识点梳理【知识点一】圆周角定理1.圆周角的定义:顶点在圆上,两边都和圆相交的角叫做圆周角2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半【知识点二】圆周角定理的推论推论1:半圆(或直径)所对的圆周角是直径;90o的圆周角所对的弦是直径推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等典例分析【题型一】圆周角的识别【例1】如图,指出图中的圆周角。
A.1个B.2个C.3个D.4个【题型二】利用圆周角定理求交的度数【变式1】如图,AB是⊙O的直径,CD,BC为弦,CD∥AB,∠BOD=50°,求∠CPD的度数。
【题型三】利用圆周角定理及其推论判断角之间的数量关系【例1】如图AB是⊙O的直径,CD 是⊙O的弦AB⊥CD.(1)P是CAD上一点(不与C,D重合) ,求证: ∠CPD= ∠COB(2)点P'在劣弧CD上(不与C,D重合)时,∠CP'D与∠COB有怎样的数量关系?请证明你的结论。
【变式1】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O 的另一个交点为E,连结AC,CE.则∠B与∠D 的大小关系怎样?请说明理由.【题型四】利用圆周角定理及其推论证明弧相等【例1】如图,以ABCD的顶点A为圆心,AB为半径作OA,分别交BC,AO于E,F两点,交BA=的延长线于点G,证明: EF FG=【变式1】如图,AB,CD是⊙O的弦,∠A=∠C,求证:AB CD【题型五】利用圆周角定理及其推论证明线段相等【例1】如图,AB是⊙O的直径,D是BC的中点,AC,BD的延长线相交于点E,证明:AE=AB【变式1】如图,AB是⊙O的直径,AC为弦,P为AC延长线上一点,且AC=PC,PB的延长线交⊙O于点D,求证:AC=DC【题型六】利用圆周角定理及其推论求线段的长度【例1】如图,在⊙O中,AD为直径,OB⊥AD交弦AC于点B,∠A=30°,OB=5,求BC的长。