圆规画三角形
- 格式:doc
- 大小:191.00 KB
- 文档页数:4
19.3 尺规作图(一)学习目标:1、 画一条线段等于已知线段2、 画一个角等于已知角3、 画角平分线重点与难点:1、 画一个角等于已知角2、 画角平分线教学过程:1、画一条线段等于已知线段试一试如图24.4.1,MN 为已知线段,用直尺和圆规准确地画一条线段AC 与MN 相等。
步骤:1、 画射线AB ,2、 然后用圆规量出线段MN 的长,再在射线AB 上截取AC =MN ,线段AC 就是所要画的线段.2、画一个角等于已知角试一试如图所示,∠AOB 为已知角,试按下列步骤用圆规和直尺准确地画∠A ′O ′B ′等于∠AOB .步骤:1、 画射线O ′A ′.2、 以点O 为圆心,以适当长为半径画弧,交OA 于C ,交OB 于D .3、 以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于C ′.4、 以点C ′为圆心,以CD 长为半径画弧,交前一条弧于D ′.5、 经过点D ′画射线O ′B ′.∠A ′O ′B ′就是所要画的角.BO A3、画角平分线A做一做 利用直尺和圆规把一个角二等分.已知:∠AOB ,图24.4.1求作:射线OC ,使∠AOC =∠BOC步骤:1、 在OA 和OB 上,分别截取OD 、OE ,使OD =OE O B2、 分别以D 、E 为圆心,大于21DE 的长为半径作弧,在∠AOB 内,两弧交于点C 3、 作射线OC ,OC 就是所求的射线。
练 习如图,平分∠A 。
(不写画法,保留作图痕迹)A综合练习A 组1、已知知线段a 和b ,如下图,求作一线段,使它的长度等于a +b.ab2、已知线段a 和b ,如下图,求作一线段,使它的长度等于a-b.ab3、已知线段AB 和CD ,如下图,求作一线段,使它的长度等于AB +2CD.4、如图,已知∠A 、∠B ,求作一个角,使它等于∠A +∠B.5、试把如图所示的角四等分.(首先把∠O 二等分,再把得到的两部分分别再二等分即可),请完成操作并写出画法.O5、如图,已知∠A ,试画∠B =21∠A.(不写画法,保留作图痕迹)(第5题)6、画出图中三角形三个内角的角平分线.(不写画法,保留作图痕迹)(第6题)7、请你利用直尺和圆规分别画出满足图24.4.4和图24.4.5中条件的三角形ABC.(1)已知两边及夹角; (2)已知两角及夹边.(1)‘ (2)B组完成下列画图,并写出画法.1、一条线段,使其等于AB-2CD.(第1题)2、画一个角,使其等于∠A-2∠B.(第2题)3、画一个等腰三角形,使其腰长等于AB,底边长等于BC.(第3题)4、如图,已知∠α、∠β及线段a,求作: △ABC,使AC=a, ∠BAC=∠α,∠ABC=∠β,(不写作法)αβa。
尺规作图练习题尺规作图是几何学中一项重要的技巧,通过使用尺子和圆规,可以准确地绘制出各种几何图形。
在本文中,我们将提供几个尺规作图练习题来帮助读者巩固和提高自己的尺规作图技能。
1. 绘制一个正方形首先,让我们来练习如何用尺规作图绘制一个正方形。
从任意一点A开始,使用尺子画一条线段AB。
然后,以B为中心,设置一个合适的半径,使用圆规画一个圆弧,并将其与线段AB交于点C。
接下来,以C为中心,设置与BC相等的半径,使用圆规画一个圆弧,并将其与之前的圆弧交于点D。
最后,连接线段AD、AB、BC和CD,就得到了一个正方形。
2. 绘制一个等边三角形下面,我们来练习如何绘制一个等边三角形。
首先,从任意一点A 开始,使用尺子画一条线段AB。
然后,以A为中心,设置一个合适的半径,使用圆规画一个圆弧,并将其与线段AB交于点C。
接下来,以C为中心,设置与AC相等的半径,使用圆规画一个圆弧,并将其与之前的圆弧交于点B。
最后,连接线段AB、BC和CA,就得到了一个等边三角形。
3. 绘制一个相似三角形接下来,我们来练习如何绘制一个相似三角形。
首先,从任意一点A开始,使用尺子画一条线段AB。
然后,在线段AB的一侧选择一个点C。
接下来,以C为中心,设置一个合适的半径,使用圆规画一个圆弧,并将其与线段AB交于点D。
最后,连接线段AD和BC,就得到了一个相似三角形。
4. 绘制一个等腰梯形最后,我们来练习如何绘制一个等腰梯形。
首先,使用尺子绘制两条平行线段AB和CD,表示梯形的底边和顶边。
然后,使用圆规在底边上选择两个点E和F,分别向梯形内部延伸一条垂直线段,分别与顶边CD和AB交于点G和H。
最后,连接线段EG、GF、FH和HE,就得到了一个等腰梯形。
通过以上的练习题,读者可以不断熟悉和掌握尺规作图的技巧和方法。
尺规作图虽然看起来需要一些技巧和经验,但通过不断的练习和实践,每个人都能够掌握这项重要的几何学技能。
希望读者在完成这些练习题后能够对尺规作图有更深入的理解和应用能力。
三角形圆规画高的原理
三角形圆规是一个用于绘制三角形的工具。
它由两个可调节的铅笔头和一个可调节的铅笔夹组成。
这个工具可以用来画出三角形的三边和三个角,以及三角形的高。
本文将探讨如何使用三角形圆规画出三角形的高。
在正三角形ABC中,连接顶点A和底边BC的垂线AD就是三角形的高。
我们可以使用三角形圆规来画出这条垂线。
将铅笔头A和B分别固定在BC的两个端点上。
然后,将铅笔夹放在圆规的上方,使其与三角形的顶点A对齐。
接着,将圆规移动到底边BC上,并且让铅笔头A和B分别在BC的两个端点上划出两个小弧。
这时,圆规上的铅笔夹就会指向这个三角形的高。
我们可以使用这个方法来画出任何三角形的高。
例如,在锐角三角形DEF中,我们可以连接顶点D和底边EF的垂线DG来得到三角形的高。
使用三角形圆规的方法同样适用于这个三角形。
需要注意的是,如果三角形圆规没有被正确地调整,那么画出的高可能不准确。
因此,在使用这个工具时,我们需要仔细地调整铅笔头和铅笔夹的位置,以确保准确性。
除了画出三角形的高,三角形圆规还可以用来画出其他有趣的几何形状。
例如,我们可以使用圆规和铅笔来画出圆、椭圆、正多边形
等等。
这个工具在几何图形的绘制中非常有用,特别是对于需要准确度和精度的场合。
使用三角形圆规来画出三角形的高是一种简单而有效的方法。
它可以帮助我们在几何图形的绘制中得到准确的结果,并且可以应用于各种不同的三角形形状。
圆规三角形的构建与运用圆规三角形是一种基础的几何构图方法,通过圆规和直尺可以构建出各种形状的三角形。
在学习几何学和绘图的过程中,圆规三角形的构建和运用是必不可少的一环。
本文将介绍如何使用圆规构建三角形,并介绍一些圆规三角形在实际生活和工作中的运用。
一、等边三角形的构建在等边三角形的构建中,我们需要使用圆规和直尺。
具体的步骤如下:1. Step 1在纸上画一个任意长度的线段AB,这条线段将作为等边三角形的一条边。
2. Step 2以A为中心,设置合适的圆规半径,画一个圆弧。
以B为中心,设置相同的圆规半径,画另一个圆弧。
3. Step 3圆弧交点C即为所求的等边三角形的第三个顶点。
连接AC和BC两条线段。
通过以上步骤,我们可以准确地构建出一个等边三角形。
在实际应用中,等边三角形可以用来构建稳定的结构,如建筑物的框架和三角支撑。
二、等腰三角形的构建在等腰三角形的构建中,我们同样需要使用圆规和直尺。
具体的步骤如下:1. Step 1在纸上画一个任意长度的线段AB,这条线段将作为等腰三角形的底边。
2. Step 2以A为中心,设置合适的圆规半径,画一个圆弧。
以B为中心,设置相同的圆规半径,分别画两个圆弧,分别与上一个圆弧相交于点C和点D。
3. Step 3连接AC和BC两条线段,即可得到所求的等腰三角形。
等腰三角形常用于几何证明和计算中,例如求解等腰三角形的面积和角度。
同时,在艺术设计中,等腰三角形的稳定性和美观性也常被运用。
三、直角三角形的构建在直角三角形的构建中,我们同样需要使用圆规和直尺。
具体的步骤如下:1. Step 1在纸上画一条任意长度的线段AB,并以A为顶点,将直尺放置在该线段上,向右转动90度。
2. Step 2以A为中心,设置合适的圆规半径,画一个圆弧,该圆弧与直尺所示的线段交于一点C。
3. Step 3连接AC和BC两条线段,即可得到所求的直角三角形。
直角三角形在工程测量、地图绘制等领域中广泛应用。
三角形全等的判定(一)教学目标1.构建探索三角形全等条件的思路,体会研究几何问题的方法.2.探索并理解“边边边”判定方法,体验利用操作、•归纳获得数学结论的过程.3.会用“边边边”判定方法证 明三角形全等.会用尺规作一个角等于已知角,了解作图的依据.教学重点: 构建探索三角形全等条件的思路,理解并运用“边边边”判定方法.教学难点:1.构建探索三角形全等条件的思路。
2.用尺规作一个角等于已知角教学准备:多媒体课件、 两块全等的三角形纸板、 直尺、 圆规 、 学案等.教学过程:一、复习旧知,尝试解决生活问题,初识“全等判定”,构建探索思路1.请你思考后回答:什么叫做全等三角形? 根据这个定义,你知道的全等三角形有哪些性质?你怎样去判定两个三角形全等?师生活动:教师根据学生回答,在黑板上用符号语言表示这一判定方法.在△ABC 和△A′B′C′中,∵⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'∠=∠'∠=∠'∠=∠''=''=''=C C B B AA C A AC CB BC B A AB ∴ △ABC≌△A′B′C′2.尝试应用:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,请你说说小明该怎么办?并说说这样做的依据是什么?师生活动:学生先在小组内交流,再在全班展示结果.3.请你继续思考:是否一定需要六个条件才能判定两个三角形全等呢?能否减少个三角形全等的判定?你想从几个条件开始研究? 师生活动:学生畅说欲言,交换,确定先从“一个条件”开始,不行就两C 'B 'A 'C B A个“两个条件”,再不行就“三个条件”……的顺序来探究三角形全等的条件。
二、动手操作,感知由“一个条件”“两个条件”不能确定两个三角形全等活动1.请你观察手中的一副三角尺,思考后回答:只给一个条件相等的两个三角形一定全等吗?师生活动:学生独立观察、比较后,再个人展示,有不同想法补充说明,发现:有一条边或一个角相等的两个三角形不一定全等.一起归纳得出:只有一个条件对应相等的两个三角形不一定全等。
第7讲三角形的尺规作图一、教学目标理解尺规作图的含义,掌握尺规作图的步骤。
二、知识点梳理1、尺规作图定义:只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图。
注意:尺规作图中的直尺没有刻度。
2、已知三边作三角形已知三边求作三角形是利用三角形全等的条件“边边边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,c求作:△ABC,使AB=c,BC=a,AC=b作法与示范:(1)作线段AB=c(2)以点A为圆心,b为半径画弧(3)以点B为圆心,a为半径画弧,两弧交于点C(4)连接AC,BC,△ABC即为所求3、已知两边及其夹角作三角形已知两边及其夹角作三角形是利用三角形全等的条件“边角边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,∠α求作:△ABC,使∠B=∠α,BC=a,BA=b作法与示范:(1)作∠MBN=∠α(2)在射线BM,BN上分别截取线段BC=a,BA=b(3)连接AC,则△ABC为所求作的三角形4、已知两角及其夹边作三角形已知两角及其夹边求作三角形是利用三角形全等的条件“角边角”来作图的,具体作图的方法、步骤、图形如下:已知:∠α,∠β,线段a求作:△ABC,使∠BAC=∠α,∠ABC=∠β,AB=a作法与示范:(1)作线段AB=a(2)在AB同侧,作∠DAB=∠α,∠EBA=∠β,AD与BE相交于点C,则△ABC为所求作的三角形三、典型例题例1 下列作图属于尺规作图的是()A、用量角器画出∠AOB的平分线B、用圆规和直尺作∠AOB等于已知的∠αC、用刻度尺画线段AB=3 cmD、用三角板作直线AB的平分线例2 如图13-4-1,已知:线段a、b。
求作:△ABC,使AB=2a,AC=b,BC=a。
例3 如图13-4-3,已知:线段m,n,∠α。
求作:△ABC,使AB=2m,AC=2n,∠A=∠α。
例4 如图13-4-5,已知:线段a和∠α。
《用尺规作三角形》教案
【教学目标】
1.知识与技能
(1)已知两边及其夹角、两角及其夹边、三边会作三角形。
2.过程与方法
在用尺规作图的过程中,进一步理解和掌握三角形全等的条件。
3.情感态度和价值观
使学生在自主探索过程中,、获得正确的学习方式和良好的情感体验。
【教学重点】
根据题目的条件作三角形。
【教学难点】
探索作图过程。
【教学方法】
自学与小组合作学习相结合的方法。
【课前准备】
教学课件。
【课时安排】
1课时
【教学过程】
一、复习导入
【过渡】我们已经学过利用尺规作一条线段等于已知线段,作一个角等于已知角。
现在,我们一起来回忆一下如何利用尺规作一个角等于已知角吧。
已知:∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB。
(学生动手)
【过渡】大家都能正确的进行作图,具体的做法我们就不在这里多说。
那么我们应该如何利用尺规作图作出一个需要的三角形呢?今天我们就来探究一下。
二、新课教学
1.用尺规作三角形
【过渡】我们一起来看一下课本P86的做一做内容,我们该如何画出这样一个符合条件的三角形呢?
【过渡】按照课本的示范,大家先试着画一下吧。
课件展示具体的画图过程,边进行讲解,边让学生动手。
【过渡】将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?
大家结合三角形全等的判定,谁能告诉我答案。
(学生回答)
【过渡】结合刚刚的画图过程,我们发现,我们的已知条件是两边及其夹角,因此,根据两边及它们的夹角对应相等的两个三角形全等(SAS),我们能够得到全等的三角形。
【过渡】大家想一想,除了刚刚的那种方法之外,还有别的画图方法吗?
(学生回答)
进行总结,并展示一种方法的画图过程。
【过渡】我们刚刚的另一种画图方法,与之前不一样的在于,先确定角,之后再截取正确的长度。
同样得到全等的三角形。
【过渡】现在,我们来看课本第2个做一做的内容。
这次,同学们先自己进行画,然后我们再来看谁的步骤是正确的。
(学生动手。
老师巡视指导)
【过渡】刚刚看了大家的画图过程,很多同学都画的很正确,现在,我们来挑选一位同学讲一下自己的画图过程。
配合学生的回答,课件展示画图过程。
【过渡】大家都画出来了吗?将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?
【过渡】和刚刚一样,我们对题目的条件进行分析,两角及它们的夹边对应相等的两个三角形全等(ASA),由此我们来判断三角形全等。
【过渡】在三角形全等的判定中,我们还学习了边边边的方法,那么,如何利用尺规,和已知三边的情况下画出三角形呢?这个问题就由大家自己动手吧。
(学生动手)
课件展示画图过程。
(1)作一条线段BC=a;
(2)分别以B,C为圆心,以c,b为半径画弧,两弧交于A点;
(3)连接AB、AC,△ABC就是所求作的三角形。
【过渡】这个很明显,就是利用边边边判断三角形的全等。
【知识巩固】1、如图所示,已知线段a,用尺规作出△ABC,使AB=a,BC=AC=2a。
作法:(1)作一条线段AB= a ;
(2)分别以 A 、 B 为圆心,以2a 为半径画弧,两弧交于C点;
(3)连接分别以AC 、BC ,则△ABC就是所求作的三角形。
2、已知线段a、m、n,用直尺和圆规画△ABC,使得BC=a,且m、n分别是BC边上的中线和高线.(保留作图痕迹,不要求写作法)
解:
【板书设计】
用尺规作三角形:
1.已知两边及其夹角作三角形
2.已知两角及其夹边作三角形
3.已知三边作三角形
【教学反思】
本节课学习了有关三角形的作图,主要包括两种基本作图:作一条线段等于已知线段,作一个角等于已知角。
作图时,鼓励学生一边作图,一边用几何语言叙述作法,培养学生的动手能力、语言表达能力。