应力强度干涉理论
- 格式:ppt
- 大小:737.00 KB
- 文档页数:38
什么是应力集中应力集中的计算方法应力集中指物体中应力局部增高的现象,一般出现在物体形状急剧变化的地方,如缺口、孔洞、沟槽以及有刚性约束处。
那么你对应力集中了解多少呢?以下是由店铺整理关于什么是应力集中的内容,希望大家喜欢!应力集中的简介应力集中是指结构或构件的局部区域的最大应力值比平均应力值高的现象。
应力集中能使物体产生疲劳裂纹,也能使脆性材料制成的零件发生静载断裂。
在应力集中处,应力的最大值(峰值应力)与物体的几何形状和加载方式等因素有关。
局部增高的应力随与峰值应力点的间距的增加而迅速衰减。
由于峰值应力往往超过屈服极限(见材料的力学性能)而造成应力的重新分配,所以,实际的峰值应力常低于按弹性力学计算得到的理论峰值应力。
应力集中对构件强度的影响对于由脆性材料制成的构件,应力集中现象将一直保持到最大局部应力到达强度极限之前。
因此,在设计脆性材料构件时,应考虑应力集中的影响。
对于由塑性材料制成的构件,应力集中对其在静载荷作用下的强度则几乎无影响。
所以,在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响。
但是应力集中对构件的疲劳寿命影响很大,因此无论是脆性材料还是塑性材料的疲劳问题,都必须考虑应力集中的影响。
应力集中的计算方法在无限大平板的单向拉伸情况下,其中圆孔边缘的k=3;在弯曲情况下,对于不同的圆孔半径与板厚比值,k=1.8~3.0;在扭转情况下,k=1.6~4.0。
如下图所示的带圆孔的板条,使其承受轴向拉伸。
由试验结果可知 : 在圆孔附近的局部区域内,应力急剧增大,而在离开这一区域稍远处,应力迅速减小而趋于均匀。
这种由于截面尺寸突然改变而引起的应力局部增大的现象称为应力集中。
在I —I 截面上,孔边最大应力max与同一截面上的平均应力之比,用a表示称为理论应力集中系数,它反映了应力集中的程度,是一个大于1 的系数。
而且试验结果还表明 : 截面尺寸改变愈剧烈,应力集中系数就愈大。
因此,零件上应尽量避免带尖角的孔或槽,在阶梯杆截面的突变处要用圆弧过渡。
——《可靠性工程》大作业目录目录 (2)摘要 (3)绪论 (4)一、编写MONTE CARLO模拟程序 (5)二、关于两个服从正态分布的可靠性验证 (8)三、非正态分布的验证 (10)四、总结 (11)参考文献 (12)摘要对于简单的概率计算,我们可以用离散或者连续的概率分布模型进行求解;但是对于复杂的模型的近似解的求解,蒙特卡洛方法是一种非常方便的方法。
蒙特卡洛方法将最复杂的计算部分交给了电机计算机来完成,极大的方便了我们的求解过程。
本文主要是用MATLAB编写蒙特卡洛的模拟程序,然后分别验证两个正态分布的模型和两个非正态分布的模型。
非正态分布的模型中的随机变量序列都是独立同分布的,这样我们可以方便的用列维-林德伯格中心极限定理进行处理。
【关键字】:复杂模型、蒙特卡洛、MATLAB、正太分布、独立同分布的非正态模型、列维-林德伯格中心极限定理绪论计算机技术的发展,促进了蒙特卡洛方法的推广、普及以及完善等。
蒙特卡洛方法诞生之初是不被重视的,因为当时的计算机技术没有达到与之匹配的程度。
蒙特卡洛模拟也称为随机模拟方法,或随机抽样技术。
它是一种以概率论和数理统计为基础,通过对随机变量的统计实验、随机模拟来求解问题近似解的数值方法。
它的主要思想是:为了求解数学、物理、化学及工程问题,建立一个概率模型或随机过程,使它的参数等于问解;然后通过对模型或过程的观察或抽样来计算所求参数的统计特征(如均值、概率等),作为待解问题的数值解,最后给出所求解的近似值,而解的精度可用估计值的方差来表示。
蒙卡洛模拟的步骤是:首先建立简单而又便于实现的概率分布模型,使分布模型的某些特征(如模型的概率分布或数学期望)恰好是所求问题的解;然后根据概率分布模型的特点和计算的需要改进模型,以便减少方差,降低费用,提高计算效率;再对分布模型进行随机模拟,其中包括建立产生伪随机数的方法和建立对所遇到的分布产生随机变量样本的随机抽样方法;最后建立各种统计量的估计,获得所求解的统计估计值及其方差。
第三章确定应力强度因子叠加法及组合法第1节概述1、应力强度因子求解的重要性应力强度因子是线弹性条件下计算带裂纹结构剩余强度和裂纹扩展寿命必不可少的基本控制参量。
由于应力强度因子在裂纹体分析中的中心地位,它的求解自断裂力学问世以来就受到了高度的重视,迄今为止,已经产生了众多的方法。
应力强度因子与裂纹几何和荷载形式有关,两者的组合可以派生出许多种情况,从而使应力强度因子的求解变得很复杂。
2、常用应力强度因子求解方法常用的应力强度因子计算方法有两大类:一)理论计算方法1)解析法复变函数法、保角变换法等特点:计算精确,但适用范围窄2)数值法有限元素法、边界元法、无网格法等特点:适用范围宽,但计算效率较差3)半解析—半数值方法边界配置法等特点:适用范围比解析法宽,计算效率比数值法高二) 实验方法电阻应变片法、光弹性法、全息干涉法、散斑干涉法等3、应力强度因子一般描述形式应力强度因子可以描述为:K a=βσπ3-1-1I式中, σ是远离裂纹处的名义应力, a是裂纹尺寸。
因子β是裂纹几何形状、结构几何形状载荷形式以及边界条件等的函数, β是无量纲的。
对于无限大板, 中心穿透裂纹, 远处均匀受拉(单向或双向),应力强度因子为:=σπ3-1-2K aI其中a为半裂纹长度。
即在此情况下, β=1, 从而, 可以将β看作是一修正系数, 它使实际应力强度因子与无限大板的中心裂纹有关。
第2节叠加法1、叠加原理由于线弹性断裂力学方法建立在弹性基础上, 故可用线性累加每种类型载荷所产生的应力强度因子来确定一种以上的载荷对裂纹尖端应力场的影响。
在相同几何形状的情况下, 累加应力强度因子解的过程称为叠加原理。
造成同一开裂方式的应力强度因子求和过程的唯一限制是应力强度因子必须以相同的几何形状(包括裂纹几何形状)为前提。
——如果结构在几种或者特殊荷载作用下,产生了复合裂纹,则各型应力强度因子是在将荷载分解后各型裂纹问题的应力强度因子本身的叠加。
1.2.1 齿轮系统动力学研究从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。
其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。
[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。
[2]在1987年,H. Nevzat Özgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。
他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。
[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。
[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。
[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。
[6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。
[7]2008年,Lassâad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。
对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。