D8_3曲面方程
- 格式:ppt
- 大小:2.07 MB
- 文档页数:27
G0、G1、G2、G3、G4曲面的介绍G0-位置连续,G1-切线连续,G2-曲率连续,G3-曲率变化率连续,G4-曲率变化率的变化率连续这些术语用来描述曲面的连续性。
曲面连续性可以理解为相互连接的曲面之间过渡的光滑程度。
提高连续性级别可以使表面看起来更加光滑、流畅。
G0-位置连续图中所示的两组线都是位置连续,他们只是端点重合,而连接处的切线方向和曲率均不一致。
这种连续性的表面看起来会有一个很尖锐的接缝,属于连续性中级别最低的一种。
G1-切线连续图中所示的两组曲线属于切线连续,他们不仅在连接处端点重合,而且切线方向一致(可以看到相连的两条线段梳子图的刺在接触点位置是在一条直线上的)。
用过其他PC插图软件的用户,比如CorelDraw,实际上通常得到的都是这种连续性的曲线。
这种连续性的表面不会有尖锐的连接接缝,但是由于两种表面在连接处曲率突变,所以在视觉效果上仍然会有很明显的差异。
会有一种表面中断的感觉。
通常用倒角工具生成的过渡面都属于这种连续级别。
因为这些工具通常使用圆周与两个表面切点间的一部分作为倒角面的轮廓线,圆的曲率是固定的,所以结果会产生一个G1连续的表面。
如果想生成更高质量的过渡面,还是要自己动手。
G2-曲率连续图中的两组曲线属于曲率线续。
顾名思义,他们不但符和上述两种连续性的特征,而且在接点处的曲率也是相同的。
如图中所示,两条曲线相交处的梳子图的刺常度和方向都是一致的(可以为0)。
这种连续性的曲面没有尖锐接缝,也没有曲率的突变,视觉效果光滑流畅,没有突然中断的感觉(可以用斑马线测试)。
这通常是制作光滑表面的最低要求。
也是制作A级面的最低标准。
G3-曲率变化率连续这种连续级别的表面有比G2更流畅的视觉效果。
但是由于需要用到高阶曲线或需要更多的曲线片断所以通常只用于汽车设计。
图中的两组曲线的连续性属于曲率变化率连续。
这种连续级别不仅具有上述连续级别的特征之外,在接点处曲率的变化率也是连续的,这使得曲率的变化更加平滑。
微分几何课程知识点总结微分几何的基础知识包括:1. 曲线的参数化和切向量曲线可以通过参数化函数来描述,参数t变化从而描述曲线上的点的运动。
曲线切向量是描述曲线在某一点上的方向的向量,它是曲线在该点的切线的向量。
求切向量的方法是对参数方程分别求偏导数,然后将偏导数构成的向量进行线性组合,构成切向量。
切向量的方向可用来刻画曲线的弯曲程度。
2. 曲率和法向量曲线的曲率是曲线在某一点处的弯曲程度的数值描述,它是切向量的变化率。
曲率的计算是通过求曲线切向量在参数方程下的导数再求模得到的。
法向量是描述曲线在某一点处的朝向的向量,它垂直于切向量,并且长度为1。
法向量的求取可以通过对曲线的切向量进行求导,然后标准化得到。
3. 曲面的参数化和法向量曲面可以通过参数化函数来描述,参数u,v可以用来描述曲面上的点的位置。
曲面的参数化方程可以由曲线的参数化函数进行推广得到。
求曲面的法向量时,先求出曲面的两个切向量,再通过叉乘得到法向量。
4. 曲率和高斯曲率曲面的曲率是描述曲面在某一点处的弯曲程度的数值描述,它是切向量的变化率。
曲率的计算是通过求曲线切向量在参数方程下的导数再求模得到的。
高斯曲率是描述曲面在某一点处的弯曲性质的一个重要指标,它是曲面的两个主曲率的乘积。
5. 向量场和曲线积分向量场是描述空间中每点都有的向量的场,向量场的积分可以用来计算曲线的长度、曲面的面积等。
曲线积分是在曲线上对向量场进行积分,求取曲线上的长度、质量、力矩等。
以上就是微分几何课程中的基础知识,接下来我们将进一步介绍微分几何的一些重要概念和定理。
1. 第一基本形式和第二基本形式第一基本形式是曲面上的一个内积,它可以用来计算曲面上的长度、夹角、面积、体积等性质。
第二基本形式是曲面上的一个二次型,它可以用来描述曲面上的弯曲性质,如平均曲率、高斯曲率等。
2. 光滑曲线和光滑曲面光滑曲线是指其切向量在全局都是连续可微的曲线。
光滑曲面是指其切向量在全局都是连续可微的曲面。
考研数学一(多元函数微分学)历年真题试卷汇编4(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2006年)若f(x,y)与φ(x,y)均为可微函数,且φ’y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是A.若f’x(x0,y0)=0,则f’y(x0,y0)=0.B.若f’0(x0,y0)=0.则f’(x0,y0)≠0.C.若f’x(x0,y0)≠0,则f’y(x0,y0、)=0.D.若f’x(x0,y01)≠0,则f’y(x0,y0)≠0.正确答案:D解析:由拉格朗日乘数法知,若(x0,y0)是f(x.y)在约束条件φ(x,y)=0下的极值点。
则必有若f’x(x0,y0)≠0,由①式知,λ≠0,加之原题设φ’y(x,y)≠0,由②式知,λφ’(x0,y0)≠0,从而必有f’y(x0,y0)≠0,故应选(D).知识模块:多元函数微分学2.(2008年)函数在点(0,1)处的梯度等于A.iB.一iC.jD.一j正确答案:A解析:解1 由知则f’x(0,1)=1,f’(0,1)=0,所以gradf(0,1)=i 解2 由知则gradf(0.1)=i 知识模块:多元函数微分学3.(2010年)设函数z=z(x,y)由方程确定,其中F为可微函数,且F’2≠0,则A.x.B.z.C.一x.D.一z.正确答案:B解析:由隐函数求导公式得则解 2 等式分别对x,y求偏导得(1)式乘x2加(2)式乘xy得(一z)F’2+F’2(xzx+yzy)=0则xzx+yzy=z (F’2≠0) 知识模块:多元函数微分学4.(2011年)设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是A.f(0)>1,f”(0)>0.B.f(0)>1,f”(0)<0.C.f(0)<1,f”(0)>0.D.f(0)<1,f”(0)<0.正确答案:A解析:则AC—B2>0故应选(A).知识模块:多元函数微分学5.(2012年)如果f(x,y)在(0,0)处连续,那么下列命题正确的是A.若极限存在,则f(x,y)在(0,0)处可微.B.若极限存在,则f(x,y)在(0,0:)处可微.C.若f(x,y)在(0,0)处可微,则极限存在.D.若f(x,y)在(0,0)处可微,则极限存在.正确答案:B解析:解l 由f(x,y)在(0,0)处连续可知,如果存在,则必有又极限则由存在知即由微分的定义知f(x,y)在(0,0)处可微.解2 排除法:取f(x,y)=|x|+|y|,显然,存在,但f(x,y)=|x|+|y|在(0,0)处不可微,这是由于f(x,0)=|x|,而|x|在x=0处不可导,则fx(0,0)不存在.则排除(A);若取f(x,y)=x,显然,f(x,y)在(0,0)处可微,但不存在,则不存在,排除(C).又则不存在,排除(D).故应选(B).知识模块:多元函数微分学6.(2013年)曲面x2+cos(xy)+yz+x=0在点(0,1,一1)处的切平面方程为A.x—y+z=一2.B.x+y+z=0.C.x一2y+z=一3.D.x—y一z=0.正确答案:A解析:令F(x,y,z)=x2+cos(xy)一yz+x,则则所求切平面方程为x一(y 一1)+(z+1)=0即x—y+z=一2 知识模块:多元函数微分学7.(2017年)函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量n=(1,2,2)的方向导数为A.12.B.6.C.4.D.2.正确答案:D解析:fx(1,2,0)=2xy|(1,2,0)=4 fy(1,2,0)=x2|(1,2,0)=1 fz(1,2,0)=3z2|(1,2,0)=0 向量n={1,2,2}的方向余弦为则知识模块:多元函数微分学填空题8.(2003年)曲面z=x2+y2与平面2x+4y一z—0平行的切平面方程是_____________.正确答案:2x+4y—z=5解析:曲面z=x2+y2在点(x0,y0,z0)处切平面的法向量为n1={2x0,2y0,一1)而平面2x+4y一z=0的法向量为n2={2,4,一1}.由题设知n1//n2,则从而有x0=1,y0=2,代入z=x2+y2 得z0=5,n1={2,4,一1}则所求切平面方程为2(x一1)+4(y一2)一(z一5)=0即2x+4y—z=5 知识模块:多元函数微分学9.(2005年)设函数单位向量则正确答案:解析:ux(1,2,3)=uy(1,2,3)=uz(1,2,3)=则知识模块:多元函数微分学10.(2007年)设f(u,v)为二元可微函数,z=f(xy,yx),则正确答案:yxy-1f’1+y2lnyf’2.解析:由复合函数求导法知知识模块:多元函数微分学11.(2009年)设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则正确答案:f’2+xf”12+xyf”22解析:知识模块:多元函数微分学12.(2011年)设函数则正确答案:4解析:解1 △解2 由偏导数定义知知识模块:多元函数微分学13.(2012年)正确答案:(1,1,1)解析:知识模块:多元函数微分学14.(2014年)曲面z=z2(1一siny)+y2(1一sinx)在点(1,0,1)处的切平面方程为_____________.正确答案:2x—y一z=1.解析:由z=x2(1一siny)+y2(1一sinx)得z’x=2x(1一siny)一y2cosx,z’x(1,0)=2 z’y=一x2cosy+2y(1一sinx),z’ y(1,0)=一1所以,曲面z=x2(1一siny)+y2(1一sinx)在点(1.0.1)处的法向量为[*]=(2.一1,一1),该点处切平面方程为2(x-1)一y一(z一1)=0即2x—y一z=1.知识模块:多元函数微分学15.(2015年)若函数z=z(x,y)由方程ez+xyz+x+cosx=2确定,则dz|(0,1)=_____________.正确答案:一dx解析:将x=0,y=1代入ez+xyz+x+cosx=2 中得ez+1=2,则z=0.方程ez+xyz+x+cosx=2两端微分得ezdz+yzdx+xzdy+xydz+dx—sinxdx=0 将x=0,y=1.z=0代入上式得dx+dz=0则dz|(0,1)=一dx 知识模块:多元函数微分学16.(2016年)设函数f(u,v)可微,z=z(x,y)由方程(x+1)z—y2=x2f(x一z,y)确定,则dz|(0,1)=___________.正确答案:一dz+2dy.解析:解1 由原方程知,当x=0,y=1时,z=1.方程(x+1)z一y2=xf(x —z,y)两边求全微分zdx+(x+1)dz一2ydy=2xf(x一z,y)dx+x2[f’1·(dx一dz)+f’2dy] 将x=0,y=1,z=1代入上式得dz|(0,1)=-dx+2dy 解2 由原方程知,当x=0,y=1时,z=1.方程两边分别对x、y求偏导数,有把x=0,y=1,z=1代入上式得所以dz|(0,1)=-dx+2dy 知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。
直线参数方程的标准形式
直线的参数方程的标准形式,是在二维空间中表示直线的最常用的数学表达式。
它的特点是由一个个系数加以组合,表示属于直线一般方程组中的任意一个方程,形式如下:
1、标准形式:Ax+By+C=0;
2、含有参数的方程:x=at+b;
3、含有两个参数的方程:y=at+b/ct+d;
4、极坐标的参数方程:r=a+bθ;
5、椭圆的参数方程:x=acost+bsint;
6、椭圆的参数方程:y=adcbrt+bssqrt;
7、双曲线的参数方程:x=acosth+bsinth;
8、双曲线的参数方程:y=a cosh + b sinh;
9、圆的参数方程:x=acost+bsint;
10、圆的参数方程:y=a cosh + b sinh;
准确说,直线参数方程不仅包含上述几种,还有环境、双曲面等特殊形式。
但总的来说,参数方程都有两个参数,它们会改变直线的斜率和位移,以便实现所需的椭圆和曲线,同时保持直线的特性。
归根结底,参数方程的作用就在于使图形变得灵活多变,以便根据不同的应用场景,实现准确的绘图效果。
通过控制参数的变化,可以快速地实现圆、弧等曲线图形的绘制,而不需要为每个曲线绘制一行程序代码。
第十一章 曲线积分与曲面积分试题一.填空题(规范分值3分)11.1.1.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧对x 轴的转动惯量I x =。
ds y x y L),(2μ⎰11.1.2.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧的质心坐标x =;y =。
x =⎰⎰LLds y x ds y x x ),(),(μμ;y =⎰⎰LLdsy x ds y x y ),(),(μμ 11.1.3.1在力),,(z y x F F =的作用下,物体沿曲线L 运动。
用曲线积分表示力对物体所做的功=W 。
d z y x L⋅⎰),,(11.1.4.2 有向曲线L 的方程为⎩⎨⎧≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上一阶导数连续,且[][]0)()(22≠'+'t y t x ,又),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL⎰⎰+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。
αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平面内直线a x =上的一段,则曲线积分⎰Ldx y x P ),(=。
011.1.6.2 设L 为xoy 平面内,从点(c,a )到点(c,b )的一线段,则曲线积分⎰+Ldy y x Q dx y x P ),(),(可以化简成定积分:。
dy y Q ba),0(⎰11.1.7.2 第一类曲线积分ds y x L⎰+)(22的积分值为。
《高等数学》教学大纲课程编号:课程性质:专业基础课课程类别:必修课先修课程:学分:4总学时数:144周学时数: 4开课单位:计算机科学系一、课程简介高等数学是理工科(非数学)本科专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。
通过本课程的学习,使学生会获得高等数学各方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础;逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,培养学生综合运用所学数学知识去分析问题和解决问题的能力。
二、培养目标(一)知识培养目标通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、微分方程;4、向量代数与空间解析几何;5、多元函数微积分学;6、无穷级数等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。
(二)能力培养目标引导学生在生活实践中使用数学,在其它课程中应用数学,增强运用数学方法、借助计算机来分析和解决实际问题的能力;形成积极应用数学的氛围,在教学活动中,渗透素质教育,使学生提高逻辑思维能力,注重培养严谨求实的科学态度,树立科学的世界观。
三、课程内容(请细化到每一节的内容)第一章函数与极限§1.1 映射与函数【学时】:4【了解】: 1.函数奇偶性、单调性、周期性、有界性。
2.反函数的概念。
3. 建立简单应用问题中的函数关系式的方法。
【掌握】: 1. 函数的概念,函数的表示方法。
2. 复合函数及分段函数的概念。
3. 基本初等函数的性质及其图形【重点】: 1.复合函数及分段函数的概念。
2.基本初等函数的性质及其图形。
【难点】: 分段函数的建立与性质§1.2 数列极限【学时】:2【了解】:数列的极限与其子数列的极限之间的关系【掌握】: 1.数列极限的概念,数列极限的性质。
2.子数列的概念【重点】:数列极限的概念、性质【难点】:数列极限的概念§1.3 函数极限【学时】:2【了解】:【掌握】: 1. 函数极限的概念,函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
工程流体力学第一章思索题1、为什么要引进连续介质的假设?为什么可以把液体当作连续介质?2、非均质液体的密度应当如何表示?3、流体粘度与哪些因素有关?它们随温度是如何变化的?对流体有何影响?4、为什么水通常被视为不行压缩流体?什么状况下要考虑液体的可压缩性和表面张力特性?5、液体内摩擦力的大小与哪些因素有关?牛顿内摩擦定律的适用条件有哪些?6、图为管道过水断面水流流速分布图,从其对应部位取出水体A,试标出水体A顶面和底面切应力的方向。
思索题6图7、为什么要引入抱负液体的概念?它与实际液体有什么区分?8、单位质量力怎样定义的?静止液体和作自由落体运动的液体所受的单位质量力分别为多少?习题1.1容器中盛有静止液体,此时液体所受到的单位质量力为多少?1.2假设水的体积弹性系数犬=2.2、1()6长修,欲使其体积减小0.4乐问需要增加多大的压强?1.3当压强的增量为5OKN∕7∕,某种液体的密度增长0. 02%,试求该液体的体积模量。
1. 4平板面积为50x50。
/,厚度为1. 0cm,质量m=5kg,沿着涂有厚度5=1. 0mm油的斜面对下作等速运动,其速度尸 1. Om∕s,带动油层的运动速度呈直线分布,油的密度P =950 kg∕m3,求油的动力粘度和运动粘度。
1.5 某种液体布满两平行边界的缝隙5内,液体的动力粘度为为",有一面积为力的极薄的平板以 速度u 平行于平板移动。
x 为平板距上边界的距离。
求:平板所受的拖力T,(缝隙内的流速按直1.6 水流在平板上运动(如第6题图),流速分布曲线DE 为抛物线形,E 点为抛物线端点,E 点处 也=0dy ~ ,水的运动粘度v = 1.0xl02m2∕s,试求y = 0,2,4cm 处的切应力(提示:先设流速分布 u = Ay 2+By + C,采用给出的条件确定待定常数A, B, C )o 其次章思索题1、抱负流体处于静止状态时受到哪儿种力的作用?2、等压面应具备什么条件?在什么条件下“静止液体内任何一个水平面都是等压面”的说法是正确的?3、下列哪一些是正确的等压面?油水 t=∏ I 水-D思索题3图4、水静力学基本方程的形式和表示的物理意义是什么?5、压力表和测压计测得的压强是肯定压强还是相对压强?6、静止液体、流淌液体中,各点的测压管水头是否相等?线分布)。
二次曲面双曲面反射二次曲面双曲面反射是光线在二次曲面上发生反射后的行为。
双曲面反射是一个重要的光学现象,广泛应用于光学系统、雷达系统和天文观测等领域,下面将对二次曲面双曲面反射进行相关参考内容的介绍。
1. 光的反射定律:光线在二次曲面上发生反射时,遵循光的反射定律。
根据光的反射定律,入射光线、反射光线和曲面法线在反射点上的切平面相交于一点,并且入射角等于反射角。
这个定律是解决二次曲面双曲面反射问题的基础。
2. 焦点:二次曲面双曲面反射中,焦点是一个重要的概念。
对于双曲面而言,焦点是指所有反射光线经过反射后都会汇聚到同一个点上,该点就是焦点。
焦点的位置与二次曲面的参数和光线的入射角有关。
焦点的概念在光学系统中具有重要的应用,比如在望远镜中,通过将光线汇聚到焦点上来形成清晰的图像。
3. 镜面反射:二次曲面的双曲面反射是一种特殊的反射现象,通常情况下我们讨论的是平面镜面反射,即平面曲面的反射。
在镜面反射中,入射光线和反射光线在反射点上的切线方向是相等的,这是由于曲面具有反射点的对称性所导致的。
镜面反射具有平行光束的特点,因此可以实现成像和聚焦等功能。
4. 球面反射:对于球面反射,由于球面具有球对称性,反射光线会从反射点上的切平面中心点出发,形成一个发散的光束。
与平面反射不同,球面反射不具有平行光束的特点,因此无法实现成像和聚焦等功能。
在光学系统中,球面反射通常用于漫反射或者散射光的处理。
5. 折射和多次反射:在二次曲面双曲面反射中,光线除了发生反射外,还可能发生折射和多次反射。
折射是光线从一种介质进入另一种介质时由于介质的光密度不同而导致的光线偏折现象。
多次反射是指光线在二次曲面上发生多次反射的现象,可以通过反射点在曲面上的路径来描述。
总结:二次曲面双曲面反射是光线在二次曲面上发生反射的行为,具有许多重要的特点和应用。
研究二次曲面双曲面反射可以帮助我们深入理解光的传播规律,为光学系统的设计和优化提供有力的参考。