数字信号处理-第六章
- 格式:doc
- 大小:838.50 KB
- 文档页数:12
教案(第23次课2学时)一、授课题目第六章无限脉冲响应数字滤波器的设计§6.4 用双线性变换法设计IIR数字低通滤波器§6.5 数字高通滤波器的设计二、教学目的和要求掌握用双线性变换法设计IIR数字低通滤波器;掌握利用低通滤波器设计数字高通滤波器的方法。
三、教学重点和难点用双线性变换法设计IIR数字低通滤波器;利用低通滤波器设计数字高通滤波器。
四、教学过程(包含教学内容、教学方法、辅助手段、板书、学时分配等)复习:本章主要介绍无限脉冲响应数字滤波器的设计。
无限脉冲响应数字滤波器的特点是单位脉冲响应是无限长的,这主要是由于它的系统函数中含有反馈,即差分方程中含y(n-i)项。
对于无限脉冲响应数字滤波器我们主要是利用技术已经非常成熟的模拟滤波器的设计进行的,由于我们这本书主要是讨论具有单调下降的幅频特性的滤波器的设计,所以我们介绍了具有单调下降特性的巴特沃斯模拟滤波器的设计。
掌握了它之后,利用模拟滤波器进行设计,只要找出频率以及系统函数之间的关系,就可以设计出需要的数字滤波器。
由于它是借助模拟滤波器进行的,所以他保留了一些典型模拟滤波器优良的幅度特性,但涉及种植考虑复读特性,没考虑相位特性,所设计的滤波器一般是某种确定的非线性相位特性。
我们一般用到的是脉冲响应不变法和双线性变换法来设计无限脉冲响应数字滤波器。
上节课中我们介绍了双线性变换法设计数字滤波器。
设计时我们只需要先利用频率之间的关系将我们要设计的数字滤波器的技术指标转换为对应的模拟滤波器的技术指标,之后利用我们之前讲的模拟滤波器的设计,求出模拟滤波器的系统函数,然后利用系统函数之间的关系得到数字滤波器的系统函数。
脉冲响应不变法进行设计时,模拟滤波器的系统函数Ha (s )与数字滤波器的系统函数H(z)之间的关系是 若∑=-=N i ii s s A s H 1a )(,则对应的数字滤波器的系统函数为 ∑=--=N i T s i z A z H i 11e1)(,即H a(s )的极点si 映射到z 平面的极点为T s i e ,系数A i 不变。
6.2 教材第六章习题解答1. 设计一个巴特沃斯低通滤波器,要求通带截止频率6p f kHz =,通带最大衰减3p a dB =,阻带截止频率12s f kHz =,阻带最小衰减3s a dB =。
求出滤波器归一化传输函数()a H p 以及实际的()a H s 。
解:(1)求阶数N 。
lg lg sp spk N λ=-0.10.30.1 2.51011010.0562101101p s asp a k --==≈--332121022610s sp p πλπΩ⨯⨯===Ω⨯⨯将sp k 和sp λ值代入N 的计算公式得lg 0.05624.15lg 2N =-=所以取N=5(实际应用中,根据具体要求,也可能取N=4,指标稍微差一点,但阶数低一阶,使系统实现电路得到简化。
) (2)求归一化系统函数()a H p ,由阶数N=5直接查表得到5阶巴特沃斯归一化低通滤波器系统函数()a H p 为54321() 3.2361 5.2361 5.2361 3.23611a H p p p p p p =+++++或 221()(0.6181)( 1.6181)(1)a H p p p p p p =+++++ 当然,也可以按(6.12)式计算出极点:121()22,0,1,2,3,4k j Nk p ek π++==按(6.11)式写出()a H p 表达式41()()a k k H p p p ==-代入k p 值并进行分母展开得到与查表相同的结果。
(3)去归一化(即LP-LP 频率变换),由归一化系统函数()a H p 得到实际滤波器系统函数()a H s 。
由于本题中3p a dB =,即32610/c p rad s πΩ=Ω=⨯⨯,因此()()a a cH s H p s p ==Ω5542332453.2361 5.2361 5.2361 3.2361c c c cc cs s ss s Ω=+Ω+Ω+Ω+Ω+Ω对分母因式形式,则有()()a a cH s H p s p ==Ω52222(0.6180)( 1.6180)()c c c c cc s s s s s Ω=+Ω-Ω+Ω-Ω+Ω如上结果中,c Ω的值未代入相乘,这样使读者能清楚地看到去归一化后,3dB 截止频率对归一化系统函数的改变作用。
第六章 快速傅里叶变换(FFT)1. 如果一台通用计算机的速度为平均每次复乘需100μs,每次复加需20μs,今用来计算N=1024点的DFT[x(n)],问用直接运算需要多少时间,用FFT 运算需要多少时间。
解:ss FFT ss FFT N N a N N N m ss DFT s DFT DFT N a m FFT FFT DFT DFT μμμμμμμ23221027682666221020482010241051210512010240log ),10242(,5120log 210820104,10410104,104104102444⨯=⨯⨯=⨯======⨯=⨯⨯⨯=⨯⨯⨯⨯=⨯===作复加所需时间作复乘所需时间作复加所需时间作复乘所需时间作复乘 2. 用图6.8所示流程图验证图6.7所示的8点变址运算。
证明:由图6.8知取A=x(0),B=x(4)N=8X(k)=12/,,1,0),()(21-=+N k k X W k X k NX(N/2+k)=12/,,1,0),()(21-=-N k k X W k X k N5.试证实以下流图是一个N=8的FFT 流图.其输入是自然顺序的,而输出是码位倒置顺序的,试问这个流图是属与时间抽取法还是频率抽取法?并比较与书中哪一个流图等效。
解:这个流图属于频率抽取法。
6.试设计一个频率抽取的8点FFT 流图,需要输入是按码位倒置顺序而输出是按自然顺序的。
解:设计的流图为第五题的流图左右翻转180度。
∑∑-=-==+=1202/21202/1)()12()()2(N k kr N N k kr N W k x r X W k x r X7.试用图6.14(a)中的蝶形运算设计一个频率抽取的8点IFFT 流图。
解:X(0) 1/2 x(0) X(4) x(1)X(2) x(2)X(6) x(3)X(1) x(4)X(5) x(5)X(3) x(6)X(7) x(7)9.试作一个N=12点的FFT 流图,请按N=2,2,3分解,并问可能有几种形式?解:可能有三种先分成2组,每组有6各点,后每组内再分成两组322⨯⨯=N时间顺序为x(0),x(4),x(8),x(2),x(6),x(10),x(1),x(5),x(9),x(7),x(11)频域顺序为X(0),X(1),X(2),X(3),X(4),X(5),X(6),X(7),X(8),X(9),X(10),X(11)流图如图6.18解:由题可得∑∑-=-=-=-=∴-⋅⋅⋅====102210)(|)(1,,1,0,)()(N n kn Nj z z k N j k N n ne n x z X N k e z z z n x z X k ππ由于(a)将M 点序列分成若干段N 点序列,设段数为k 即N k M kN )1(-≥>并令kn N j N n k i i z z k en y z X N n N k M N k M n N k n x n y N n x n y n x n y k π21010110)]([[|)(11)1(,01)1(0],)1([)()()()()(--=-==-∑∑=⎩⎨⎧-≤<------≤≤-+=+==若用N 点FFT 计算)(k z X 先由x(n)形成)(n y i ,再计算∑-=10)(k i i n y 的N 点FFT 即可(b)先将序列添加一点等于零的点,使得⎩⎨⎧-≤≤-≤≤=1,010),()(0N n M M n n x n x再计算)(0n x 的N 点FFT 即10,)(|)(20-≤≤=∑-=N k e n x z X kn N j z z k π即可13.已知X(K),Y(K)是两个N 点实序列x(n),y(n)的DFT 值,今需要从X(K),Y(K)求x(n),y(n)值,为了提高运算效率试设计用一个N 点IFFT 运算一次完成。
第六章 数字滤波器结构
6.1:级联的实现
num = input('分子系数向量 = ');
den = input('分母系数向量 = ');
[z,p,k] = tf2zp(num,den);
sos = zp2sos(z,p,k)
Q6.1使用程序P6.1,生成如下有限冲激响应传输函数的一个级联实现:
H1(z)=2+10z^(-1)+23z^(-2)+34z^(-3)+31z^(-4)+16 z^(-5)+4z^(-6)
画出级联实现的框图。H1(z)是一个线性相位传输函数吗?
答:
运行结果:
sos = zp2sos(z,p,k)
Numerator coefficient vector = [2,10,23,34,31,16,4]
Denominator coefficient vector = [1]
sos =
2.0000 6.0000 4.0000 1.0000 0 0
1.0000 1.0000 2.0000 1.0000 0 0
1.0000 1.0000 0.5000 1.0000 0 0
级联框图:
H1(z)不是一个线性相位传输函数,因为系数不对称。
Q6.2使用程序P6.1,生成如下有限冲激响应传输函数的一个级联实现:
H2(z)=6+31z^(-1)+74z^(-2)+102z^(-3)+74z^(-4)+31 z^(-5)+6z^(-6)
画出级联实现的框图。H2(z)是一个线性相位传输函数吗?只用4个乘法器生成H2(z)的一级
联实现。显示新的级联结构的框图。
Numerator coefficient vector = [6,31,74,102,74,31,6]
Denominator coefficient vector = [1]
sos =
6.0000 15.0000 6.0000 1.0000 0 0
1.0000 2.0000 3.0000 1.0000 0 0
1.0000 0.6667 0.3333 1.0000 0 0
级联框图:
H2(z)是一个线性相位传输函数。
只用四个乘法器生成级联框图:
6.2:级联和并联实现
Q6.3使用程序P6.1生成如下因果无限冲激响应传输函数的级联实现:
画出级联实现的框图。
答:
Numerator coefficient vector = [3,8,12,7,2,-2]
Denominator coefficient vector = [16,24,24,14,5,1]
sos =
0.1875 -0.0625 0 1.0000 0.5000 0
1.0000 2.0000 2.0000 1.0000 0.5000 0.2500
1.0000 1.0000 1.0000 1.0000 0.5000 0.5000
级联实现框图: