数字信号处理胡广书第6章-滤波器组(完整版本)
- 格式:ppt
- 大小:1.17 MB
- 文档页数:23
150第6章 滤波器组基础6.1 滤波器组的基本概念一个滤波器组是指一组滤波器,它们有着共同的输入,或有着共同的输出,如图6.1.1所示。
图6.1.1 滤波器组示意图,(a )分析滤波器组,(b )综合滤波器组。
假定滤波器)(0z H ,)(1z H ,…,)(1z H M -的频率特性如图6.1.2(a )所示,)(n x 通过这些滤波器后,得到的)(0n x ,)(1n x ,…,)(1n x M -将是)(n x 的一个个子带信号,它们的频谱相互之间没有交叠。
若)(0z H ,)(1z H ,…,)(1z H M -的频率特性如图6.1.2(b )所示,那么,)(0n x ,)(1n x ,…,)(1n x M -的频谱相互之间将有少许的混迭。
由于)(0z H ,)(1z H ,…,)(1z H M -的作用是将)(n x 作子带分解,因此我们称它们为分析滤波器组。
将一个信号分解成许多子信号是信号处理中常用的方法。
例如,若图6.1.1中的2=M ,那么,在图6.1.2中,)(0z H 的频率特性将分别占据2~0π和ππ~2两个频段,前者对应低频段,后者对应高频段。
这样得到的)(0n x 将是)(n x 的低频成份,而)(1n x 将是其高频)(0n x )(1n x )(1n x M -)(n x(ˆ0x (ˆ1x)(ˆ1n xM -)(ˆn x151成份。
我们可依据实际工作的需要对)(0n x 和)(1n x 作出不同的处理。
例如,若我们希望对)(n x 编码,设)(n x 的抽样频率为20KHz ,若每个数据点用16bit ,那么每秒钟需要的码图6.1.2 分析滤波器组的频率响应,(a )无混迭,(b )稍有混迭流为320Kbit 。
若)(n x 是一低频信号,也即)(n x 的有效成份(或有用成份)大都集中在)(0n x 内,)(1n x 内含有很少的信号能量。
这样,我们可对)(0n x 仍用16bit ,对)(1n x 则用8bit ,甚至是4bit ,由于)(0n x 和)(1n x 的带宽分别比)(n x 减少了一倍,所以,)(0n x 和)(1n x 的抽样频率可降低一倍。
6.2 教材第六章习题解答1. 设计一个巴特沃斯低通滤波器,要求通带截止频率6p f kHz =,通带最大衰减3p a dB =,阻带截止频率12s f kHz =,阻带最小衰减3s a dB =。
求出滤波器归一化传输函数()a H p 以及实际的()a H s 。
解:(1)求阶数N 。
lg lg sp spk N λ=-0.10.30.1 2.51011010.0562101101p s asp a k --==≈--332121022610s sp p πλπΩ⨯⨯===Ω⨯⨯将sp k 和sp λ值代入N 的计算公式得lg 0.05624.15lg 2N =-=所以取N=5(实际应用中,根据具体要求,也可能取N=4,指标稍微差一点,但阶数低一阶,使系统实现电路得到简化。
) (2)求归一化系统函数()a H p ,由阶数N=5直接查表得到5阶巴特沃斯归一化低通滤波器系统函数()a H p 为54321() 3.2361 5.2361 5.2361 3.23611a H p p p p p p =+++++或 221()(0.6181)( 1.6181)(1)a H p p p p p p =+++++ 当然,也可以按(6.12)式计算出极点:121()22,0,1,2,3,4k j Nk p ek π++==按(6.11)式写出()a H p 表达式41()()a k k H p p p ==-代入k p 值并进行分母展开得到与查表相同的结果。
(3)去归一化(即LP-LP 频率变换),由归一化系统函数()a H p 得到实际滤波器系统函数()a H s 。
由于本题中3p a dB =,即32610/c p rad s πΩ=Ω=⨯⨯,因此()()a a cH s H p s p ==Ω5542332453.2361 5.2361 5.2361 3.2361c c c cc cs s ss s Ω=+Ω+Ω+Ω+Ω+Ω对分母因式形式,则有()()a a cH s H p s p ==Ω52222(0.6180)( 1.6180)()c c c c cc s s s s s Ω=+Ω-Ω+Ω-Ω+Ω如上结果中,c Ω的值未代入相乘,这样使读者能清楚地看到去归一化后,3dB 截止频率对归一化系统函数的改变作用。
数字信号处理导论胡广书pdf-透过数字化的视角解读信号处理随着数字技术的不断发展,数字信号处理已成为重要的技术支撑之一。
数字信号处理技术的应用范围极为广泛,从科学研究到工业生产,均有其重要作用。
数字信号处理导论胡广书pdf从系统的角度全面解释了数字信号处理的理论基础、算法和应用。
在我们日常生活中,许多信号都是模拟信号。
通过信号转换器将这些模拟信号数字化处理,使信号更加稳定、精确、可靠。
数字信号处理导论胡广书pdf详细介绍了数字信号处理的基本概念和处理流程。
通过对信号采样、量化、编码及数字滤波等流程的分析,使读者更加深入理解数字信号处理的本质。
数字信号处理导论胡广书pdf还详细介绍了数字声音处理的原理,包括数字语音处理和音频处理。
其中,数字语音处理涉及到声音的采集、压缩、编码和解码等技术,而音频处理则包括音频信号的降噪、增益控制、均衡和混响等处理方法。
这些处理方法的实现,在音乐、电影等领域具有广泛的应用价值。
数字信号处理导论胡广书pdf对数字信号处理算法也进行了详细介绍。
从傅里叶变换到数字滤波器设计,使读者了解了数字信号处理技术的基本理论和数学知识。
其中,数字滤波器设计的综合应用和实现方法,极大提高了数字信号处理的效率。
最后,数字信号处理导论胡广书pdf的应用部分详细阐述了数字信号处理技术在通信、图像、雷达、医学、航空航天等领域的应用。
通过实际案例,阐明了数字信号处理技术的实际应用场景以及解决问题的方法。
在获得了数字信号处理导论胡广书pdf的全面指导和基本知识之后,读者可以更好地应用数字信号处理技术,并将其广泛应用于各行各业中,为提高生产效率和科学创新做出更大的贡献。
第六章数字滤波器结构6、1:级联得实现num = input('分子系数向量 = ');den = input('分母系数向量 = ');[z,p,k] = tf2zp(num,den);sos = zp2sos(z,p,k)Q6、1使用程序P6、1,生成如下有限冲激响应传输函数得一个级联实现:H1(z)=2+10z^(-1)+23z^(-2)+34z^(-3)+31z^(-4)+16 z^(-5)+4z^(-6)画出级联实现得框图。
H1(z)就是一个线性相位传输函数吗?答:运行结果:sos = zp2sos(z,p,k)Numerator coefficient vector = [2,10,23,34,31,16,4]Denominator coefficient vector = [1]sos =2、0000 6、0000 4、0000 1、0000 0 01、0000 1、00002、0000 1、0000 0 01、0000 1、0000 0、5000 1、0000 0 0级联框图:H1(z)不就是一个线性相位传输函数,因为系数不对称。
Q6、2使用程序P6、1,生成如下有限冲激响应传输函数得一个级联实现:H2(z)=6+31z^(-1)+74z^(-2)+102z^(-3)+74z^(-4)+31 z^(-5)+6z^(-6)画出级联实现得框图。
H2(z)就是一个线性相位传输函数吗?只用4个乘法器生成H2(z)得一级联实现。
显示新得级联结构得框图。
Numerator coefficient vector = [6,31,74,102,74,31,6]Denominator coefficient vector = [1]sos =6、0000 15、0000 6、0000 1、0000 0 01、00002、00003、0000 1、0000 0 01、0000 0、6667 0、3333 1、0000 0 0级联框图:H2(z)就是一个线性相位传输函数。
第六章 习题及参考答案一、习题1、已知一个由下列差分方程表示的系统,x(n)、y(n)分别表示该系统的输入、输出信号:)1(21)()2(61)1(65)(-+=-+--n x n x n y n y n y (1)画出该系统的直接型结构; (2)画出该系统的级联型结构; (3)画出该系统的并联型结构。
2、已知某系统的系统函数为:)6.09.01)(5.01()9.21)(1()(211211------++-+-+=z z z z z z z H 请画出该系统的级联型结构。
3、已知FIR 滤波器的单位脉冲响应为)(8.0)(5n R n h n =, (1)求该滤波器的系统函数; (2)画出该滤波器的直接型结构。
4、已知滤波器的系统函数为:3213218.09.09.018.04.16.01)(-------+-+--=zz z z z z z H 请画出该滤波器的直接型结构。
5、已知滤波器的系统函数为:)8.027.11)(5.01()44.11)(1(3)(211211------+--+--=z z z z z z z H 请画出该滤波器的级联型结构和并联型结构。
6、已知某因果系统的信号流图如下图所示:x(n)y(n)-25-3求该系统的系统函数和单位脉冲响应。
7、已知某系统的信号流图如下图所示:x(n)y(n)求该系统的系统函数和极点。
8、已知IIR 滤波器的系统函数为:4.035.04.046.16.14)(2323++++--=z z z z z z z H (1)画出级联型网络结构,要求利用MATLAB 分解H(z); (2)用MATLAB 验证所求的级联型结构是否正确。
9、已知IIR 滤波器的系统函数为:3213214.035.04.016.141.158.12.5)(-------++-++=zz z z z z z H (1)画出该系统的并联型网络结构,要求用MATLAB 分解; (2)用MATLAB 验证(1)中所求的并联型结构是否正确。