电磁场与电磁波课后答案
- 格式:doc
- 大小:1.45 MB
- 文档页数:58
电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯AB C ;(8)()⨯⨯A BC 和()⨯⨯A B C 。
解 (1)23A x y z+-===+e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e(4)y z -+=e e -11(4)由 cos AB θ=14==⨯A B A B ,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=17=-A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
第八章 平面电磁波8-1 导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。
解 非均匀的各向同性线性媒质中,正弦电磁场应该满足的麦克斯韦方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇)(),()(0),()(),()(),(),()(),(),(r r E r r H r r H r r E r E r r J r H ρεμμεt t t t t t t t t , 分别对上面两式的两边再取旋度,利用矢量公式A A A 2)(∇-⋅∇∇=⨯∇⨯∇,得⎪⎪⎭⎫ ⎝⎛∇⋅-∇+∂∂+∂∂⨯∇=∂∂-∇)()(),(),(),()(),()(),()()(),(222r r r E r r J r r H r r E r r r E εερμμμεt t t t t t t t t ⎪⎪⎭⎫ ⎝⎛∇⋅∇-∂∂⨯∇-⨯-∇=∂∂-∇μμεμε)(),(),()(),(),()()(),(222r r H r E r r J r H r r r H t t t t t t t 则相应的亥姆霍兹方程为⎪⎪⎭⎫ ⎝⎛∇⋅-∇++⨯∇=+∇)()()()()()(j )()(j )()()()(22r r r E r r J r r H r r E r r r E εερωμμωμεω⎪⎪⎭⎫ ⎝⎛∇⋅∇-⨯∇-⨯-∇=+∇μμεωμεω)()()()(j )()()()()(22r r H r E r r J r H r r r H 8-2 设真空中0=z 平面上分布的表面电流t J s x s sin 0ωe J =,试求空间电场强度、磁场强度及能流密度。
解 0=z 平面上分布的表面电流将产生向z +和z -方向传播的两个平面波,设z > 0区域中的电场和磁场分别为)(1z,t E ,)(1z,t H ,传播方向为z +;而z < 0区域中的场强为)(2z,t E 和)(2z,t H ,传播方向为z -。
电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。
如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。
解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。
解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。
由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。
解:以球心为坐标原点,转轴(一直径)为$z$轴。
设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。
r a=2r jq 题2-11E 2E 3E 题2-2图()004,,()400P ,,oYZ1r 2r r 1R 2R 18q C=q 题2-3图第二章 静电场 2-1.已知半径为r a =的导体球面上分布着面电荷密度为0cos S S ρρϑ=的电荷,式中的0S ρ为常数,试计算球面上的总电荷量。
解 取球坐标系,球心位于原点中心,如图所示。
由球面积分,得到()220cos sin S S S Q dS r d d p p=r =rq q q j òòòò220022000200cos sin cos sin sin20S S S r d d rd d a d p pp pp =rq q q j=r q q q j =r p q q =òòòòò2-2.两个无限大平面相距为d ,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。
解 假设上板带正电荷,面密度为S r ;下板带负电,面密度为S -r 。
对于单一均匀带电无限大平面,根据书上例 2.2得到的推论,无限大带电平面的电场表达式为2SE r =e 对于两个相距为的d 无限大均匀带电平面,根据叠加原理 123000SE ,E ,E r ===e2-3.两点电荷18C q =和24C q =−,分别位于4z =和4y =处,求点(4,0,0)P 处的电场强度。
解 根据点电荷电场强度叠加原理,P 点的电场强度矢量为点S 1和S 1处点电荷在P 处产生的电场强度的矢量和,即()112233010244q q R R =+pe pe R R E r 式中11144x z ,R =-=-==R r r e e 22244x y ,R =-=-==R r r e e代入得到()()()()()330444844142x y x z x y z éù-êú-êú=-êúpe êúëûù=+-úûe e e e E r e e e 2-7.一个点电荷+q 位于(-a , 0, 0)处,另一点电荷-2q 位于(a , 0, 0)处,求电位等于零的面;空间有电场强度等于零的点吗?解 根据点电荷电位叠加原理,有120121()4q q u R R r πε⎡⎤=+⎢⎥⎣⎦式中()11y z x a y R =-=+++=R r r e e e()22y z x a y R =-=-++=R r r e e e代入得到()4q u r πε⎡⎤=电位为零,即令0()04q u r πε⎡⎤== 简化可得零电位面方程为()()2233330x a x a y z ++++=根据电位与电场强度的关系,有()()()()()()()()3322222222222222203322332222222()()2422x y z x yx a y z x a y z x a y z x a y z x a y u u u u xy z x a y z z q x a x a y y z z E r r e e e e e πε−−−−−−⎡⎤∂∂∂=−∇=−++⎢⎥∂∂∂⎣⎦⎧⎛⎫⎪⎡⎤⎡⎤=−−++− ⎪⎨⎣⎦⎣⎦ ⎪⎪⎝⎭⎩⎛⎫⎡⎤⎡⎤+−+ ⎪⎣⎦⎣⎦ ⎪⎝⎭⎛⎫⎡⎤⎡⎤+−+ ⎣⎦⎣+++−+++++−+++++++⎦ ⎝−⎭z e ⎫⎪⎪⎬⎪⎪⎭要是电场强度为零,必有 000x y z E ,E ,E ===即()()()()()()()()332233222222222222222233222222202020x a x a y y z z x a y z x a y z x a y z x a y z x a y z x a y z −−−−−−+++−+++++−⎧⎡⎤⎡⎤+++++−+−++−=⎪⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎨⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎪⎣⎣⎩+⎦⎦此方程组无解,因此,空间没有电场强度为零的点。
第一章1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度 m /V 10E E 3y -==。
s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--―――1.2 写出下列时谐变量的复数表示(如果可能的话))3sin()6sin()()6(sin 1)()5()21000cos(10)()4(sin 2cos 3)()3(sin 10)()2()6sin(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解: 3/2/6/)(πππϕ-=-=z vj j e V j 3333sin 63cos 66)3(-=-==-∴πππ(2)解:)2cos(10)(πω--=t t I2)(πϕν-=zj eI j 10102=-=-∴π(3)解:)t t t A ωωsin 132cos 133(13)(-=j eA j 2313)2(+==-πθ则(4)解:)21000cos(10)(ππ-=t t CjeC j 10102-==∴π(5)(6)两个分量频率不同,不可用复数表示―――1.3由以下复数写出相应的时谐变量)8.0exp(4)2exp(3)3()2.1exp(4)2(43)1(j jC j C jC +=-=+=π(1)解:tt j t j t t j t j e j t j ωωωωωωωsin 4cos 4sin 3cos 3)sin )(cos 43()43(-++=++=+t t Ce RE t C t j ωωωsin 4cos 3)()(-==∴(2)解:)2.1cos(4)4()()(2.1-===-t e e RE Ce RE t C t j j t j ωωω(3)解:)8.0t (j )2t (j t j 8.0j j t j e 4e3e )e 4e3(Ce 2+ωπ+ωωω+=+=π得:)sin(3)8.0cos(4)8.0cos(4)2cos(3)()(t t t t Ce RE t C tj ωωωπωω-+=+++==―――1.4 写出以下时谐矢量的复矢量表示00000)cos(5.0)3()sin (cos 8)sin 4cos 3()()2()2cos(sin 4cos 3)()1(x t kz H z t t x t t t E z t y t x t t V t ωωωωωπωωω-=-++=+++=(1)解:00043)(z i y j x r V+-=(2)解:00)43cos(28)cos(5)(z t x t t V πωϕω--+=00430)88()43(285)(54arcsinz j x j z e x e r V++-=-==-πϕϕ其中 (3)解:00)]sin()[cos(5.05.0)(x kz j kz x e r H kz-==-―――1.6 ]Re[,)22(,)21(000000**⨯⋅⨯⋅-+-=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:j B A B A B A B A z z y y x x 35-=++=⋅0000000000000025)()22(12113)22()32()31()61(z y x B A RE jj j j z y x B A jB A z j y j x B z j y j x j B B B A A A z y x B A zyxz y x-+=⨯--+=⨯--=⋅+--=--++++-==⨯****得到:则:――――1.7计算下列标量场的梯度xyzu xyy x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z zz y x y y z y x x x z y x ++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)( 000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4) 解:u u grad ∇=)(00)22()22(y x y x y x+++=(5) 解:u u grad ∇=)(000z xy y xz x yz ++=第二章――2.1.市话用的平行双导线,测得其分布电路参数为: R ’=0.042Ωm -1; L ’=5×10-7Hm -1; G ’=5×10-10Sm -1; C ’=30.5PFm -1. 求传播常数k 与特征阻抗Z c . 答:))((C j G L j R jk '+''+'=ωω)()(C j G L j R Z c '+''+'=ωω代入数据可得:k =(1.385-1.453i) ×10-5; Z c= (1.52 -1.44i) ×103Ω2.2.传输线的特征阻抗Z c = 50Ω,负载阻抗Z L = 75 +75j Ω,用公式和圆图分别求:(1)与负载阻抗对应的负载导纳; (2)负载处的反射系数;(3)驻波系数与离开负载第一驻波最小点的位置Z L解:(1)Y L =Z L1=1501j -(2)ΓL=Z ZZ Z C LCL+-=j j 751257525++=171(7+6j) (3)70863.0)7/6arctan()0(==ψ rad离开负载第一驻波最小点的位置 d min =))0(1(4πψλ+=0.3064λ 2.3min1max min max min 80,50,5/,/4,/2,3/8,,I ,I L C L Z Z Z V d l V V ρλλλλ===参看图,负载电压,求驻波系数,驻波最小点位置传输线长度处的输入阻抗以及。
电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。
《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。
通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。
第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。
电磁波是电磁场的振动。
电磁辐射是指电磁波传播的过程。
2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。
对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。
3.电磁场的本质是相互作用力。
电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。
解析1.电磁场是由电荷和电流产生的物质性质。
当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。
同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。
电磁波是电磁场的振动传播。
电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。
电磁辐射是指电磁波在空间中的传播过程。
当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。
2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。
对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。
当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。
3.电磁场的本质是相互作用力。
当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。
一章习题解答1.1给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。
解(1) (2)(3)-11 (4)由,得 (5)在上的分量(6) (7)由于所以(8)A B C 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e A a -A B A B AB θA B ⨯A C ()⨯A B C ()⨯A B C ()⨯⨯A B C ()⨯⨯A B C 23A x y z +-===+-e e e A a e e e A -=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e =A B (23)x y z +-e e e (4)y z -+=e ecos AB θ===A B A B 1cos AB θ-=(135.5= A B B A =A cos AB θ==A B B ⨯=A C 123502xy z-=-e e e 41310x y z ---e e e ⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e ()⨯=A B C(23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e ()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e1.2三角形的三个顶点为、和。
(1)判断是否为一直角三角形; (2)求三角形的面积。
解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。
(2)三角形的面积 1.3求点到点的距离矢量及的方向。
解,, 则 且与、、轴的夹角分别为1.4给定两矢量和,求它们之间的夹角和在上的分量。
电磁场与电磁波课后习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。
解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。
解:(1)圆柱坐标系由(1.2-7)式,ϕϕϕρsin ˆcos ˆˆ1-==xF ρ;ϕϕϕρcos ˆsin ˆˆ2+==y F ρ(2)圆球坐标系由(1.2-14)式, ϕϕϕθθϕθsin ˆcos cos ˆcos sin ˆˆ1-+==r xF ρϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆ2++==r yF ρ1.6 将圆柱坐标系中的矢量场ρρF z F z 1223(,,)∃,(,,)∃ρϕρρϕϕ==用直角坐标系中的坐标分量表示。
解:由(1.2-9)式,)ˆˆ(2ˆsin 2ˆcos 2ˆ2221y y xx yx y x F ++=+==ϕϕρρ )ˆˆ(3ˆcos 3ˆsin 3ˆ3222y x xy yx y x F +-+=+-==ϕϕϕρ1.7将圆球坐标系中的矢量场ρρF r r F r 125(,,)∃,(,,)∃θϕθϕθ==用直角坐标系中的坐标分量表示。
解:由(1.2-15)式,)ˆˆˆ(5)ˆcos ˆsin sin ˆcos (sin 52221z z y y xx z y x z y x F ++++=++=θϕθϕθρ )ˆsin ˆsin cos ˆcos (cos 2z y x F θϕθϕθ-+=ρ22222ˆˆˆˆˆˆˆz y x z z y y xx y x y x x y r ++++⨯++-=⨯=ϕ}ˆ)(ˆˆ{112222222z y x y yz xxz yx z y x +-++++= 1.8求以下函数的梯度:(a) f(x,y,z)=5x+10xy-xz+6(b)f z z (,,)sin ρϕϕρ=-+24(c) f r r (,,)cos θϕθϕ=-+252解:(a) z x y x x z y f ˆˆ10ˆ)105(-+-+=∇ (b)z z f ˆˆcos 2ˆρϕρϕρ-+-=∇ (c)ϕθθθθˆsin 5ˆsin 2ˆcos 2r rf --=∇ 1.9 求标量场f x y z xy z (,,)=+22在点(1,1,1)沿)ˆˆ(21y x l -=ρ方向的变化率。
解:)(21ˆx y l f l f -=⋅∇=∂∂1.10 在球坐标中,矢量场ρρF r ()为 ρρF r kr r ()∃=2 其中k 为常数,证明矢量场ρρF r ()对任意闭合曲线l 的环量积分为零,即 ρρF dl l⋅=⎰0解:由斯托克斯定理, ⎰⎰⎰⋅⨯∇=⋅slS d F l d F ρρρρ因为0)ˆ(2=⨯∇=⨯∇r r kF ρ 所以 ρρF dl l⋅=⎰0 1.11证明(1.3-8e)、(1.3-8f)式。
1.12由(1.4-3)式推导(1.4-4a)式。
1.13由(1.5-2)式推导(1.5-3a)式。
1.14计算下列矢量场的散度a) ρFyzx zyy xzz =++∃∃∃ b) ρF z z =++ρρϕϕ∃sin ∃∃2 c) ρF rr r =++2∃cos ∃∃θθϕ 解:(a) z x F +=⋅∇ρ(b) ϕρcos 2zF +=⋅∇ρ(c)θθθsin sin cos 42-+=⋅∇r F ρ1.15计算下列矢量场的旋度a) ρFxyxyzy z =+-∃∃∃2 b) ρF =+2∃sin ∃ρϕϕ c) ρF rr =++∃∃sin ∃θθϕ 解: (a) z x xy F ˆˆ2--=⨯∇ρ(b) ∧=⨯∇z F ρϕsin ρ (c) )ˆˆsin ˆcos 2(1ϕθθθ+-=⨯∇rrF ρ 1.16计算 a) ∇∇∇ρ,,r ekrb)∇⋅∇⋅∇⋅(∃),,()ρρρρr ke kr c)∇⨯∇⨯∇⨯ρρρρ,,(∃)r z 解:(a) ;ˆˆˆˆρϕρϕρρρ=∂ψ∂+∂ψ∂+∂ψ∂=∇z z ;ˆsin ˆˆˆr r r r r r =∂ψ∂+∂ψ∂+∂ψ∂=∇ϕθϕθθ kr kr kr kr ke rr ke kr e e ˆ)(=∇=∇=∇ (b) ;2)(1=∂∂=⋅∇ρρρρρρ ;3)(122=∂∂=⋅∇r r r r r ρkr krkr kr kr ke rk e k k e e k e k ˆ)(⋅=∇⋅=⋅∇+∇⋅=⋅∇ρρρρρ (c) ϕρρˆ)ˆ(;0;0=⨯∇=⨯∇=⨯∇z r ρρ 1.17已知ρA yx xy =-∃∃,计算ρρA A ⋅∇⨯() 解:0)(;ˆ2=⨯∇⋅-=⨯∇A A z A ρρρ 1.18已知∇⋅=∇⨯=ρρF x y z F δδδ()()(),,0计算ρF解:根据亥姆霍兹定理,因为0=⨯∇F ρ,所以0=A ρ⎰⎰⎰⎰⎰⎰==⋅∇=ΦVV r dz dy dx R z y x dV R r F r πδδδππ41''')'()'()'(41')'('41)(ρρρ24ˆr rF π=Φ-∇=ρ 1.19已知∇⋅=∇⨯=ρρFFz x y z 0,∃()()(),δδδ计算ρF 解:根据亥姆霍兹定理,因为0=⋅∇F ρ,所以0=Φrzdz dy dx R z z y x dV R F A V V πδδδππ4ˆ'''ˆ)'()'()'(41''41==⨯∇=⎰⎰⎰⎰⎰⎰ρρ 24ˆˆ)ˆ1ˆ1(41ˆ41r r zz r z r r z A F πππ⨯=⨯∇+⨯∇=⨯∇=⨯∇=ρρ 1.20求矢量场z z F ˆˆˆ++=ϕρρρ穿过由ρϕπ≤≤≤≤≤1001,,z 确定的区域的封闭面的通量。
解:根据高斯定理,矢量场z z F ˆˆˆ++=ϕρρρ穿过由l z ≤≤≤≤≤0,0,1πϕρ确定的区域的封闭面的通量⎰⎰⎰⎰⎰⋅∇=⋅=ψSVdVF S d F ρρρ因为 31)(1=∂∂+∂∂+∂∂=⋅∇zF F F Fzϕρρρρϕρρ所以⎰⎰⎰==⋅∇=ψVlV dV F 2332πρ第二章习题解2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:设zrˆ=ρ,y r x r y r x r ˆ',ˆ',ˆ',ˆ'2321-=-===ρρρρ z y r r R z x r r R z y r r R z xr r R ˆˆ';ˆˆ';ˆˆ';ˆˆ'44332211+=-=+=-=+-=-=+-=-=ρρρρρρρρρρρρ84ˆ15ˆ6ˆ3)ˆˆˆˆ(41024*********221110πεπεz y x R R q R R q R R q R R q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
(a) (b) (c)题2-2图解:(a) 由对称性04321=+++=E E E E Eρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ˆ2)}ˆˆ()ˆˆ{(40021περπερ-=--+-=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ˆ20περ=ρ 总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为ϕad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为ϕρρad s l =,对ϕ积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ˆ)ˆcos ˆsin (22ˆ00000⎰⎰-=--==πππερϕϕϕπερπεϕρρ 题2-3图 题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为 ρρρπε'ˆ21),(0dx y x E d s =ρ其中 22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为 )}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y y a x y a x x y x E s --+++-++=περρ2-5.已知电荷分布为ρ=≤>⎧⎨⎪⎩⎪r a r a r a 220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。