苏教版初二数学反比例函数讲义
- 格式:doc
- 大小:520.66 KB
- 文档页数:14
初二数学反比例函数知识要点及经典例题解析知识要点梳理知识点一:反比例函数的应用在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.知识点二:反比例函数在应用时的注意事项1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系.3.列出函数关系式后,要注意自变量的取值范围.知识点三:综合性题目的类型1.与物理学知识相结合:如杠杆问题、电功率问题等.2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.规律方法指导这一节是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题.学生要学会从现实生活常见的问题中抽象出数学问题,这样可以更好地认识反比例函数概念的实际背景,体会数学与实际的关系,深刻认识数学理论来源于实际又反过来服务实际.经典例题透析类型一:反比例函数与一次函数相结合1.(如图1,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图象写出使反比例函数的值大于一次函数值的的取值范围.思路点拨:由于A在反比例函数图象上,由反比例函数定义得,从而求出A点的坐标.再由待定系数法求出一次函数解析式.联立一次函数和反比例函数解析式,可求出B点坐标。
根据数形结合的思想,求出反比例的图象在一次函数图象上方时x的取值范围.解析:(1)∵已知反比例函数经过点,∴,即∴∴A(1,2)∵一次函数的图象经过点A(1,2),∴∴∴反比例函数的表达式为,一次函数的表达式为。
(2)由消去,得。
即,∴或。
∴或。
∴或∵点B在第三象限,∴点B的坐标为。
由图象可知,当反比例函数的值大于一次函数的值时,的取值范围是或。
初二数学反比例函数讲义上课时间:20XX 年__月___日一、本节课知识点梳理1、反比例函数的概念2、反比例函数的图像及其性质3、反比例系数k 的意义及其实际应用二、重难点点拨教学重点:反比例函数图像及其性质教学难点:反比例函数k 的几何意义三、典型例题与分析知识点一:反比例函数概念一般地,如果两个变量x 、y 之间关系可以表示成y=xk ,(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。
反比例函数形式还可以写成:xy=k ,y=kx -1(k ≠0的常数)1、在下列函数中,反比例函数是()A11x yB xy=0 CxkyD xy212、如果函数12m xy为反比例函数,则m 的值是()A 、1 B 、0 C、21 D 、1知识点二:反比例函数的图象与性质注意1:双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论。
函数解析式正比例函数:y=kx(k ≠0)反比例函数:y=x k(k ≠0) 图象直线,经过原点双曲线,与坐标轴没有交点自变量取值范围图象位置(性质)当k >0时,经过象限当K <0时,经过象限当K >0时,在象限当K <0时,在象限性质当K >0时,y 随x 的增大而当K <0时,y 随x 的增大而当K >0时,在每一个象限内......,y 随x 的增大而当K <0时,在每一个象限内。
.......y 随x 的增大而(1)已知y=xk (k <0)的图象上有两点A (x 1,y 1)、B(x 2,y 2)①若x 1<x 2<0,则y 1与y 2大小关系是y 1 y 2 ;若0<x 1<x 2,则y 1与y 2大小关系是y 1 y 2②若x 1<0<x 2,则y 1与y 2大小关系是y 1 y 2 ③若x 1<x 2,则y 1与y 2大小关系是。
(2)已知y=xk (k > 0)的图象上有两点A (x 1,y 1)、B(x 2,y 2)①若x 1<x 2<0,则y 1与y 2大小关系是y 1 y 2 ;若0<x 1<x 2,则y 1与y 2大小关系是y 1 y 2②若x 1<0<x 2,则y 1与y 2大小关系是y 1 y 2③若x 1<x 2,则y 1与y 2大小关系是。
辅导课题:反比例函数全章复习与巩固提分第二阶段:梳理本节课知识要点,查漏补缺要点一、反比例函数的概念一般地,形如kyx= (k为常数,0k≠)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.要点诠释:在kyx=中,自变量x的取值范围是,kyx= ()可以写成()的形式,也可以写成的形式.要点二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数kyx=中,只有一个待定系数k,因此只需要知道一对x y、的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.要点三、反比例函数的图象和性质 1.反比例函数的图象 反比例函数()0k y k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点诠释:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k xk y 的图象是轴对称图形,对称轴为x y x y -==和两条直线; ②)0(≠=k xk y 的图象是中心对称图形,对称中心为原点(0,0); ③x k y x k y -==和(k≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数x k y 2=, 当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数k y x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数 反比例函数 解析式图 像直线 有两个分支组成的曲线(双曲线) 位 置0k >,一、三象限; 0k <,二、四象限 0k >,一、三象限 0k <,二、四象限 增减性0k >,y 随x 的增大而增大 0k <,y 随x 的增大而减小 0k >,在每个象限,y 随x 的增大而减小 0k <,在每个象限,y 随x 的增大而增大 (4)反比例函数y =中k 的意义 ①过双曲线xk y =(k ≠0) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . ②过双曲线x k y =(k ≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .要点四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.提分第三阶段:考试考点例题讲解,掌握解题思路3.已知y=y1+y2,y1与(x﹣1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.(1)求y关于x的函数解析式;(2)求当x=3时的函数值.类型二、反比例函数的图象及性质1.如图,点A,B是双曲线y=上的点,分别经过A,B两点向x轴,y轴作垂线段,若S1+S2=10,则S阴影=.2.如图,点A是反比例函数图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为.3.已知一次函数y=kx+b的图象与反比例函数y=﹣的图象相交于A、B两点,且点A的横坐标与点B的纵坐标都是﹣2.求:(1)一次函数y=kx+b的解析式;(2)△AOB的面积.类型三、反比例函数应用1.某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图),现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg.研究表明,当空气中每立方米的含药量不低于3mg才有效,那么此次消毒的有效时间是()A.10分钟B.12分钟C.14分钟D.16分钟2.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如图,点A在反比例函数图象上,坐标是(8,30),当压强P(Pa)是4800Pa时,木板面积为m23.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速为v(单位:千米/小时),且全程速限定为不超过120千米/小时.(1)求v关于t的函数解析式;(2)方方上午8点驾驶小汽车从A地出发,他能否在当天11点前到达B地?说明理由.提分第四阶段:拓展延伸,本节课作业布置1..反比例函数y=的图象在二、四象限,则m应满足.2.如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.3.一艘载满货物的轮船到达目的地后开始卸货,平均卸货速ν(单位:吨/天)随卸货天数t的变化而变化.已知v 与t是反比例函数关系,它的图象如图所示.(1)求v与t之间的函数解析式;(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?。
立仁教育初二数学反比例函数讲义一、本节课知识点梳理1、反比例函数的概念2、反比例函数的图像及其性质3、反比例系数k 的意义及其实际应用 二、重难点点拨教学重点:反比例函数图像及其性质 教学难点:反比例函数k 的几何意义 三、典型例题与分析 知识点一:反比例函数概念一般地,如果两个变量x 、y 之间关系可以表示成y=xk,(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。
反比例函数形式还可以写成:xy=k ,y=kx -1(k ≠0的常数)1、在下列函数中,反比例函数是( )A 11+=x y B xy=0 C xk y = D x y 21-=2、如果函数12-=m x y 为反比例函数,则m 的值是 ( )A 、1-B 、0C 、21 D 、1知识点二:反比例函数的图象与性质注意1:双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论。
(1)已知y=xk(k <0)的图象上有两点A (x 1,y 1)、B(x 2,y 2)①若x 1<x 2<0,则y 1 与y 2大小关系是y 1 y 2 ;若0<x 1<x 2,则y 1 与y 2大小关系是y 1 y 2②若x 1<0<x 2,则y 1 与y 2大小关系是y 1 y 2③若x 1<x 2,则y 1 与y 2大小关系是 。
(2)已知y=xk(k > 0)的图象上有两点A (x 1,y 1)、B(x 2,y 2)①若x 1<x 2<0,则y 1 与y 2大小关系是y 1 y 2 ;若0<x 1<x 2,则y 1 与y 2大小关系是y 1 y 2②若x 1<0<x 2,则y 1 与y 2大小关系是y 1 y 2 ③若x 1<x 2,则y 1 与y 2大小关系是 。
注意2:反比例函数图象是以原点为对称中心的中心对称图形,是以直线y=x 和y=x -为对称轴的轴对称图形。
【例1】在反比例函数xy 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。
若3210x x x >>>则下列各式正确的是( )A .213y y y >>B .123y y y >>C .321y y y >>D .231y y y >> 练习:1.下列函数中,y 随x 增大而增大的是_______A y=-x+1B y=x 43-C y=x21D y=2x-1 2.反比例函数y=xk 图象在第二四象限,则一次函数y=kx-5的图象不经过_____象限。
3.在同直角坐标系中,函数y=kx-k 与y=xk(k ≠0)的图象大致是___________。
4.已知反比例函数3y x=,①若x <-3,则y 的取值范围 ②若y >-1,则x 的取值范围知识点三:反比例函数y=xk 比例系数k 的意义1.如图过双曲线上任一点p (x 、y )作x 轴、y 轴垂线段PM 、PN 所得矩形PMON 的面积S=PM ·PN=|y|·|x|=|xy|∵y=xk ∴xy=k∴s=|k|,即反比例函数y=xk (k ≠0)中的比例系数k 的绝对值表示过双曲线上任意一点,作X 轴,Y 轴的垂线所得的矩形的面积。
2.如图过双曲线上一点Q 向X 轴或Y 轴引垂线,则S △AOQ =k 21【例2】如图,Rt ΔABO 的顶点A 是双曲线k y x=与直线y x m =-+ •在第二象限的交点,AB 垂直x 轴于B ,且S △ABO =32, 则反比例函数的解析式 .【例3】如图,正比例函数(0)y kx k =>与反比例函数2y x=的图象相交于A 、C 两点,过点A 作AB ⊥x 轴于点B ,连结BC .则ΔABC 的面积等于( ) A .1 B .2 C .4 D .随k 的取值改变而改变. 练习:1、老师在同一个直角坐标系中画了一个反比例函数(0)ky k x=≠的图象以及正比例函数2y x =-的图象,请同学观察有什么特点。
甲同学说:双曲线与直线2y x =-有两个交点;乙同学说:双曲线上任意一点到两坐标轴的距离的积都是5.请你根据甲、乙两位同学的说法,写出这个反比例函数的解析式 .2、 如图A ,B 是函数xy 1=的图象上关于原点O AC 平行与y 轴,BC 平行于x 轴,△ABC 的面积为S 。
则( ) A 、S=1 B 、1<S <2 C 、S=2 D 、S >23、如图,在平面直角坐标系中,直线2k y x =+与双曲线k y x=在第一象限交于点A , 与x 轴交于点C ,AB ⊥x 轴,垂足为B ,且AOB S Λ=1.求: (1)求两个函数解析式; (2)求△ABC 的面积.知识点四:待定系数法【例4】已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),正比例函数的解析式为_________________. 练习:1.已知y=xk(k ≠0)的图象经过(3,2)则k= 。
OAB2.若y 与x 成反比例,x 与z 成正比例,则y 是z 的( )A 、正比例函数B 、反比例函数C 、一次函数D 、不能确定 3、已知21y y y -=,1y 与x 成反比例,2y 与2-x 成正比例,且x =1时,y =-1;x =3时,y =5,求x =5时y 的值。
知识点五:反比例函数与正比例函数的交点问题直线x k y 1=与双曲线xk y 2=的交点情况: ①当1k 与2k 满足:______________,直线x k y 1=与双曲线x k y 2=无交点 ②当1k 与2k 满足:_______________,直线x k y 1=与双曲线xky 2=有两个交点。
若其中一个交点坐标为(m,n ),另一个交点坐标为___________。
【例5】已知函数xay ax y -==4和的图象有两个交点,其中一个交点的横坐标为1,则两个函数图象的交点坐标是 。
练习: 1、已知函数y k x=1与y k =2x 的图象交点是(-2,5)是,则它们的另一个交点是 A . (2,5) B . (5,-2) C . (-2,-5) D . (2,-5)2.在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=有交点,那么1k 和2k 的关系一定是( )A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号知识点六:反比例函数与一次函数 1、当k <0时,反比例函数x ky =和一次函数2+=kx y 的图象大致是图中的 ( )2、如图,已知一次函数)0(≠+=k b kx y 的图象与反比例函数)0(8≠-=m xy 的图象交于A ,B 两点,且A 点的横坐标与B 点的纵坐标都是2-;(1)求一次函数的解析式 (2)求△AOB 的面积。
oxyoxyoxy oyxABC D知识点七:与反比例函数有关的实际问题【例6】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:(1)猜测并确定y与x之间的函数关系式,并画出图象;(2)设经营此卡的销售利润为w元,试求出w与x之间的函数关系式,若物价局规定此卡的售价最高不超过10元/个,请你求出当日销售单价定为多少元时,才能获得最大销售利润?练习:1、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 )的反比例函数,其图象如图所示.当气球内气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应()A、不小于54m3 B、小于54m3 C、不小于45m3 D、小于45m32、、你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:拉面师傅在一定体积的面团的条件下制做拉面,通过一次又一次地拉长面条,测出每一次拉长面条后面条的总长度与面条的粗细(橫截面积)(1)请根据右表中的数据求出面条的总长度y(m)与面条的粗细(橫截面积) s(mm2)函数关系式;(2)求当面条粗1.6mm2时,面条的总长度是多少?拉面的橫截面积S(mm2)面条的总长度y(m)200 0.8160 1120 1.380 240 4.13、 某蓄水池的排水管每小时排水8m 3,6小时可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 的关系式. (4)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少? (5)已知排水管的最大排水量为每小时12m 3,那么最少需多长时间可将满池水全部排空?四、拓展应用:如图5,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2ky x=(x <0)分别交于点C 、D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及双曲线的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .课后作业:1、矩形的面积为6cm 2,那么它的长y (cm )与宽x (cm )之间的函数关系用图象表示为( )2、已知点A(―2,a )在函数x y 2=的图像上,则a =( )A.―1B.1C.―2D. 2 3、如图,在AOB Rt ∆中,点A 是直线m x y +=与双曲线xmy =在第一象限的交点,且2=∆AOB S ,则该直线的解析式为___________________.o y xy xo yxo y xo ABCD4、已知:y=y 1+y 2,其中y 1与x 成反比例,y 2与x-2成正比例,但当x=1时,y=-1,当x=3时,y=3,求函数y 的解析式。
5、正比例函数x y 2=与双曲线xk y =的一个交点坐标为A (2,m )。
(1)求出点A 的坐标;(2)求反比例函数关系式; (3)求这两个函数图象的另一个交点坐标6.如图,在直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数m y x=的图象交于A(-2,1)、B(1,n)两点。
(1)求上述反比例函数和一次函数的表达式;(2)求△AOB 的面积。
7、某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y关于x的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?。