2018_2019学年高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第2课时指数函数及其性质的应用练习
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
1教案教学课题:复习函数Y=Asin(ωx+φ)+k的图像【教学目标】(1)通过示图让学生对各函数图像有直观感受(2)引导学生观察各函数图像,引出它们之间的变化关系,各函数图像的位置、形状与字母A、ω、φ、k的关系。
【教学重点与难点】(1)各函数图像之间的变化关系(2)各函数图像的位置、形状与字母A、ω、φ、k的关系【课时安排】1课时【教学方法】问题-合作-探究【教学手段】多媒体教学【教学过程】一.引入内容在物理和工程技术的许多问题中,都要遇到形如Y=Asin(ωx+φ)的图像(其中A、ω、φ是常数)。
例如:物体作简谐振动时位移Y与时间X的关系;交流电中电流强度Y与时间X的关系等都可用这类函数表示。
从而有必要学习好Y=Asin(ωx+φ)+k这一类函数的图像。
主要解决好以下两个基本问题。
二.提出问题(先提出问题然后讲解,学生在听课时能抓住要点)1、如何由函数Y=sinx的图像经过变换得到函数Y=Asin(ωx+φ)+k的图像?2、函数Y=Asin(ωx+φ)+k的图像与字母A、ω、φ、k的关系是怎样的?2三.分析问题(引导学生将一个复杂的问题分解为若干个较为简单的问题逐个解决,进而解决整个问题)可以将上述问题分解为以下几个步骤进行:1.函数Y=Asinx与函数Y=sinx的图像关系如何?A的意义如何?2.函数Y=sinωx与函数Y=sinx的图像关系如何?ω的意义如何?3.函数Y=sin(x±φ)与函数Y=sinx的图像关系如何?φ的意义如何?4.函数Y=Asin(ωx+φ)与函数Y=sinx的图像关系如何?5.函数Y=Asin(ωx+φ)+k与函数Y=Asin(ωx+φ)的图像关系如何?k的意义如何?四.解决问题1、观察函数Y=2sinx及Y=1/2sinx的图像与Y=sinx的图像的关系。
打开演示文件“三角1”。
双击绿色“隐藏”先隐藏Y=1/2sinx的图像。
拉动线段a的一端点使其长为1,这样Y=Asinx与Y=sinx的图像重合,继续拉动使其逐渐变为2,这样Y=Asinx与Y=2sinx的图像重合。
指数与指数幂的运算(3)导入新课思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是——实数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题(指数与指数幂的运算(3))之无理数指数幂.思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本堂课的课题.推进新课新知探究提出问题①我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?③你能给上述思想起个名字吗?④一个正数的无理数次幂到底是一个什么性质的数呢?如52,根据你学过的知识,能作出判断并合理地解释吗?⑤借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:问题①从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.问题②对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.问题③上述方法实际上是无限接近,最后是逼近.问题④对问题给予大胆猜测,从数轴的观点加以解释.问题⑤在③④的基础上,推广到一般的情形,即由特殊到一般.讨论结果:①1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.②第一个表:从大于2的方向逼近2时,52就从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向逼近52.第二个表:从小于2的方向逼近2时,52就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向逼近52.从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面52从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向接近52,而另一方面52从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向接近52,可以说从两个方向无限地接近52,即逼近52,所以52是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示52的点靠近,但这个点一定在数轴上,由此我们可得到的结论是52一定是一个实数,即51.4<51.41<51.414<51.414 2<51.41421<…<52<…<51.41422<51.4143<51.415<51.42<51.5.充分表明52是一个实数.③逼近思想,事实上里面含有极限的思想,这是以后要学的知识. ④根据②③我们可以推断52是一个实数,猜测一个正数的无理数次幂是一个实数.⑤无理数指数幂的意义:一般地,无理数指数幂a α(a>0,α是无理数)是一个确定的实数.也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂. 提出问题(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗?活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳. 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂a α(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通. 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.讨论结果:(1)底数大于零的必要性,若a=-1,那么a α是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂a α是一个确定的实数,就不会再造成混乱. (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①a r ·a s =a r+s(a>0,r,s 都是无理数).②(a r )s =a rs(a>0,r,s 都是无理数).③(a·b)r =a r b r(a>0,b>0,r 是无理数).(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂. 实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈R ).②(a r )s =a rs(a>0,r,s∈R ).③(a·b)r =a r b r(a>0,b>0,r∈R ). 应用示例思路1例1利用函数计算器计算.(精确到0.001) (1)0.32.1;(2)3.14-3;(3)3.143;(4)33.活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按键,再按幂指数2.1,最后按,即可求得它的值; 对于(2),先按底数3.14,再按键,再按负号键,再按3,最后按即可;对于(3),先按底数3.1,再按键,再按34,最后按即可;对于(4),这种无理指数幂,可先按底数3,其次按键,再按键,再按3,最后按键.有时也可按或键,使用键上面的功能去运算.学生可以相互交流,挖掘计算器的用途.答案:(1)0.32.1≈0.080;(2)3.14-3≈0.032; (3)3.143≈2.336;(4)33≈6.705.点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n 位,只需看第(n+1)位能否进位即可.例2求值或化简. (1)3224ab ba -(a>0,b>0); (2)(41)21-213321)()1.0()4(---b a ab (a>0,b>0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.(3) 246347625---+- =222)22()32()23(---+- =3-2+2-3-2+2=0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例3已知x=21(5n 1-5n 1-),n∈N *,求(x+2x 1+)n 的值.活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,5n1与5n1-具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.x 2=41(5n 1-5n 1-)2=41(5n 2-2·50+5n 2-)=41(5n 2+2+5n 2--4) =41(5n 1+5n 1-)2-1. 这时应看到1+x 2=1+41(n 1-5n 1-)2=41(5n 1+5n 1-)2,这样先算出1+x 2,再算出2x 1+,带入即可.解:将x=21(5n 1-5n 1-)代入1+x 2,得1+x 2=1+41(5n 1-5n 1-)2=41(5n 1+5n 1-)n ,所以(x+2x 1+)n=[21(5n 1-5n 1-)+211)55(41n n-+]n=[21(5n 1-5n 1-)+21(5n 1+5n 1-)]n =(5n 1)n=5.点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.思路2 例1计算:(1)105432)(0625.0833416--+++π;(2)12532+(21)-2+34331-(271)31-;(3)(-2x 41y31-)(3x 21y 32);(4)(x 21-y 21)÷(x 41-y 41).活动:学生观察、思考,根式化成分数指数,利用幂的运算性质解题,另外要注意整体的意识,教师有针对性的提示引导,对(1)根式的运算常常化成幂的运算进行,对(2)充分利用指数幂的运算法则来进行,对(3)则要根据单项式乘法和幂的运算法则进行,对(4)要利用平方差公式先因式分解,并对学生作及时的评价. 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0.062 5)41+1-21=(25)2×21+(23)313⨯+(0.5)414⨯+21 =25+23+0.5+21 =5;(2)12532+(21)-2+34331-(271)31-=(53)32+(2-1)-2+(73)31-(3-3)31-=5323⨯+2-2×(-1)+7313⨯-3)31(3-⨯-=25+4+7-3=33; (3)(-2x 41y 31-)(3x 21y 32)=(-2×3)(x 41x 21·y31-y 32)=323121416+-+•-yx=-6x 43y 31=3436y x-;(4)(x 21-y 21)÷(x 41-y 41)=((x 41)2-(y 41)2)÷(x 41-y 41) =(x 41+y 41)(x 41-y 41)÷(x 41-y 41) =x 41+y 41.点评:在指数运算中,一定要注意运算顺序和灵活运用乘法公式.例2化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x 32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流. 解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a-a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a+a -1.点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m·a 21a 21-=m,需认真对待,要在做题中不断地提高灵活运用这些公式的能力.知能训练课本P 59习题2.1A 组 3.利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1B.(1-2321-)-1C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a>0,x=21(a n 1-a n 1-),则(x+2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x=21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x+2x 1+)n=[21(a n 1-a n 1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n 1-)+21(a n 1+a n 1-)]n=a.答案:a 拓展提升参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂32的意义.活动:教师引导学生回顾无理数指数幂52的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算32的过剩近似值和不足近似值,利用逼近思想,“逼出”32的意义,学生合作交流,在投影仪上展示自己的探究结果.我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数 21.7,21.72,21.731,21.7319,…,同样把用2作底数, 3的过剩近似值作指数的各个幂排成从大到小的一列数: 21.8,21.74,21.733,21.7321,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为32. 即21.7<21.73<21.731<21.7319<…<32<…<21.7321<21.733<21.74<21.8.也就是说32是一个实数,32=3.321 997 …也可以这样解释:当3的过剩近似值从大于3的方向逼近3时,32的近似值从大于32的方向逼近32; 当3的不足近似值从小于3的方向逼近3时,32的近似值从小于32的方向逼近32.所以32就是一串有理指数幂21.7,21.73,21.731,21.7319,…,和另一串有理指数幂21.8,21.74,21.733,21.7321,…,按上述规律变化的结果,即32≈3.321 997.课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a>0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈R ).②(a r )s =a rs(a>0,r,s∈R ).③(a·b)r =a r b r(a>0,b>0,r∈R ).(3)逼近的思想,体会无限接近的含义. 作业课本P 60习题2.1 B 组 2.设计感想无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.。
12.1.1指数与指数幂的运算一.根式(1)根式的概念如果一个数的n次方等于a(n>1且,n∈N*),那么这个数叫做a的n次方根.也就是,若xn=a,则x叫做a的n次方根,其中n>1且n∈N*.式子na叫做根式,这里n叫做根指数,a叫做被开方数.(2)根式的性质①当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号na表示.②当n为偶数时,正数的n次方根有两个,它们互为相反数,这时,正数的正的n次方根用符号na表示,负的n次方根用符号-na表示.正负两个n次方根可以合写为±na(a>0).③nan=a.;④当n为奇数时,nan=a;当n为偶数时,nan=a=aa-aa<.⑤负数没有偶次方根.二.有理数指数幂(1)幂的有关概念①正整数指数幂:an=(n∈N*);②零指数幂:a0=1(a≠0);③负整数指数幂:a-p=1ap(a≠0,p∈N*);④正分数指数幂:amn=nam(a>0,m、n∈N*,且n>1);⑤负分数指数幂:a-mn=1amn=1nam(a>0,m、n∈N*且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质①aras=ar+s(a>0,r、s∈Q);②(ar)s=ars(a>0,r、s∈Q);③(ab)r=arbr(a>0,b>0,r∈Q).例1、计算或化简下列各式323424(1)8(2)10(3)3(4)abab例2、计算下列各式2(1)48373271021.097203225.0(2)24130.753323(3)0.04[(2)]168(3)014323112325671027.0(4)43512525(5)5.00312603.1232366141例3.(1)化简321132132)(abbababa=__________.(2)化简382313232xxxxxx=__________.例4.(1).已知11223aa,求下列各式的值(1)1aa=;(2)22aa=(2)若11225xx,则21xx的值是变式、已知,32121xx求3212323xxxx练习巩固1.下列命题中,正确命题的个数为①nna=a②若a∈R,则(a2-a+1)0=1③yxyx34334④623)5(5A.0B.1C.2D.32.与aa1的值相等是()A.aB.aC.aD.a3.使代数式(x-1)31有意义的x的取值范围为()A.x≥1B.-1<x<1C.x>1D.x≠±14.若10x=3,10y=4,则102x-y=__________.5.计算0.02731-(-71)-2+25643-3-1+(2-1)0=__________.3.若210,5100ba,则ba2的值为()A、0B、1C、2D、32.1.2指数函数及其性质31.指数函数的定义一般地,函数xay叫做指数函数(其中1,0aa且),x是自变量,函数的定义域为Rx。
2.1.2指数函数及其性质【知识重难点】1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域;2.掌握指数函数图象:(1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质;(2)掌握底数对指数函数图象的影响;(3)从图象上体会指数增长与直线上升的区别.3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型;【问题】1.用列表、描点、连线的作图步骤,画出函数12,()2xxyy 的图像.通过图像,分析以下问题:定义域、值域、特殊点、单调性、奇偶性【基础知识梳理】一.指数函数的概念:函数y=ax(a>0且a≠1)叫做指数函数,其中x是自变量,a 为常数,函数定义域为___.要点诠释:(1)形式上的严格性:只有形如_____(a>0且a≠1)的函数才是指数函数.像23xy,12xy,31xy等函数都不是指数函数.(2)为什么规定底数a大于零且不等于1:x-3-2-1123xy2xy21①如果0a,则②如果0a,则③如果1a,则二.指数函数的图象及性质:y=ax0<a<1时a>1图象性质定义域:值域:a0=1,即x=0时,y=1,图象都经过点在定义域上是单调在定义域上是单调x<0时,ax>1x>0时,0<ax<1x<0时,0<ax<1x>0时,ax>1奇偶性:三.指数函数底数变化与图像分布规律在同一平面直角坐标系内作出下列函数图像112,3,(),()23xxxxyyyy;观察图像你能发现什么吗?四.指数型复合函数的单调性函数)(xfay的单调性见下表:当1a时,uay在R上单调递增)(xfu在21,xx上单调递增)(xfay在21,xx上)(xfu在43,xx上单调递减)(xfay在43,xx上当10a时,uay在R上单调递减)(xfu在21,xx上单调递增)(xfay在21,xx上)(xfu在43,xx上单调递减)(xfay在43,xx上【经典例题】一.指数函数的概念例1.(1)函数2(33)xyaaa是指数函数,求a的值.例2指出下列函数哪些是指数函数?(1)4xy;(2)4yx;(3)4xy;(4)(4)xy;(5)1(21)(1)2xyaaa且;(6)4xy.二.函数的定义域、值域例3求下列函数的定义域与值域:(1)412xy(2)xy32 (3)122xy(4)xy331 (5)1329xxy(6)2215.0xxy(7)313xxy(8)y=4x-2x+1;三、指数函数的单调性及其应用例4.判断下列各数的大小关系:(1)1.8a与1.8a+1;(2)24-231(),3,()33(3)22.5,(2.5)0,2.51()2(4)23(0,1)aaaa与(5)62922231,3xxxx例5.解简单的指数不式(1)已知)1且,0(75aaaaxx,求x得取值范围;(2)已知xxaaaa122)2()2(,求x得取值范围;四.指数函数的综合应用例6已知)(xf为定义在)1,1(上的奇函数,当)1,0(x时,142)(xxxf.(1)求)(xf在)1,1(上的解析式;(2)判断)(xf的单调递减区间,并给予证明.例7设函数12121)(xxf(1)证明函数)(xf是奇函数;(2)证明函数)(xf在),(上是增函数;(3)求函数)(xf在2,1上的值域。
必修1第二章基本初等函数(Ⅰ)知识点整理〖2.1〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n当n 是偶数时,正数a 的正的nn次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.(2(3(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式:l o g 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4【(5(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()xy ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数y =(7③将x=(8①原函数y ②函数y =③若(,P a (1一般地,函数(2(3①三象限,时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. 幂函数在(0,)+∞都有②过定点:所有的通过点(1,1).定义,并且图象都0α>,则幂函数的图③单调性:如果象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x=上方,当α(1①一般式:f ③两根式:f (2(3①二次函数f ②当0a >当0a <.③二次函数11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆④端点函数值符号. ①k <x 1≤x 2⇔ ②x 1≤x 2<k ⇔ ③x 1<k <x 2⇔af (k )<0 ④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出. (5)二次函数2设f (p) )2b a -f x0x (q) 0x x ??0x xx。
第二章 2.1 2.1.2 第2课时 指数函数及其性质的应用
1.当x >0时,指数函数f (x )=(a -1)x <1恒成立,则实数a 的取值范围是( )
A .a >2
B .1<a <2
C .a >1
D .a ∈R 解析:∵x >0时,(a -1)x <1恒成立,∴0<a -1<1,∴1<a <2.
答案:B
2.若指数函数f (x )=(a +1)x 是R 上的减函数,则a 的取值范围为( )
A .a <2
B .a >2
C .-1<a <0
D .0<a <1 解析:由f (x )=(a +1)x 是R 上的减函数可得0<a +1<1,∴-1<a <0.
答案:C
3.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )
A .f (x )与g (x )均为偶函数
B .f (x )为偶函数,g (x )为奇函数
C .f (x )与g (x )均为奇函数
D .f (x )为奇函数,g (x )为偶函数
解析:∵f (x )=3x +3-x ,
∴f (-x )=3-x +3x .
∴f (x )=f (-x ),
即f (x )是偶函数.
又∵g (x )=3x -3-x ,
∴g (-x )=3-x -3x .
∴g (x )=-g (-x ),
即函数g (x )是奇函数.
答案:B
4.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是________________. 解析:∵y =0.8x 是减函数,
∴0<b <a <1.
又∵c =1.20.8>1,∴c >a >b .
答案:c >a >b
5.设23-2x <0.5
3x -4,则x 的取值范围是________. 解析:∵0.53x -4=⎝ ⎛⎭
⎪⎫123x -4=24-3x ,∴由23-2x <24-3x ,得3-2x <4-3x ,∴x <1. 答案:(-∞,1)
6.已知22x ≤⎝ ⎛⎭
⎪⎫14x -2,求函数y =2x 的值域. 解:由22x ≤⎝ ⎛⎭
⎪⎫14x -2得22x ≤24-2x , ∴2x ≤4-2x .
解得x ≤1,∴0<2x ≤21
=2.
∴函数的值域是(0,2].。