第1章 量子力学基本原理---量子论
- 格式:ppt
- 大小:2.22 MB
- 文档页数:63
量⼦⼒学讲义1第⼀章绪论前⾔⼀、量⼦⼒学的研究对象量⼦⼒学是现代物理学的理论基础之⼀,是研究微观粒⼦运动规律的科学。
量⼦⼒学的建⽴使⼈们对物质世界的认识从宏观层次跨进了微观层次。
综观量⼦⼒学发展史可谓是群星璀璨、光彩纷呈。
它不仅极⼤地推动了原⼦物理、原⼦核物理、光学、固体材料、化学等科学理论的发展,还引发了⼈们在哲学意义上的思考。
⼆、量⼦⼒学在物理学中的地位按照研究对象的尺⼨,物理学可分为宏观物理、微观物理和介观物理三⼤领域。
量⼦理论不仅可以正确解释微观、介观领域的物理现象,⽽且也可以正确解释宏观领域的物理现象,因为经典物理是量⼦理论在宏观下的近似。
因此,量⼦理论揭⽰了各种尺度下物理世界的运动规律。
三、量⼦⼒学产⽣的基础旧量⼦论诞⽣于1900年,量⼦⼒学诞⽣于1925年。
1.经典理论⼗九世纪末、⼆⼗世纪初,经典物理学已经发展到了相当完善的阶段,但在⼀些问题上经典物理学遇到了许多克服不了的困难,如⿊体辐射等。
2.旧量⼦论旧量⼦论= 经典理论+ 特殊假设(与经典理论⽭盾)旧量⼦论没有摆脱经典的束缚,⽆法从本质上揭露微观世界的规律,有很⼤局限性。
但旧量⼦论为量⼦⼒学理论的建⽴提供了线索,促进了量⼦⼒学的快速诞⽣。
四、量⼦⼒学的研究内容1.三个重要概念:波函数,算符,薛定格⽅程。
2.五个基本假设:波函数假设,算符假设,展开假定,薛定格⽅程,全同性原理。
五、量⼦⼒学的特征1.抛弃了经典的决定论思想,引⼊了概率波。
⼒学量可以不连续地取值,且不确定。
2.只有改变观念,才能真正认识到量⼦⼒学的本质。
它是⼈们的认识从决定论到概率论的⼀次巨⼤的飞跃。
六、量⼦⼒学的应⽤前景1.深⼊到诸多领域:本世纪的三⼤热门科学(⽣命科学、信息科学和材料科学)的深⼊发展都离不开它。
2.派⽣出了许多新的学科:量⼦场论、量⼦电动⼒学、量⼦电⼦学、量⼦光学、量⼦通信、量⼦化学等。
3.前沿应⽤:研制量⼦计算机已成为科学⼯作者的⽬标之⼀,⼈们期望它可以实现⼤规模的并⾏计算,并具有经典计算机⽆法⽐拟的处理信息的功能。
《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。
1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。
黑色物体或开一小孔的空心金属球近似于黑体。
黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。
按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。
按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。
Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。
经典理论无论如何也得不出这种有极大值的曲线。
• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。
• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。
能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。
量⼦⼒学基本原理量⼦⼒学是到现在为⽌⼈们能够给出的最好的理论,然⽽不应当认为它将永远的存在下去。
假如我们要重新引⼊决定论的观点,那就应当以某种⽅式付出代价,这种⽅式是什么,现在还⽆法推测。
——狄拉克狄拉克23岁成为量⼦⼒学创始⼈之⼀本⽂主要从量⼦论起源、能量⼦假设、光电效应、康普顿散射、玻尔量⼦论、德布罗意物质波、概率波函数、量⼦叠加态原理、不确定性原理、薛定谔⽅程等⼗⼤概念理解量⼦⼒学基本原理,见证⼆⼗世纪真正的神话。
量⼦⼒学其实描述的是物质的⾏为,特别是发⽣在原⼦尺度范围内的事件。
在极⼩尺度下事物的⾏为与我们有着直接经验的任何事物都不相同。
它们既不像波动,⼜不像粒⼦,也不像云雾,或悬挂在弹簧上的重物,总之不像我们曾经见过的任何东西。
费曼1、量⼦论起源量⼦论的起源来⾃⼀个⼤家熟悉的现象,这⼀现象并不属于原⼦物理学的核⼼部分。
任何⼀块物质在被加热时都会发光,并在⾼温度下达到红热和⽩热,发光的亮度与材料的表⾯关系不⼤,⽽对于⿊体,只与温度有关。
因此,⿊体在髙温下发出的辐射作为物理学研究的适当对象,被认为应该可以根据已知的辐射和热学定律找到⼀个简单的解释。
但是物理学家瑞利和⾦斯在⼗九世纪末的努⼒却以失败告终,揭⽰了⿊体辐射问题的严重性。
瑞利和⾦斯⼀切⼈类的直接经验和直觉都只适⽤于宏观物体。
——费曼2、能量⼦假设难以置信的是这个公式已经触动了我们描述⾃然的基础,我感到,我可能已经完成了⼀个第⼀流的发现,或许只有⽜顿的发现才能和它相⽐。
——普朗克普朗克⼤胆舍弃了“能量均分定理”,代之以“量⼦假设”——能量只能以分⽴的能量⼦的形式发射或吸收,这在概念上是⼀次⾰命性的突破,以致它不再适合于物理学的传统框架。
频率为v的电磁波和原⼦、分⼦等物质发⽣能量转换时候,能量不能连续变化,只能⼀份⼀份的跳变,且每份“能量⼦”为:ε=hv=ℏω,其中约化普朗克常数ℏ=h/(2π)普朗克普朗克公式普朗克根据能量的量⼦化,得出⾓频率为ω的电磁振动模式在温度T下的平均能量不再取“能量均分定理”给出的KT,⽽是:E(ω)=ℏω/(e^(ℏω/kT)-1)利⽤热⼒学和物理统计理论,导出了著名的(描述电磁波能量和⾓频率关系)的普朗克公式:ρ (ω)=(ℏω³/π²c³)/(e^(ℏω/kT)-1)3、光电效应年轻的爱因斯坦是物理学家中⼀个有⾰命性的天才,他不怕进⼀步背离旧的观念。
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 λνc =, (2)||λνρρλd d v =, (3)有(),118)(|)(||52-⋅=⋅===kThc v v ehc cd c d d dvλνλλπλλρλλλρλρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kThce kT hc ehcd d λλλλλπλρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯≈-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解:根据德布罗意波粒二象性的关系,可知λh P =。
所考虑的粒子是非相对论性的电子(动能eV c m E e k 621051.0⨯=<<),满足ek m p E 22=, 因此利用非相对论性的电子的能量—动量关系式,有nmm mE c m hc E m h ph e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯====--λ在这里,利用了m eV hc ⋅⨯=-61024.1, eV c m e 621051.0⨯=。