蒙特卡洛方法概述
- 格式:ppt
- 大小:353.50 KB
- 文档页数:63
蒙特卡洛方法1、蒙特卡洛方法的由来蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。
由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。
第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。
蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。
如今MC 方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。
2、蒙特卡洛方法的核心—随机数蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。
因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。
在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。
由该分布抽取的简单子样ξ1,ξ2ξ3 ……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。
真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。
真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。
实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。
蒙特卡罗方法(Monte Carlo method)蒙特卡罗方法概述蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。
为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。
蒙特卡罗方法的提出蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。
数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
在这之前,蒙特卡罗方法就已经存在。
1777年,法国Buffon提出用投针实验的方法求圆周率∏。
这被认为是蒙特卡罗方法的起源。
蒙特卡罗方法的基本思想Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。
19世纪人们用投针试验的方法来决定圆周率π。
本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。
考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点,有M个点落于“图形”内,则该“图形”的面积近似为M/N。
可用民意测验来作一个不严格的比喻。
民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。
其基本思想是一样的。
科技计算中的问题比这要复杂得多。
比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。
蒙特卡洛类方法
蒙特卡洛方法是一类随机化的计算方法,主要应用于求出高维度空间中的定积分或概率分布的特性。
该方法以随机样本为基础,通过大量生成且符合某种分布律的随机数,从中抽取样本,利用样本的统计性质来计算近似解。
常见的蒙特卡洛方法包括:
1.随机模拟法
在数学建模、广告投放、经济预测等领域,随机模拟(也称蒙特卡罗方法)已经成为了一个重要的工具。
其基本思想是,系统表现出的某些规律和性质可以用随机过程进行模拟和预测。
2.随机游走算法
随机游走是一种基于随机过程的数值计算算法,通过简单的偏随机移动来解决复杂问题,被广泛应用于物理、化学、生物学、金融等领域。
随机游走算法的核心思想是通过随机漫步遍历所有可能的状态,找到最终解。
3.马尔可夫链蒙特卡罗方法
马尔可夫链蒙特卡罗方法(MCMC)是一种近似随机模拟算法,用于计算高维空间中的积分和概率分布。
这种方法通过构造一个马尔可夫链来模拟复杂的概率
分布,并通过观察链的过程来获得所求的统计量。
4.重要性采样
重要性采样是一种通过迭代抽样来估算积分值或概率分布的方法。
它的基本思想是利用不同的概率分布来采样目标分布中的样本,从而增加目标分布中采样到重要样本的概率,从而提高采样的效率。
总之,蒙特卡洛方法在物理学、统计学、金融学、计算机科学、生物科学等众多领域都有广泛的应用,是一种很实用的工具。
蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。
一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。
Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。
Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。
蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。
蒙特卡罗法也称统计模拟法、统计试验法。
是把概率现象作为研究对象的数值模拟方法。
是按抽样调查法求取统计值来推定未知特性量的计算方法。
蒙特卡罗是摩纳哥的著名赌城,该法为表明其随机抽样的本质而命名。
故适用于对离散系统进行计算仿真试验。
在计算仿真中,通过构造一个和系统性能相近似的概率模型,并在数字计算机上进行随机试验,可以模拟系统的随机特性。
概念蒙特卡罗法(又称统计试验法)是描述装备运用过程中各种随机现象的基本方法,而且它特别适用于一些解析法难以求解甚至不可能求解的问题,因而在装备效能评估中具有重要地位。
用蒙特卡罗法来描述装备运用过程是1950年美国人约翰逊首先提出的。
这种方法能充分体现随机因素对装备运用过程的影响和作用。
更确切地反映运用活动的动态过程。
在装备效能评估中,常用蒙特卡罗法来确定含有随机因素的效率指标,如发现概率、命中概率、平均毁伤目标数等;模拟随机服务系统中的随机现象并计算其数字特征;对一些复杂的装备运用行动,通过合理的分解,将其简化成一系列前后相连的事件,再对每一事件用随机抽样方法进行模拟,最后达到模拟装备运用活动或运用过程的目的。
基本思路蒙特卡罗法的基本思想是:为了求解问题,首先建立一个概率模型或随机过程,使它的参数或数字特征等于问题的解:然后通过对模型或过程的观察或抽样试验来计算这些参数或数字特征,最后给出所求解的近似值。
解的精确度用估计值的标准误差来表示。
蒙特卡罗法的主要理论基础是概率统计理论,主要手段是随机抽样、统计试验。
用蒙特卡罗法求解实际问题的基本步骤为:(1)根据实际问题的特点.构造简单而又便于实现的概率统计模型.使所求的解恰好是所求问题的概率分布或数学期望;(2)给出模型中各种不同分布随机变量的抽样方法;(3)统计处理模拟结果,给出问题解的统计估计值和精度估计值。
优缺点蒙特卡罗法的最大优点是:1.方法的误差与问题的维数无关。
2.对于具有统计性质问题可以直接进行解决。
3.对于连续性的问题不必进行离散化处理蒙特卡罗法的缺点则是:1.对于确定性问题需要转化成随机性问题。
蒙卡罗方法“蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
与它对应的是确定性算法。
蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
”一、概念蒙特卡罗法(又称统计试验法)是描述装备运用过程中各种随机现象的基本方法,而且它特别适用于一些解析法难以求解甚至不可能求解的问题,因而在装备效能评估中具有重要地位。
用蒙特卡罗法来描述装备运用过程是1950年美国人约翰逊首先提出的。
这种方法能充分体现随机因素对装备运用过程的影响和作用。
更确切地反映运用活动的动态过程。
在装备效能评估中,常用蒙特卡罗法来确定含有随机因素的效率指标,如发现概率、命中概率、平均毁伤目标数等;模拟随机服务系统中的随机现象并计算其数字特征;对一些复杂的装备运用行动,通过合理的分解,将其简化成一系列前后相连的事件,再对每一事件用随机抽样方法进行模拟,最后达到模拟装备运用活动或运用过程的目的。
二、基本思路蒙特卡罗法的基本思想是:为了求解问题,首先建立一个概率模型或随机过程,使它的参数或数字特征等于问题的解:然后通过对模型或过程的观察或抽样试验来计算这些参数或数字特征,最后给出所求解的近似值。
解的精确度用估计值的标准误差来表示。
蒙特卡罗法的主要理论基础是概率统计理论,主要手段是随机抽样、统计试验。
用蒙特卡罗法求解实际问题的基本步骤为:1、根据实际问题的特点.构造简单而又便于实现的概率统计模型.使所求的解恰好是所求问题的概率分布或数学期望;2、给出模型中各种不同分布随机变量的抽样方法;3、统计处理模拟结果,给出问题解的统计估计值和精度估计值。
三、优缺点蒙特卡罗法的最大优点是:1、方法的误差与问题的维数无关。
计算统计学中的蒙特卡罗方法在计算统计学领域中,蒙特卡罗方法是一种重要的数值计算技术。
蒙特卡罗方法是一种基于随机抽样的数值计算方法,其名称来源于蒙特卡罗赌场,意为通过随机抽样来近似求解复杂的数学问题。
一、蒙特卡罗方法的基本原理蒙特卡罗方法的基本原理是通过生成大量的随机数来近似求解数学问题。
这些随机数被用来模拟概率分布或系统模型,通过对这些随机数的统计分析来得出问题的解。
蒙特卡罗方法的关键在于随机性,通过增加随机性的数量和质量,可以提高近似解的准确性。
二、蒙特卡罗方法的应用领域蒙特卡罗方法在统计学中有着广泛的应用,特别是在概率论、统计推断和模拟实验等方面。
例如,在蒙特卡罗积分法中,随机数被用来模拟复杂的积分问题,从而得到数值解;在蒙特卡罗抽样法中,随机数被用来模拟样本的分布规律,从而进行统计推断;在蒙特卡罗模拟实验中,随机数被用来模拟实际系统的行为,从而得到实验结果。
三、蒙特卡罗方法的优缺点蒙特卡罗方法的优点在于可以处理复杂的数学问题,不受维数限制,且对计算误差的控制比较灵活。
然而,蒙特卡罗方法的计算量通常比较大,需要大量的随机数才能得到准确的结果,因此在一些实时性要求较高的计算问题中可能不适用。
四、蒙特卡罗方法的改进和发展随着计算机技术的不断发展,蒙特卡罗方法在计算统计学中得到了广泛的应用和发展。
研究者们通过改进蒙特卡罗方法的随机数生成算法、抽样技术和统计分析方法,使其在更多领域发挥作用。
同时,结合蒙特卡罗方法与其他数值计算方法,可以进一步提高计算效率和准确性。
总之,蒙特卡罗方法作为一种重要的数值计算技术,在计算统计学中扮演着重要的角色。
通过对随机数的巧妙运用,可以有效地解决复杂的数学问题,为统计学研究提供了有力的工具和方法。
希望本文对蒙特卡罗方法的原理、应用和发展有所启发,促进读者对计算统计学的深入理解和应用。
第三章蒙特卡罗方法概述蒙特卡罗方法是一种基于概率统计的数学模拟方法,广泛应用于各个领域,如物理学、工程学、统计学、金融学等。
蒙特卡罗方法的基本思想是通过随机抽样的方法,通过大量的实验模拟系统的行为,从而推导出系统的统计性质。
它的核心理念是“试验多次,取平均值”,即通过进行大量的实验模拟,得到的结果的平均值可以近似于真实值。
蒙特卡罗方法的起源可以追溯到二战时期的原子能研究。
当时科学家们在尝试研究核反应堆的物理过程时,很难通过解析方法得到解决方案。
于是他们将问题建模成概率统计的形式,通过大量的实验模拟来获得结果。
这种方法最初被称为“纯概率模拟”,后来由于其背后的基本思想与蒙特卡罗赌场有些类似而得名为蒙特卡罗方法。
蒙特卡罗方法包括以下几个基本步骤:1.建立模型:首先需要建立一个适当的模型,即用数学方程描述所研究问题的特征。
模型的复杂程度取决于具体问题的复杂程度。
2.随机抽样:根据建立的模型,需要进行随机抽样,生成一系列符合指定分布的随机数。
这些随机数代表了系统的输入或初态。
通常使用伪随机数生成器来生成这些随机数。
3.求解模型:将随机抽样得到的样本代入模型,并通过模型进行求解。
可以使用各种数值计算方法来求解模型,如积分法、差分法、微分方程等。
通过数值计算方法,可以得到模型的输出或末态。
4.统计分析:通过大量的实验模拟,得到了系统的多组输出或末态。
在这些输出或末态中,可以统计得到系统的统计性质,如均值、方差、概率分布等。
蒙特卡罗方法的优势在于它可以处理复杂的非线性问题,以及高维问题。
由于模拟过程完全基于随机抽样,与传统的解析方法相比,蒙特卡罗方法的求解过程更加灵活。
另外,由于蒙特卡罗方法是一种直接模拟的方法,因此对于复杂的系统,可以通过蒙特卡罗方法进行近似求解,避免了复杂内部结构的精确建模过程。
然而,蒙特卡罗方法也存在一些限制。
首先,蒙特卡罗方法通常需要进行大量的实验模拟才能得到准确的结果,从而需要大量的计算时间和计算资源。