2014届九年级数学总复习八...反比例函数与二次函数
- 格式:ppt
- 大小:4.84 MB
- 文档页数:17
初中反比例函数与二次函数知识点详解知识点一、反比例函数1、反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义如下图,过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙。
k S k xy xky ==∴=,, 。
知识点二、二次函数的概念和图像1、二次函数的概念一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
二次函数和反比例函数五点通二次函数和反比例函数是初中数学的重点、难点,也是中考的热点.学好二次函数和反比例函数,需要把握好如下五点.一、了解二次函数的概念一般地,形如y=ax 2+bx+c(a ,b ,c 是常数,a≠0)的函数叫做x 的二次函数. 说明: (1)a≠0是二次函数定义的组成部分,不能忽视.但b ,c 可以是任意实数,特别地,当b=c=0时,就是y=ax 2.(2)任何一个二次函数都可化为y=ax 2+bx+c 的形式,我们称之为一般式,其特征是:等号右边是关于自变量x 的二次多项式.二、理解二次函数的图象和性质1.二次函数的图象:二次函数y=ax 2+bx+c(a≠0)的图象是抛物线,它的开口方向和大小是由a 决定的,而位置则是由a ,b ,c 共同决定的.(1) a>0,抛物线开口向上; a<0, 抛物线开口向下.(2)越大,开口越小; 越小,开口越大.(3) c 是抛物线与y 轴交点的纵坐标.c=0, 抛物线经过原点; c>0, 抛物线与y 轴正半轴相交; c<0, 抛物线与y 轴负半轴相交.2.二次函数的性质:(1) 顶点:二次函数图象的顶点坐标为(ab ac a b 44,22--).当a>0时,顶点为最低点,此时函数有最小值,即当x=ab 2-时,最小值为a b ac 442-; a<0时,顶点为最高点,此时函数有最大值,即当x=ab 2-时,最大值为a b ac 442-. (2)对称性:二次函数的图象是轴对称图形,对称轴x=ab 2-是过顶点且与y 轴平行的直线(b=0时, 对称轴为y 轴).当a ,b 同号时,对称轴在y 轴左侧;当a ,b 异号时,对称轴在y 轴右侧.(3)增减性:①当a>0时,在对称轴的左侧,即x<a b 2-时, y 随x 的增大而减小,在对称轴的右侧,即x>ab 2-时, y 随x 的增大而增大;②当a<0时,在对称轴的左侧,即x<a b 2-时, y 随x 的增大而增大,在对称轴的右侧,即x>a b 2-时, y 随x 的增大而减小.三、掌握二次函数顶点坐标的求法1.公式法: 先确定出a ,b ,c 的值,再分别将其代入公式ab 2-和a b ac 442-中,计算后即可得到顶点的横、纵坐标.2.配方法:将二次函数关系式经过配方,化为y=a(x-h)2+k(a≠0)的形式,即可求得顶点坐标为(h ,k).说明:上述两种方法都是确定顶点坐标的常用方法,应根据系数a ,b ,c 的特征灵活选用.四、掌握二次函数关系式的求法求二次函数关系式的基本方法是待定系数法,根据已知条件的不同,常用如下两种形式:(1)一般式:y=ax 2+bx+c;(2)顶点式: y=a(x-h)2+k 来求函数关系式.说明: (1)求二次函数关系式的实质是确定三个系数的值,因此需要三个独立的已知条件. (2)当已知抛物线上任意三点的坐标(或函数的三对对应值)时,可选用一般式;当当已知抛物线的顶点坐标时,常用顶点式.五、反比例函数知识要点1、经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式2、一般地,如果两个变量x ,y 之间的关系可以表示成y=xk (k 为常数,k 不等于0)的形式,那么称y 是x 的反比例函数.从y=x k 中可知,x 作为分母,所以不能为零3、画反比例函数图像时要注意以下几点a 列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点b 列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线c 在连线时要用“光滑的曲线”,不能用折线4、反比例函数的性质反比例函数()0≠=k x k y k 的取值范围 0>k 0<k图像性质 ①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小 ①x 的取值范围是0≠x ,y 的取值范围是0≠y ②函数图像的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大 注意:1)反比例函数是轴对称图形和中心对称图形;2)双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交;3)在利用图像性质比较函数值的大小时,前提应是“在同一象限”内。
二次函数知识点总结一、二次函数的定义一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数。
其中x是自变量,a为二次项系数,ax2叫做二次项,b为一次项系数,bx叫做一次项,c为常数项。
注意:(1)等号左边是变量y,右边是关于自变量 x的整式。
(2)a,b,c为常数,且a≠0。
(3 )等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项。
(4)x的取值范围是任意实数。
(5)函数的右边是一个整式。
思考:二次函数的一般式y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)有何联系区别?联系:(1) 等式一边都是ax2+bx+c且a ≠0(2)方程ax2+bx+c=0可以看成是函数y= ax2+bx+c中y=0时得到的.区别:前者是函数.后者是方程.等式另一边前者是y,后者是0二、二次函数的解析式注意:(1)任何二次函数的解析式都可以化成一般式、顶点式或对称式,但并非所有二次函数都可以写成交点式,只有抛物线与x轴有交点,即b2−4ac⩾0时抛物线的解析式才可以用交点式表示.(2)一般地,二次函数解析式的这四种表达形式可以互化.(3)求解二次函数解析式的常用方法:①已知任意3点坐标,可用一般式求解二次函数的解析式;②已知顶点坐标或对称轴时,可用顶点式求解二次函数的解析式;③已知抛物线与x轴的两个交点坐标,可用交点式求解二次函数的解析式;④已知抛物线经过点(x1,k)、(x2,k)时,可用对称式求二次函数的解析式.三、二次函数的图像四、二次函数图像性质五、二次函数图象的平移:口诀:上加下减常数项,左加右减自变量.六、二次函数图象的对称:反比例函数知识点总结一、反比例函数的概念:函数 y=k/x(k为常数, k≠0 )叫做反比例函数,其中k 叫做比例系数,x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.二、反比例函数解析式的求法:反比例函数的解析式y=kx( k≠0) 中,只有一个系数k ,确定了k 的值,也就确定了反比例函数的解析式.因此,只需给出一组 x、y 的对应值或图象上一点的坐标,利用待定系数法,即可确定反比例函数的解析式三、反比例函数的图象与性质四、与反比例函数有关的面积问题。
反比例函数核心知识梳理1.反比例函数的定义:一般地,形如y=k/x(k是常数,且k≠0)的函数叫做反比例函数.其表达式还可写为y=kxˉ¹(k≠0)或xy=k(k≠0).对此概念要注意以下几点:①k是常数,且k≠0.②自变量x在分母中的指数为1,如y=3/x²就不是反比例函数.③自变量x的取值范围是x≠0的全体实数,函数y 的取值范围是y≠0的全体实数。
2.反比例函数的图像:反比例函数y=k/x(k是常数,且k≠0)的图像由两支曲线组成,称为“双曲线”.其图像具有以下特点:①图像的两个分支分别在不同的象限,不能连接起来.②由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。
③图像既是轴对称图形也是中心对称图形,对称轴是y=x或y=-x,对称中心为原点.④画反比例函数的图像时,可先画出一个分支,然后根据对称性画出另一分支。
3.反比例函数的性质:当k>0时,图像的两个分支在一、三象限,在每个象限内,y随x的增大而减小;当k<0时,图像的两个分支在二、四象限,在每个象限内,y随x的增大而增大。
4.反比例函数解析式的确定:由于反比例函数y=k/x只有一个比例系数k,所以只要知道一组x、y的值或图像任意一点的坐标,就可确定反比例函数的解析式,进而解决相关问题。
考点易错点解析反比例函数是中考的必考内容,题型有选择题、填空题和解答题,其考点主要体现在以下几个方面:①求反比例函数的解析式②领悟反比例函数的意义,确定函数图像的位置③已知函数图像,求参数的值或取值范围,以及函数增减性的确定④利用反比例函数解决有关实际应用问题⑤反比例函数与其他函数、方程(组)、不等式(组)的有关综合问题。
有关本部分内容再解题中应注意以下几点,以避免错误的解答:1.注意反比例函数y=k/x的表达式成立的限制条件是k≠0,不要忽视这一点2.正确区分反比例与反比例函数,避免因混淆相关概念而出错。
二次函数及反比例函数知识点二次函数和反比例函数是初中和高中数学中经常涉及的函数。
它们在数学上有着重要的应用,同时也具有一定的难度。
下面我们来详细介绍二次函数和反比例函数的知识点。
一、二次函数1. 定义:二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为实数,且a≠0。
2.二次函数的图像:二次函数的图像是一个开口朝上或开口朝下的抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
3.二次函数的性质:(1) 顶点坐标:二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)=ax^2 + bx + c。
(2)对称轴:顶点坐标为(-b/2a,f(-b/2a))的直线称为二次函数的对称轴,方程为x=-b/2a。
(3)开口方向:二次函数的开口方向取决于系数a的正负。
(4) 判别式:二次函数ax^2 + bx + c的判别式为Δ = b^2 - 4ac,当Δ > 0时,二次函数有两个不相等的实根;当Δ = 0时,有两个相等的实根;当Δ < 0时,无实根。
4.二次函数的平移:二次函数的横向平移和纵向平移可以通过对函数的自变量和因变量进行平移操作实现。
5.二次函数的解析式:通过给定的定点和顶点坐标,可以确定一条与x轴相交的二次函数。
6.二次函数的应用:二次函数在数学和物理等领域有着广泛的应用,如碰撞问题、抛物线运动等。
二、反比例函数1.定义:反比例函数是指形如y=k/x的函数,其中k为非零实数。
2.变化规律:反比例函数的特点是随着x的增大,y的值会逐渐减小;反之,随着x的减小,y的值会逐渐增大。
3.反比例函数的性质:(1)零点:当x≠0时,y=0称为反比例函数的零点。
(2)渐近线:反比例函数y=k/x的图像有两个渐进线x=0和y=0。
(3)对称性:反比例函数的图象关于坐标轴对称。
(4)奇函数:反比例函数是一个奇函数,满足f(-x)=-f(x)。
二次函数和反比例函数的知识点一、二次函数的知识点(600字)1. 二次函数的定义:二次函数是指形如f(x) = ax² + bx + c的函数,其中a、b、c是给定的常数,且a≠0。
2.二次函数的图像:二次函数的图像是一条开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3.抛物线的顶点:二次函数的顶点坐标可以通过公式x=-b/(2a)得到。
即在二次函数的图像中,顶点的横坐标为减去b再除以2a,纵坐标为代入这个横坐标后的函数值。
4.抛物线的对称轴:二次函数的对称轴是过顶点的直线,其方程可以表示为x=-b/(2a)。
5.抛物线的焦点和准线:二次函数的焦点和准线与二次函数的系数a有关。
当a>0时,抛物线有焦点且焦点在开口的上方,准线在抛物线下方;当a<0时,抛物线有焦点且焦点在开口的下方,准线在抛物线上方。
6. 零点和交点:二次函数的零点是使得f(x) = 0的解,可以通过求解ax²+bx+c=0的二次方程来得到。
交点是抛物线与x轴或y轴相交的点。
7. 判别式与二次函数的性质:判别式D = b²-4ac可以用来判断二次方程ax²+bx+c=0的解的性质。
当D>0时,方程有两个不相等的实数解;D=0时,方程有两个相等的实数解;D<0时,方程没有实数解。
8. 二次函数的不等式:对于二次函数f(x) = ax² + bx + c,可以通过将f(x)关于x的表达式移到一边,得到ax²+bx+c>0或ax²+bx+c<0的二次不等式。
二、反比例函数的知识点(600字)1.反比例函数的定义:反比例函数是指形如f(x)=k/x的函数,其中k是一个常数,且k≠0。
也称为倒数函数。
2.反比例函数的图像:反比例函数的图像是一条经过原点的曲线,其特点是随着自变量x的增大,函数值f(x)单调递减。
教学目标:1.复习并掌握二次函数的基本概念和性质,能够准确地画出二次函数的图像;2.复习并掌握反比例函数的基本概念和性质,能够解决与反比例函数有关的问题;3.进行习题训练,巩固所学知识点。
教学重点:1.二次函数的图像;2.反比例函数的性质。
教学难点:1.二次函数的最值问题;2.反比例函数与正比例函数的比较。
一、二次函数复习1. 二次函数的基本形式:y = ax^2 + bx + ca为二次项系数,a≠0;b为一次项系数;c为常数项。
2.二次函数的图像特征a>0时,开口向上,有最小值;a<0时,开口向下,有最大值;对称轴方程:x=-b/(2a)最值:若a>0,最小值为f(-b/(2a));若a<0,最大值为f(-b/(2a))。
3.二次函数的性质平移:y = a(x - h)^2 + k的图像相当于y = ax^2的图像向右平移h个单位,向上平移k个单位。
变形:y=a(x-h)^2+k的图像相当于y=x^2的图像上下旋转、拉伸、压缩、翻转。
二、反比例函数复习1.反比例函数的基本形式:y=k/xk为常数,k≠0;x≠0。
2.反比例函数的性质定义域:x≠0;值域:y≠0;x与y成反比例关系,即xy = k为常数。
教学过程:一、二次函数复习1.复习二次函数的基本概念和性质。
通过数学游戏、小组讨论等方式,让学生回顾和复习二次函数的基本概念和性质。
2.解题训练。
配置一些习题让学生进行解答,并进行讲解和讨论。
二、反比例函数复习1.复习反比例函数的基本概念和性质。
可以通过例题,让学生回顾和复习反比例函数的基本概念和性质。
2.解题训练。
配置一些习题让学生进行解答,并进行讲解和讨论。
三、综合训练1.给学生提供一些综合性的训练题,涉及二次函数和反比例函数的内容。
提醒学生要注意题目中的条件和要求,对于解法有不同的思路和方法。
2.学生自主解题、小组合作解题,并进行讲解和讨论。
学生可以自由选择解题方式,鼓励他们多尝试、多比较。