当前位置:文档之家› 求解数值积分的蒙特卡罗方法

求解数值积分的蒙特卡罗方法

求解数值积分的蒙特卡罗方法
求解数值积分的蒙特卡罗方法

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

大学数学实验之蒙特卡洛方法

《数学实验》报告 班级:序号:姓名: 1.问题描述 I、用蒙特卡罗方法计算以下函数在区间上的积分,并改变随机点数 目观察对结果的影响。 (1)y=1/(1+x), 0==0,x1+2x2+2x3<=72,10< =x2<=20,x1-x2=10; (3) f(x,y)=(X.^2+2*(Y.^2)+X.*Y).*exp(-X.^2-Y.^2), abs(x)<1.5,abs(y)<1.5; 2.问题分析与实验过程 I、(1)使用均值估计法 程序: function p=shell1(a,b,n) z=0; x=unifrnd(a,b,1,n); fori=1:n u=(x(i)+1)^(-1); z=z+u; end p=(b-a)*z/n; 运行结果:p=shell1(0,1,1000) p =

0.6975 >> p=shell1(0,1,10000) p = 0.6922 >> p=shell1(0,1,100) p = 0.7001 >> p=shell1(0,1,500) p = 0.6890 结果分析:改变了四次随机点数,结果都趋近于0.69,说明积分值约等于 0.69,但是点数越多,值越接近。 I、(2)使用均值估计法 程序: function p=shell2(a,b,n) z=0; x=unifrnd(a,b,1,n); fori=1:n u=(exp(3*x(i)))*sin(2*x(i)); z=z+u; end p=(b-a)*z/n; 运行结果: >> p=shell2(0,2,1000) p = -24.4911 >> p=shell2(0,2,100) p = -43.8720 >> p=shell2(0,2,10000) p = -30.8699 >> p=shell2(0,2,500) p = -23.2955 >> p=shell2(0,2,100000) p =

蒙特卡罗方法地解地的题目过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量

概率论实验报告蒙特卡洛方法估计积分值

概率论实验报告 ——蒙特卡洛方法估计积分值 姓名: 学号: 班级: 实验内容:用蒙特卡洛方法估计积分值 1用蒙特卡洛方法估计积分 20sin x xdx π ?,2-0x e dx +∞?和 22221x y x y e dxdy ++≤??的值,并将估 计值与真值进行比较。 2用蒙特卡洛方法估计积分 21 0x e dx ? 和 22x y +≤??的值, 并对误差进行估计。 要求:(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法; (2)利用计算机产生所选分布的随机数以估计积分值; (3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。 目的:(1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布函数及其期望、方差、协方差等; (2) 熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息; (3) 能用 MATLAB 熟练进行样本的一元回归分析。 实验一、估计2 sin x xdx π ?的值,并将估计值与真值进行比较。 MATLAB 代码: s=0;m=0;f=0;r=0;n=50; h(1:10)=0; for j=1:10 for i=1:n a=unifrnd(0,pi/2,n,1); x=sort(a); y=pi/2*mean(x.*sin(x)); s=s+y; end b=s./n; fprintf('b=%.4f\n',b); h(j)=b;

s=0; m=m+b; end p=m./10 z=1 for j=1:10 r=(h(j)-z).^2; f=f+r; end f=f./10; fprintf('f=%.6f\n',f) 运行结果: b=1.0026 b=1.0061 b=1.0037 b=1.0135 b=0.9932 b=0.9988 b=1.0213 b=1.0310 b=0.9813 b=1.0041 p = 1.0056 z = 1 f=0.000207 >> (运行截图) 结果显示f=0.000207,表明估计结果与理论值非常接近。 实验二、估计 2-0x e dx +∞ ?的值,并将估计值与真值进行比较。 I=dx e x ?+∞-02=1/2*pi dx e pi e x x *2***2/1*2/2/22-+∞ ∞--? =)(x f x 2/2**2/1x e pi - g(x)=e pi x *2*2/2- )(x f x 为标准正态分布的概率密度.分别取10个估计值h(j),求得估计值的均值p ,对照积分的真实值求得估计均方误差f 。

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。 一起源 这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。 Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。 蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特?罗方法正是以概率为基础的方法。与它对应的是确定性算法。 二解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特

基于蒙特卡洛方法求数值积分与R

统计计算课程设计 题目基于蒙特卡洛方法求数值积分 中文摘要 蒙特卡洛方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的 物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问 题与实际非常符合,可以得到很圆满的结果。 利用随机投点法,平均值法,重要性采样法,分层抽样法,控制变量法,对偶变量法,运用R 软件求 1 d x e x θ- =?,42d x e x θ- =?和12 d 1 x e x x θ - = + ?数值积分。计算以上各种估计的方差,给出 精度与样本量的关系,比较各种方法的效率, 关键字蒙特卡洛随机投点法平均值法R软件

1 绪论 蒙特卡洛的基本思想是,当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 蒙特卡洛方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡洛方法模拟实验的基本手段,这也是蒙特卡洛方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡洛模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。

蒙特卡罗方法及应用实验讲义2016

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

用蒙特卡洛方法估计积分方法及matlab编程实现

用蒙特卡洛方法估计积分方法及matlab编程实现 专业班级:材料43 学生姓名:王宏辉 学号:2140201060 指导教师:李耀武 完成时间:2016年6月8日

用蒙特卡洛方法估计积分 方法及matlab 编程实现 实验内容: 1用蒙特卡洛方法估计积分 2 sin x xdx π ?,2 -0 x e dx +∞ ?和 2 2 221 x y x y e dxdy ++≤?? 的值, 并将估计值与真值进行比较。 2用蒙特卡洛方法估计积分 2 1 x e dx ?和 224 4 1 11x y dxdy x y +≤++?? 的值, 并对误差进行估计。 要求: (1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法; (2)利用计算机产生所选分布的随机数以估计积分值; (3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针 对第1类题)或样本方差(针对第2类题) 以评价估计结果的精度。 目的: (1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布函数 及其期望、方差、协方差等; (2) 熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息;

(3) 能用 MATLAB 熟练进行样本的一元回归分析。 实验原理: 蒙特卡洛方法估计积分值,总的思想是将积分改写为某个随机变量的数学期望,借助相应的随机数,利用样本均值估计数学期望,从而估计相应的积分值。 具体操作如下: 一般地,积分?=b dx x g a )(S 改写成??==b b dx f h dx f g a a )(x )(x )(x f(x)) (x S 的形 式,(其中为)f(x 一随机变量X 的概率密度函数,且)f(x 的支持域) (}{b f ,a 0)(x |x ?>),f(x) ) (x )(x g h =);令Y=h(X),则积分S=E (Y );利用matlab 软件,编程产生随机变量X 的随机数,在由 ?? ??∈==) b (a,,) b (a,,01I(x) ,)(x )(x y x x I h ,得到随机变量Y 的随机数,求出样本均值,以此估计积分值。 积分??=A dxdy g S )y (x,的求法与上述方法类似,在此不赘述。 概率密度函数的选取: 一重积分,由于要求)f(x 的支持域) (}{b f ,a 0)(x |x ?>,为使方法普遍适用,考虑到标准正态分布概率密度函数22 e 21)(x x f -=π 支持域为 R ,故选用2 2e 21)(x x f - = π 。 类似的,二重积分选用2 2 221)y (x,y x e f +-=π ,支持域为2R 。 估计评价:

用蒙特卡洛方法估计积分方法及matlab编程实现

用蒙特卡洛方法估计积分 方法及matlab编程实现 专业班级:材料43 学生姓名:王宏辉 学号: 指导教师:李耀武 完成时间:2016年6月8日

用蒙特卡洛方法估计积分 方法及matlab编程实现 实验内容: 31 2 乂 1用蒙特卡洛方法估计积分xsin xdx , e-x dx和II e x y dxdy的值, 0 0 x2::;y2 d 并将估计值与真值进行比较。 2用蒙特卡洛方法估计积分e x dx和 __ dxdy的值,并对误 0 x2#g J l + x4+ y4 差进行估计。 要求: (1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方 法; (2)利用计算机产生所选分布的随机数以估计积分值; (3)进行重复试验,通过计算样本均值以评价估计的无偏性; 通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。 目的: (1)能通过MATLAB或其他数学软件了解随机变量的概率密 度、分布函数及其期望、方差、协方差等; (2)熟练使用MATLAB对样本进行基本统计,从而获取数据的

基本信息; (3)能用MATLAB熟练进行样本的一元回归分析

实验原理: 蒙特卡洛方法估计积分值,总的思想是将积分改写为某个随机变 量的数学期望,借助相应的随机数,利用样本均值估计数学期望,从 而估计相应的积分值。 具体操作如下: 式,(其中为f(x) 一随机变量 X 的概率密度函数,且f(x)的支持域 {x|f(x)〉O}=( a,b)) , h(x^-g ^x) );令 Y=h(X),则积分 S=E( Y ;利用 f(x) matlab 软件,编程产生随机变量X 的随机数,在由 y = h(x)l(x), l(x) =」 公匸⑻①,得到随机变量丫的随机数,求出样本均 0 X(a,b) 值,以此估计积分值。 积分S = .. g(x, y)dxdy 的求法与上述方法类似,在此不赘述。 A 概率密度函数的选取: 一重积分,由于要求f(x)的支持域{x|f(x)?0}二(a,b),为使方法普 1 故选用 f(x F 彳 ¥廿 类似的,二重积分选用f(x, y) — e 2,支持域为R 2 2兀 估计评价: 进行重复试验,通过计算样本均值以评价估计的无偏性;通过计 算均方误(针对第1类题,积得出)或样本方差(针对第2类题,积 不出)以评价 般地,积分 b S = g(x)dx 改写成 a b g(x) a f(X ) b f (x)dx = j h(x) f (x)dx 的形 遍适用,考虑到标准正态分布概率密度函数 2 x _ f (x)二-^—e 2支持域为

蒙特卡洛方法及其在风险评估中的应用(1)

蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值 解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测 值的区间范围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的 测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失, 以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司的经营者、投资者对于项目分风险有正确的评估与判断,

matlab算法和蒙特卡罗计算教程

第一章:Monte Carlo方法概述 一、Monte Carlo历史渊源 Monte Carlo方法的实质是通过大量随机试验,利用概率论解决问题的一种数值方法,基本思想是基于概率和体积间的相似性。它和Simulation有细微区别。单独的Simulation只是模拟一些随机的运动,其结果是不确定的;Monte Carlo在计算的中间过程中出现的数是随机的,但是它要解决的问题的结果却是确定的。 历史上有记载的Monte Carlo试验始于十八世纪末期(约1777年),当时布丰(Buffon)为了计算圆周率,设计了一个“投针试验”。(后文会给出一个更加简单的计算圆周率的例子)。虽然方法已经存在了200多年,此方法命名为Monte Carlo则是在二十世纪四十年,美国原子弹计划的一个子项目需要使用Monte Carlo方法模拟中子对某种特殊材料的穿透作用。出于保密缘故,每个项目都要一个代号,传闻命名代号时,项目负责人之一von Neumann灵犀一点选择摩洛哥著名赌城蒙特卡洛作为该项目名称,自此这种方法也就被命名为Monte Carlo 方法广为流传。 十一、Monte Carlo方法适用用途 (一)数值积分 计算一个定积分,如,如果我们能够得到f(x)的原函数F(x),那么直接由表达式: F(x1)-F(x0)可以得到该定积分的值。但是,很多情况下,由于f(x)太复杂,我们无法计算得到原函数F(x)的显示解,这时我们就只能用数值积分的办法。如下是一个简单的数值积分的例子。 数值积分简单示例 如图,数值积分的基本原理是在自变量x的区间上取多个离散的点,用单个点的值来代替该小段上函数f(x)值。 常规的数值积分方法是在分段之后,将所有的柱子(粉红色方块)的面积全部加起来,用这个面积来近似函数f(x)(蓝色曲线)与x轴围成的面积。这样做当然是不精确的,但是随着分段数量增加,误差将减小,近似面积将逐渐逼近真实的面积。 Monte Carlo数值积分方法和上述类似。差别在于,Monte Carlo方法中,我们不需要将所有方柱的面积相加,而只需要随机地抽取一些函数值,将他们的面积累加后计算平均值就够了。通过相关数学知识可以证明,随着抽取点增加,近似面积也将逼近真实面积。 在金融产品定价中,我们接触到的大多数求基于某个随机变量的函数的期望值。考虑一个欧式期权,假定我们已经知道在期权行权日的股票服从某种分布(理论模型中一般是正态分布),那么用期权收益在这种分布上做积分求期望即可。 (五)随机最优化

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.doczj.com/doc/a211987056.html, Eric Haskin haskin@https://www.doczj.com/doc/a211987056.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

蒙特卡洛模拟法简介

蒙特卡洛模拟法简介 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 蒙特卡洛模拟法的概念 (也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。

蒙特卡洛模拟法求解步骤 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。 3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。 在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。 蒙特卡洛模拟法的实例 资产组合模拟: 假设有五种资产,其日收益率(%)分别为 0.02460.0189 0.0273 0.0141 0.0311 标准差分别为 0.95091.4259, 1.5227, 1.1062, 1.0877 相关系数矩阵为 1.0000 0.4403 0.4735 0.4334 0.6855 0.4403 1.00000.7597 0.7809 0.4343 0.4735 0.75971.0000 0.6978 0.4926 0.4334 0.78090.6978 1.0000 0.4289 0.6855 0.43430.4926 0.4289 1.0000 假设初始价格都为100,模拟天数为504天,模拟线程为2,程序如下%run.m

蒙特卡洛算法简介

算法简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 编辑本段背景知识 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.] 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明,被称为蒙特卡洛方法。它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。摘自《细数二十世纪最伟大的十种算法》CSDN JUL Y译 编辑本段算法描述 以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(x)max,很简单的,你可以求出y=c,x=a,x=b及x轴围成的矩形面积,然后利用随机产生大量在这个矩形范围之内的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。 编辑本段问题描述 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值。怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。P落在扇形内的充要条件是x^2+y^2<=1。

用蒙特卡罗方法计算π值实验报告

本科生实验报告 实验课程蒙特卡罗模拟 学院名称核技术与自动化工程学院专业名称核技术及应用 学生姓名王明 学生学号2017020405 指导教师 邮箱511951451@https://www.doczj.com/doc/a211987056.html, 实验成绩 二〇一七年九月二〇一八年一月

实验一、选择一种编程语言模拟出π的值 一、实验目的 1、理解并掌握蒙特卡罗模拟的基本原理; 2、运用蒙特卡洛思想解决实际问题; 3、分析总结蒙特卡洛解决问题的优缺点。 二、实验原理 用蒙特卡洛思想计算π的值分为如下几部: 第一步构建几何原理:构建单位圆外切正方形的几何图形。单位圆的面积为S0=π,正方形的面积S1=4; 第二步产生随机数进行打把:这里用MATLAB产生均匀随机数。分别生产均匀随机数(x,y)二维坐标。X,y的范围为-1到1.总共生成N个坐标(x,y).统计随机生成的坐标(x,y)在单位圆内的个数M。 第三步打把结构处理:根据S0/S1=M/N计算出π的值。因此π=4*M/N。 第四步改变N的值分析π的收敛性:总数1000开始打把,依次增长10倍到1百

万个计数。 三、实验内容 1、用matlab编写的实验代码,总计数率为1000。zfx_x=[1,-1,-1,1,1]; zfx_y=[1,1,-1,-1,1]; plot(zfx_x,zfx_y) axis([-3 3 -3 3]); hold on; r=1; theta=0:pi/100:2*pi; x=r*cos(theta); y=r*sin(theta); rho=r*sin(theta); figure(1) plot(x,y,'-') N=1000; mcnp_x=zeros(1,N); mcnp_y=zeros(1,N); M=0; for i=1:N x=2*(rand(1,1)-0.5); y=2*(rand(1,1)-0.5); if((x^2+y^2)<1) M=M+1; mcnp_x(i)=x; mcnp_y(i)=y; end end plot(mcnp_x,mcnp_y,'.') PI1=4*M/N; 2、用matlab绘制的图形

蒙特卡洛方法与定积分计算

蒙特卡洛方法与定积分计算 By 邓一硕 @ 2010/03/08 关键词:Monte-Carlo, 定积分, 模拟, 蒙特卡洛分类:统计计算 作者信息:来自中央财经大学;统计学专业。 版权声明:本文版权归原作者所有,未经许可不得转载。原文可能随时需要修改纰漏,全文复制转载会带来不必要的误导,若您想推荐给朋友阅读,敬请以负责的态度提供原文链接;点此查看如何在学术刊物中引用本文 本文讲述一下蒙特卡洛模拟方法与定积分计算,首先从一个题目开始:设,用蒙特卡洛模拟法求定积分的值。 随机投点法 设服从正方形上的均匀分布,则可知分别服从[0,1]上的均匀分布,且相互独立。记事件,则的概率为 即定积分的值就是事件出现的频率。同时,由伯努利大数定律,我们可以用重复试验中出现的频率作为的估计值。即将看成是正方形 内的随机投点,用随机点落在区域中的频率作为定积分的近似值。这种方法就叫随机投点法,具体做法如下: 图1 随机投点法示意图 1、首先产生服从上的均匀分布的个随机数(为随机投点个数,可以取很大,如)并将其配对。 2、对这对数据,记录满足不等式的个数,这就是事件发生的频数,由此可得事件发生的频率,则。 举一实例,譬如要计算,模拟次数时,R代码如下:n=10^4;

x=runif(n); y=runif(n); f=function(x) { exp(-x^2/2)/sqrt(2*pi) } mu_n=sum(y

第7章 蒙特卡罗方法 (附录)

第7章附录 7.2.1 均匀分布随机数 例题7.2.1计算程序 ! rand1.for program rand1 implicit none real r integer n,c,x,i open(5,file='rand1.txt') n = 32768 c = 889 x = 13 do i = 1,1000 x = c*x-n*int(c*x/n) r = real(x)/(n-1) write(5,'(f8.5)') r end do end !!!!!!rand2.for!!!!! program rand2 implicit none integer, parameter :: n=1000 integer ix,i real r open(5,file='rand2.txt') ix=32765 do i=1,n call rand(ix,r) write(5,'(f8.6)') r end do end program rand2 subroutine rand(ix,r) i=ix*259 ix=i-i/32768*32768 r=float(ix)/32768 return end

7.2.3 随机抽样 例题7.2.2计算程序 % 例题7_2_2.m figure(1); set(gca,'FontSize',16); t = rand(1000,1); y = -log(t); z = exp(-y); plot(y,z,'.'); xlabel('图7.2-2 例题7.2.2-指数分布抽样') ==================================================== 例题7.2.5计算程序 ! 例题7.2.5 program scores parameter(nmax=10,mmax=13) real(8) x(nmax),y(nmax),l(0:nmax),z(mmax),ys(mmax),r integer i,j,k data x/5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0/ data y/0,0,0,0,0.08,0.19,0.31,0.27,0.11,0.04/ open(2,file='scores_old.txt') open(5,file='scores_new.txt') ! mmax个抽样学生成绩 open(7,file='scores_sample.txt') write(2,'(2f15.5)') (x(i),y(i),i=1,nmax) ix=32765 l(0)=0 do i=1,nmax l(i)=l(i-1)+y(i) end do do j=1,mmax call rand(ix,r) do k=1,nmax if(r.le.l(k)) goto 11 end do 11 z(j)=x(k) end do write(5,*) (z(i),i=1,mmax) ys=0 do i=1,mmax k=z(i)/float(nmax) ! 确定抽样学生所在的分数段

相关主题
文本预览
相关文档 最新文档